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Abstract: In the field of traffic sign recognition, traffic signs usually occupy
very small areas in the input image. Most object detection algorithms directly
reduce the original image to a specific size for the input model during the
detection process, which leads to the loss of small object information. Addi-
tionally, classification tasks are more sensitive to information loss than local-
ization tasks. This paper proposes a novel traffic sign recognition approach, in
which a lightweight pre-locator network and a refined classification network
are incorporated. The pre-locator network locates the sub-regions of the
traffic signs from the original image, and the refined classification network
performs the refinement recognition task in the sub-regions. Moreover, an
innovative module (named SPP-ST) is proposed, which combines the Spatial
Pyramid Pool module (SPP) and the Swin-Transformer module as a new
feature extractor to learn the special spatial information of traffic sign effec-
tively. Experimental results show that the proposed method is superior to the
state-of-the-art methods (82.1 mAP achieved on 218 categories in the TT100k
dataset, an improvement of 19.7 percentage points compared to the previous
method). Moreover, both the result analysis and the output visualizations
further demonstrate the effectiveness of our proposed method. The source
code and datasets of this work are available at https://github.com/DijiesitelaQ/
TSOD.
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1 Introduction

Traffic sign recognition is an important sub-task of real-time intelligent transportation systems.
In this field, numerous methods have been proposed, and many public datasets have been released.
Generally, a traffic sign recognition system consists of two stages: the first is to find the traffic sign
locations in the real traffic scenes (traffic sign detection), and then classify the findings (traffic sign
classification). Therefore, these methods can be divided into two types according to the processing
steps. Such as the German Traffic Sign Detection Benchmark (GTSDB) [1] dataset and the Chinese
Traffic Sign Detection Benchmark (CCTSDB) [2] dataset are used for the detection task, and the
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German Traffic Sign Recognition Benchmark (GTSR B) [3] dataset is used for the classification task. In
recent years, some algorithms [4,5] have achieved 99% precision and 95%-99% recall for the detection
task, and 99% precision for the classification task at these public datasets. However, these benchmark
datasets cannot fully represent the actual traffic environment. In real traffic scenes, there are many
difficulties in traffic sign detection, such as small size objects, illumination that is too bright or too
dark, partial blurred, or occlusion. Some examples are shown in Fig. 1. Subfigure (c) in Fig. | shows
the TT100K [6] dataset, which has a significantly lower proportion of traffic sign pixels compared to
the other two datasets, indicating a challenging scenario for small object detection. Detecting small
objects like traffic signs and lights is challenging for ordinary convolutional neural networks due to
their size. After a few pooling layers, their features are almost lost, making detection more difficult.

Figure 1: (a) Traffic sign examples in GTSDB dataset; (b) traffic sign examples in GTSRB dataset; (c)
TT100K dataset

In realistic traffic scenarios, traffic signs are placed where they are most easily visible in the frontal
direction of vehicle travel, usually on the right side of the road, in the median, or above the carriageway.
Multiple signs are placed at the same location to ensure coordinated and complete information.
Therefore, the spatial distribution of traffic signs is closely linked to other environmental elements
such as roads and plays a crucial role in detecting and recognizing them. Additionally, the actual task
is not limited to detecting a few categories. The CCTSDB benchmark, for instance, only contains three
categories of prohibition, warning, and instruction, while the GTSDB benchmark only detects four
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major categories of traffic signs. One reason for this is the difficulty in constructing multi-category
datasets with accurate labels. Another significant factor is the challenge of accurately detecting traffic
signs in the real environment and achieving multi-category classification. The TT100k dataset is a
Chinese traffic sign dataset that contains 221 categories, making it the most comprehensive traffic
sign dataset currently available. It covers the majority of complex traffic scenes, with a large number
of small object samples (37.5%), and the percentage of small and medium-sized targets (s <96 x 96)
is as high as 89.5%. The image size is 2048 x 2048 pixels, and the small object samples (s <32 x 32)
only account for less than 0.15% of the image area. Typically, size scaling is directly performed on
these large input images, such as scaling the input size of 2048 x 2048 to 640 x 640 or 416 x 416, and
then inputting the scaling result to the model for object detection. On the one hand, the original input
size is too large, which is not conducive to model training, and on the other hand, it ensures real-time
detection speed. However, this inevitably results in the loss of key information about small objects
in the original image, which has a greater impact on multi-category recognition tasks. The TT100K
dataset class distribution is extremely uneven, as shown in Fig. 2. The number of traffic sign categories
reaches thousands of instances (e.g., the number of ‘pn’ categories is 2997), and lesser categories (e.g.,
‘p7’) have only one instance, requiring a strong classification capability of the model. Most methods
only classify a few super-classes, such as mandatory, hazardous, and prohibited, or a limited number
of subclasses, such as 45 classes, which is far from meeting the actual task requirements.
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Figure 2: (a) Distribution of the number of traffic signs in TT100k; (b) traffic sign size distribution in
TT100k, small objects (s < 32), medium objects (32 < s < 96), and large objects (96 <s)
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This paper proposes a novel architecture for traffic sign recognition, comprising a lightweight
pre-locator and a refined classification network. To address the loss of small object information
due to input scaling of a large image, the pre-locator obtains sub-regions that may contain traffic
signs, transforming the large-size original map directly into a specific-size submap for subsequent
classification and regression, thus avoiding information loss. Unlike methods that perform limited
class detection, we use a decoupled detection head to separate the localization and classification
tasks for multi-category classification. Our proposed method achieves excellent performance in
detecting and recognizing 218 categories. To learn the special location information of traffic signs,
the local multi-scale feature information provided by the SPP [7] layer is fused with the global
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feature information provided by the Swin-Transformer [8] block, and a feature extraction module
is constructed for this information fusion.

The main contributions of this paper are as follows:

1) A pre-positioning network (PPN) based on the ShuffleNetV2 [9] is constructed to improve the
performance of small object detection.

2) A refinement classification network (RCN) that uses an improved YOLOX [10] is proposed.

3) A feature extraction module combining Swin-Transformer and SPP is used for the information
fusion.

The rest of this paper is structured as follows. Section 2 reviews general object detection
frameworks and compares state-of-the-art detection methods for traffic signs. Section 3 describes the
proposed method. Section 4 presents the experimental result and analysis. Finally, we summarize the
conclusions in Section 5.

2 Related Work

This section first introduces general object detection methods, and then focuses on the methods
related to traffic sign recognition.

2.1 Object Detection

Object detection algorithms can be divided into two research phases: the traditional methods
phase and the deep learning-based methods phase. Traditional methods consist of three main parts:
region selection (sliding window, ROI [11], etc.), feature extraction (SIFT [12], HOG [13], etc.)
and classification (SVM, Adaboost [14], etc.). However, traditional detectors’ performance quickly
saturates due to the poor robustness of manually designed features and the complex and time-
consuming detection process.

In recent years, the dramatic increase in computing power of computer hardware, the rapid
development of deep learning techniques, and the release of high-quality datasets have led to the
widespread development of object detection algorithms based on deep learning. The CNN-based
approaches have achieved great success in many fields. Devarajan et al. [15] used a CNN-based
approach with artificial jellyfish optimization (AJO) to diagnose cervical cancer and achieved good
performance. Shitharth et al. [16] proposed an enriched mechanism for detecting and classifying
cyber-attack in SCADA systems, which combines RPCA and BCNN methods. Amanullah et al. [17]
proposed a CNN-based prediction analysis method for preventing web phishing attacks, which
achieved high accuracy. Mainstream CNN-based object detection methods are generally divided into
two categories: two-stage methods and one-stage methods. The one-stage methods convert the object
detection task into a regression problem, which can directly obtain the class and location coordinates of
the object. Typical methods include YOLO [18], SSD [19], and RetinaNet [20]. The two-stage methods
divide the detection problem into two stages: the first stage generates a region proposal containing
approximate location information of the object, and the second stage classifies and regresses the
content in the region of interest (ROI). The representative two-stage detection algorithms Such as
Faster RCNN [21], Mask RCNN [11], etc. However, the two-stage architecture proposed in this paper
differs from the above: the first stage is to perform coarse localization on the original map to find
the sub-regions where objects exist to maximize the preservation of valid input information, especially
small object information; the second stage is to perform classification and regression tasks.
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For the CNN-based methods, Transformer has been commonly used in the field of computer
vision in recent years due to its powerful feature extraction capability and self-attentiveness. Vision
Transformer [22] (ViT) was the first to use a transformer in the CV domain, and after that, many
Transformer-based methods have been proposed for processing CV domain-related tasks. Among
them, the Swin-Transformer, which is based on the idea of the ViT model, innovatively introduces a
sliding window mechanism that allows the model to learn information across the window, and through
the down-sampling layer, enables the model to process super-resolution images, saving computational
effort as well as being able to focus on global and local information.

2.2 Traffic Sign Recognition

In the early days, traffic sign recognition methods were artificially designed to extract features,
such as methods based on shape, colour, or HOG. Due to this method’s cumbersome operation and
inefficient algorithm cannot cope with the complex and changeable traffic environment.

In recent years, CNN-based methods have been mainly used in the field of traffic sign detection
and recognition. The Branch Convolutional Neural Network (BNN) proposed by Hu et al. [23] and
the weighted multi-convolutional neural network proposed by Natarajan et al. [24], which achieved
high accuracy rates in the GTSRB dataset. However, recognizing general traffic signs, which occupy
a relatively small area in the scene they are in, remains a challenge. To address this issue, researchers
have proposed various methods, Han et al. [25] proposed an improved Faster-RCNN real-time small
traffic signs detection algorithm, Sun et al. [26] put forward the Dense-RefineDet model, which
combines a high-dimensional feature layer with a low-dimensional feature layer by constructing a
dense connection block to obtain additional context information. Although this method improves the
recognition rate of small objects, the missed detection rate has increased correspondingly. Jin et al. [27]
proposed an improved SSD algorithm, which can enhance the effective channel features and suppress
the invalid channel features by integrating low-dimensional features into high-dimensional features
and improving the detection performance of small traffic signs. Shen et al. [28] proposed a novel
group multi-scale attention pyramid network to improve small object detection performance mainly
by learning multiscale information. These methods aim to enhance the detection performance of
small traffic signs by integrating low-dimensional features into high-dimensional features, learning
multiscale information, and improving the effective channel features while suppressing the invalid
ones. Moreover, researchers have also proposed novel approaches to improve the accuracy of the
classification task, such as the two-stage approach proposed by Wang et al. [29] and the classifier
based on similarity metric learning. In Table 1, the relevant results of these methods are discussed and
summarized.

Table 1: Summary of multiple deep learning methods for traffic sign

Method Outcomes Advantages Limitations Dataset
BCNN [23] 98.52% accuracy  Branch-output Implementation GTSRB
mechanism from moving
enhanced platform was not

recognition speed  tested.
and accuracy.

(Continued)



2232

Table 1: Continued

TASC, 2023, vol.37, no.2

Method Outcomes Advantages Limitations Dataset
Weighted Highest 99.75% Classification in Struggled to GTSRB
multi-CNN [24] accuracy high-speed driving classify in

and outperformed challenging blurry

in low-light vision condition.

conditions.
Improved mAP improved by Reduced the Decreased Home-made
Faster-RCNN [25]  12% pooling layer and  detection speed. datasets

improved the

detection accuracy

of small objects.
Dense-RefineDet ~ Small object Combined high The missed TT100K
[26] accuracy 83.9% and low detection rate

dimensional increased.

features and

improved the

recognition rate of

small objects.
Improved SSD [27] Small object Combined Less performance  GTSDB

Fl-measure 28.8% low-level features = improvement.

with high-level

features.
Multi-scale Small object Aggregated the Done for only 45  TTI100K
attention pyramid FIl-measure 89.8% features at different categories and not
network [28] scales and tested detection

suppressed the speed.

messy information

in the background.
Lightweight Highest 92.16% Combined witha  Done for only 45  TT100K
Two-Stage Model mAP lightweight categories and

[29]

superclass detector
with a refinement
classifier.

decreased in
performance for
small traffic signs.

In general, CNN-based algorithms have shown great potential in traffic sign recognition. However,
the specific application methods should be adapted according to the traffic sign recognition scenarios.
Our proposed method is more suitable for traffic sign recognition scenarios, unlike previous research
work. Firstly, we separate the detection task from the recognition task, focusing on each task’s key
points. Secondly, we propose a novel two-stage detection framework that can avoid information loss
while maintaining fast detection speed. Furthermore, we achieved a better performance improvement
by integrating Transformer-based self-attentive information into traffic sign recognition.
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3 Method
The architecture of the proposed method is shown in Fig. 3.
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Figure 3: The proposed two-stage architecture

When an image captured from a real traffic scene is input, the first stage is to predict the
approximate regions where traffic signs are present by a pre-positioning network (PPN), specifically
to obtain sub-regions that may contain traffic signs in the input large image, and then in the next stage,
a refined classification network (RCN) is to perform traffic sign recognition on these sub-regions. The
specific process is shown in Algorithm 1.

Algorithm 1: Pre-locator Incorporating Swin-Transformer Refined Classifier for Traffic Sign Recog-
nition Strategy

Input:

xwxe ¢ R7xC: The input images.

Output:

Y: Location boxes and categories of traffic signs

Phase 1. PPN: Pre-Positioning Network
X" « Scaling (X*), m € [g, K, c
T < PPN (X™), T e {x,y,h,w}, T is the subregion containing traffic signs obtained by PPN.
return (T))

Phase II. RCN: Refined Classification Network
T < T x d, match sub-regions of the original image scale.
X <« Division (T, x’”‘””), delineate the sub-regions in the original image.
Y < RCN (X)
return (Y)

End

}, d is the scaling factor.




2234 TASC, 2023, vol.37, no.2

In the PPN stage, for our task requirements, only coarse but inclusive localization boxes of all
objects are needed, and we can use the scaled information for approximate position detection since
the localization task is not sensitive to this. After that, the masked boxes are then matched to the
original input to obtain sub-regions according to the size invariance of the image. This results in a
significant increase in detection speed. In the RCN stage, lossless object information can be obtained,
ensuring the recognition of the small targets.

3.1 Two-Stage Detection Architecture

In real traffic scenarios, traffic signs are usually concentrated in a certain area, such as the top
of the road, as shown in Fig. 3. In many algorithms, the large-size traffic images that are input into
the model are directly scaled down to a suitable size for model training. This process causes our
original small object information to be lost and reduces the recognition performance of small objects.
In addition, we found that this process mainly affects the classification task, as shown in Fig. 4. As
we can see through our experiments, when we treat all traffic signs as a class, this time, the YOLOVS5
algorithm is also able to detect traffic signs well, indicating that the main detection information can be
retained as we narrow down the input scale information during the training process, while the detailed
classification information needed to complete the classification task is severely lost in the process,
which is reflected in only 71.4% precision and 38.9% recall for the 218 classes of the classification task.

1.1

0.9

07 |

0.5

0.3 - . L . L . g
1 class 45 classes 218 classes
Precision Recall mAP

Figure 4: The accuracy, recall and mAP of YOLOvVS5 on TT100k for different number of categories

Therefore, we use a two-stage network detection, where the first stage aims to perform approx-
imate localization, i.e., to find the sub-regions of the graph that contain traffic signs to preserve the
traffic sign information in the original image; the second stage is to perform the main object detection
and classification tasks, especially the multi-category classification tasks.

3.2 PPN: A Lightweight Localizer

The PPN consists of shuffleNetV2 as a feature extraction backbone, a lightweight FPN, and
a YOLO detection head. Its structure is shown in Fig. 5. To adapt it to our task, only one or a
few fixed-size regions containing traffic signs need to be detected. We chose a lightweight detection
backbone based on shuffleNetV2, consisting mainly of a convolutional module as well as several
Shuffle_Blocks. Shuffle_Blocks, as the main feature extraction layer, is an improvement of Shuf-
fleNetV2 from ShuffleNet and has achieved excellent results in lightweight networks [30,31]. It inherits
the group convolution, depth-separable convolution, and channel-mixing operations of ShuffleNet,
with lightweight and efficient feature extraction capabilities. The convolutional layer among the neck
network FPN is configured with only one layer of convolutional layers, and after the lightweight
configuration, the sub-regions with the presence of traffic sign areas can be quickly acquired by feeding
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them into the YOLO detection head, as shown in Fig. 5. After the adjustment, obtain Lightweight
localizer (1.62 M of parameters, 2.42G of GFLOPs, 3.4 M of weight file size).

]
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Figure 5: The PPN framework

3.3 Improved YOLOX for the RCN

The original YOLOX is modified for the traffic sign task. Inspired by the visual transformer, Swin-
Transformer, TPH-YOLOVS [32], we use the SPP-ST block as an effective feature extraction module.
As shown in Fig. 6, we replace some CSP bottleneck blocks in the original version of YOLOX with
SPP-ST blocks. Compared with the original bottleneck blocks in CSPDarknet53, the SPP-ST blocks
are more effective in capturing global information and rich contextual information. On the TT100k
dataset, the SPP-ST block performs better on small objects.

Backbone c6 P5
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Figure 6: Composition of YOLOX

3.3.1 Overview of YOLOX

YOLOX adds Anchor free, advanced tag assignment strategy, decoupling header, and other
improvements to YOLOVS to achieve the highest performance. For traffic sign recognition, one of
the great constraints on performance is the recognition of multiple categories, for example, the 221
traffic sign categories in the TT100k dataset need to be distinguished, and there are problems such as
many categories, many small objects, and unbalanced data samples, for which the decoupling head in
YOLOX can play an excellent role.

The two tasks of localization and classification have different focuses and interests. Classification
focuses more on which of the extracted features is most similar to the existing categories. The
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localization is more concerned with the location coordinates of the ground truth box and thus the
bounding box parameter correction. Therefore, if the same feature map is used for classification and
localization, the effects will interfere with each other [33]. In addition, in the work of Wu et al., it is
pointed out that fc-head is more suitable for classification tasks and conv-head is more suitable for
localization tasks, and decoupled detection head is more advantageous for detecting small objects
[34]. In YOLOX, the structure of the decoupled detection head is shown in Fig. 7, where a 1 x 1
convolutional layer is used to downscale the features of the FPN input, and then two branches
of classification and localization are added, and two 3 x 3 convolutions are used in each of the
classification and regression branches, which are finally adjusted to increase the parameters only a
little bit to achieve the trade-off between detection effect and speed.

YOLOvVS #anchorxC — Cls
Coupled Head +
H xW x<#anchor x4 — Reg
_— e

+
#anchor x1 — Obj

- "?HXWXC i

YOLOX
Decoupled Head

P3[H xW x256]
FPN < PA[H xWV x512]
P5[H x IV x1024]

HxWx256

Figure 7: The structure of the decoupled detection head in YOLOX

HxW %256

HxWx256

3.3.2 SPP-ST Block

The SPP-ST block consists of two parts, and the whole is designed in the form of residuals, as
shown in Fig. 8. Firstly, the input features are downscaled by a convolution layer, and then passed
into two branches, one branch is the SPP module, after kerning the input features as 5 x 5, 9 x 9,
13 x 13 max pooling, the perceptual field information of different sizes is obtained and fused.

SPP

25

o
; -

Feature

Input
Feature

Figure 8: Detail components of the SPP-ST block
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The other branch is the Swin-Transformer module. Since winning the best paper in ICCV 2021,
Swin-Transformer has brought Transformer-based algorithms to the attention of the computer vision
field. Before Swin-Transformer was available, there were also many algorithms applying Transformer
in the field of computer vision, such as the Vision Transformer (ViT) model proposed by Google in
2020, which applied Transformer to the image classification task by segmenting the input image into
many blocks (Patches) of the same size (Patch) into many blocks of the same size, and thus input to the
Transformer encoder for self-attentive computation; the DETR [35] target detection model proposed
by Facebook AI Institute in 2020, which can obtain high-performance detection results without
a priori frames. The Transformer is applied to different computer vision tasks, because the visual
information flow is two-dimensional images or even three-dimensional video, and the calculation of
Self-Attention in the Transformer needs to be performed on the matrix of the squared dimensions of
the input information, the computational complexity is large, and the slightly larger resolution will
seriously affect the Transformer’s In this regard, the Swin-Transformer algorithm is proposed.

Swin-Transformer is based on the idea of ViT, which divides the input image into several fixed-
size Patches; the difference is that ViT performs Self-Attention computation on N Patches with a
complexity of N?, while Swin-Transformer computes N Patches in groups, and the complexity of each
group of constant-level Patches, the complexity can then be reduced to constant-level, meanwhile,
this process Swin-Transformer replaces the conventional image division method in ViT using Shifted
Windows, which avoids ViT’s fixed times of down-sampling to extract high-dimensional features, so
that the features of each Patch can make full use of the information of neighbouring blocks, and
improves the information interaction between patches, thus improving the performance of the model.

The Swin-Transformer module contains two parts, both of which have the same residual structure,
as well as Norm, MLP layers. In the first part, the input feature map is divided into four image regions
with regular windows, each of the same size, and self-attention is computed within each window region
using a multi-headed self-attention mechanism (W-MSA). As shown in Fig. 9. Since the first part
uses regular windows for self-attention calculation, this inevitably limits the information interaction
between these four windows, so in the second part, Swin-Transformer also introduces the shifted
window operation for better information interaction with other windows. The original 4 windows in
“Layer 1" are shifted to 9 windows in “Layer 1 4 17, and the shifted windows contain the information
of the original adjacent windows, which span the boundary of the previous part of the windows for
shifted window multi-headed self-attention (SW-MSA) feature extraction, providing the connection
between them and enhancing the global information extraction capability.

Layer 1 Layer 1+1

el
b

Figure 9: The Swin-transformer’s shifted window for multi-headed self-attention
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The “Layer 17 layer first calculates the attention of the four regions, but this process weakens the
connection between the traffic sign information in the upper right corner and the location of the road
surface, and after the second sliding window process “Layer 1 + 17, it enhances the knowledge of this
location relationship, so that the model can learn this global spatial information.

In this way, it is possible to learn information about the particular distribution of traffic signs
in terms of spatial location, concerning other environmental elements. The formula for calculating
self-attention with the addition of a relative position encoding is as follows:

T

Attention (Q, K, V) = Softmax (Qj;gK + B) V (1)

Here (Q,K, V) € R4 where d is the matrix dimension, M? denotes the number of patches in
the window. B is the relative position code, B € R"***_ {/d is the scaling factor used to avoid the effect
of variance from the dot product.

The overall encoder formulas are as follows:

Z, =W—MSA (LN (Z )+ Z,t=1,2.. L, )

where Z, denotes the output of the encoder from the W-MSA. This module mainly uses the self-
attention in Eq. (1) to perform multi-headed calculations and capture the relationships between
different parts of the sequence.

Z, = MLP (LN (Ll)) +Zt=12.. L (3)

where Z, denotes the output after feedforward neural network processing. The main function of this
layer is to transform the input data into more discriminative feature representations, thereby improving
the performance of subsequent tasks.

Z,, =SW-MSA (LN (Z)) + Z, £ =1,2... L, €)

Z, = MLP (LN (Zz)) +Z, =1, L (5)

where Zz and Z, together form the output of the SW-MSA module. Z, and Z, together form a
transformer encoder with a total of L layers.

4 Experiment Result and Discussion

In this section, we introduce the dataset and evaluation metrics, parameter settings, and imple-
mentation details, and compare the performance in terms of accuracy and speed to other competitive
approaches. Furthermore, we give the ablation studies and discussion.

4.1 Dataset and Evaluation Metric

We use the Tsing-Tencent 100k as the benchmark to evaluate the proposed method. TT-100k
dataset contains 16,811 images of 2048 x 2048 pixels, which were collected from Chinese street scenes.
A typical traffic sign is about 80 x 80 pixels in a 2048 x 2048 pixels image, or just 0.2% area of the
image. To fully evaluate our method, we remove the three mixed classes “i0”, “po”, and “wo” that

may affect the classification performance. Finally, the recognition task of 218 categories is done.
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Here, we refer to MS COCQO’s object scales division methods, including small objects (s < 32),
medium objects (32 <s < 96), and large objects (96 <s <+ o00). Small and medium size objects
accounted for 89.4% of the total in the TT100k dataset, The results show that the key to improving
the performance of the traffic sign detection model is to improve its ability to detect small objects.

The model detection accuracy evaluation metric uses the precision-recall metric. The equations of
these two metrics are shown below:

- TP
Precision = ———— (6)
TP+ FP
TP
Recall = ——— (7)
TP+ FN

where TP denotes the number of True Positive sample instances. FP and FN denote False Positive
values and False Negative values.

To quantitatively measure the trade-off between precision and recall, the Average Precision (AP) is
proposed, which is the area under the precision vs. recall rate curve, and it reliably describes the trade-
off between precision and recall. AP is the accuracy of computing one traffic sign class, and mAP
is the average value of AP overall traffic sign classes. In this paper, the mAP is calculated under the
condition that the Intersection-over-Union (IoU) with a value of 0.5 is used as the evaluation index.

4.2 Implementation Details

The experimental platform is Ubuntu 20.4.1 operating system, Pytorch-1.7.1 deep learning
framework, and the hardware configuration is: graphics GPU NVIDIA GeForce GTX3090, 24 GB
video memory, and Intel (r) Core (TM) 19-10850k CPU @3.60 ghz.

We compare the classic two-stage object detection algorithm Faster RCNN [21], Cascade RCNN
[36] algorithm, the single-stage algorithms SSD512, YOLOVS, the recent algorithms TPH-YOLOVS
[32] and Scaled-YOLOV4 [37] in the field of object detection and some algorithms in the field of traffic
signs.

Algorithm Faster RCNN, Cascade RCNN, and SSD512, were trained on MM Detection [38] for
36 batches. In the training process, the default data enhancement technology and super parameters in
the MM Detection framework are adopted, and the stochastic gradient descent (SGD) optimization
algorithm is used. Algorithms YOLOvS, YOLOX, TPH-YOLOVS, and ScaledYOLOvV4 [37] train 300
batches, and the first three batches are preheated by using the SGD optimization algorithm and
Warmup learning rate preheating method. The initial learning rate is 0.01, the learning rate is updated
by cosine annealing, and the final learning rate is attenuated to 0.002. The parameter settings of each
method are shown in Table 2.

Table 2: Different method training parameter settings. ‘—’ means no such parameter
Method Parameters
Bath-size ~ Epoch Lr0 Lref Weight_decay Momentum
Faster RCNN 4 36 0.02 - 0.0001 0.9
Cascade 4 36 0.02 - 0.0001 0.9
RCNN
SSD512 8 36 0.02 - 0.0001 0.9

(Continued)
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Table 2: Continued

Method Parameters
Bath-size ~ Epoch Lr0 Lrf Weight_decay Momentum

YOLOV5 32 300 0.01 0.2 0.0005 0.937
YOLOX 32 300 0.01 0.2 0.0005 0.937
TPH-YOLOvS 32 300 0.03 0.12 0.00036 0.843
ScaledYOLOv4 32 300 0.01 0.2 0.0005 0.937
PPN 64 300 0.03 0.12 0.00036 0.843
RCN 32 300 0.01 0.2 0.0005 0.937

4.3 Comparison with the State-of-the-Art Methods

In this section, we compare the algorithm consisting of PPN and RCN with other state-of-the-art
methods. Our improved algorithm obtains state-of-the-art results, specifically achieving 94.1 mAP on
detecting 45 categories and 82.1 mAP on 218 categories.

As can be seen from Table 3, we first did experiments with 45 traffic sign categories, most of the
current algorithms achieve high performance in detecting and recognizing 45 categories, e.g., method
TPH-YOLOVvS5s achieves 90.5mAP and fast detection speed of 21.5ms per image when detecting
1280 x 1280 images, YOLOX achieves better results under the same conditions with 92.5 mAP, 17.1 ms
per image, Wang et al. [29] achieved mAP of 92.1. The experimental results show that the YOLOX-s
algorithm achieved high performance for the same image input scale (resolution 640 x 640, mAP of
88.1), and when we set the input scale to a resolution of 1280 x 1280, the YOLOX-s algorithm achieves
a higher mAP of 92.5 (4.4 percentage point increase), which shows that for traffic sign detection and
recognition tasks, obtaining a better performance requires avoiding loss of information.

Table 3: Comparison with state-of-the-art methods on performance. ‘x’ indicates results cited from the
author’s paper

Method Input size Speed (ms) Classes Parameters Size (M) FLOPs mAP (%)
(MB) (GFLOPs)

SSD512[19] 512 x 512 22 45 12.6 247 304.6 68.3

Faster RCNN [21] 800 x 800 235 45 163.8 332 307.2 59.5

Cascade RCNN [36] 800 x 800 445 45 569.3 1720 139.09 76.1

Scaled-YOLOV4 [37] 640 x 640 11.4 45 242.5 108.1 197.8 75.8

TPH-YOLOVS5s [32] 1280 x 1280 21.5 45 29.2 23.5 37.8 90.5

YOLOVS5-s 640 x 640 2.6 45 27.1 14.6 15.9 80.1

YOLOX-s [10] 640 x 640 3.1 45 34.4 18.2 27.2 88.1

YOLOX-s 1280 x 1280 17.1 45 34.4 18.2 27.2 92.5(+4.4)

YOLOVS-s 640 x 640 2.6 218 27.1 14.6 15.9 46.4(-33.7)

YOLOX-s 640 x 640 3.1 218 34.4 18.2 27.2 62.4(—25.7)

Zhe et al. [6]x 640 x 640 2081 45 - 455 - 81.6

Wu et al. [39]x 1024 x 1024 86 200 - - - 74.3

Wang et al. [29]* 2048 x 2048 150 45 - 6.49 - 92.1

Ours (RCN: 1280 x 1280 17.9 45 35.9 19.8 52.8 94.1(+1.6)

YOLOX-S + SPP-ST)
Ours (PPN + RCN) 2048 x 2048  42.9 218 42.2 23.2 55.2 82.1(+19.7)
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The performance of many algorithms decreased significantly when the number of categories
increased from 45 to 218. For example, YOLOvV5’s performance decreased from 80.1 to 46.4 (a
decrease of 33.7%), and YOLOX’s performance decreased from 88.1 to 62.4 (a decrease of 25.7%).
This highlights the difficulty of multi-category classification tasks in real-world traffic scenarios. To
demonstrate the effectiveness of our proposed method, we conducted a detection and recognition task
with 218 traffic categories and evaluated the size and detection speed of each model. The improved
YOLOX-s model increased in size from 18.2 to 19.8 with a small increase in parameters, and the mAP
of 45 categories increased from 92.5 to 94.1 (an increase of 1.6%). Additionally, by adding PPN to
the algorithm model of 218 categories, the mAP of the original YOLOX-s increased from 62.4 to 82.1,
showing an improvement of nearly 20 percentage points. Our proposed method (PPN + RCN) is faster
and more accurate compared to the method proposed by Wu et al. [39] (74.3 mAP achieved on 200
categories).

In summary, our method achieved excellent performance, improving the mAP from 62.4 to 82.1
when compared to YOLOX-s. However, this method comes with increased computational complexity,
with the parameter count increasing from 34.4 to 42.2 (22.67% increase), and floating-point operations
increasing from 27.2 GFLOPs to 55.2 GFLOPs. The inference speed has also increased from 3.1
to 42.9ms. Nevertheless, these trade-offs are worthwhile, as our method has achieved the best
performance when compared to other advanced methods, striking a better trade-off between speed
and accuracy.

4.4 Ablation Studies and Discussion
4.4.1 The Ablation Analysis of PPN

To demonstrate the effectiveness of our incorporation of the PPN network, we did ablation
experiments on YOLOvS5-s and YOLOX-s, and the results are shown in Table 4. After adding PPN
processing, the accuracy and recall of these two algorithms improved; in terms of accuracy, YOLOvVS-
s with the addition of the pre-locator PPN has a little decrease in small targets and large objects, but
among them, equal-size objects gain a significant performance improvement (up 10.6 percent), while
YOLOX-s improves performance in all sizes; in terms of recall, the addition of the PPN improves the
two model algorithms even more, e.g., YOLOv5-s improves the recall of small objects detection by
36.4 percentage points, medium objects by 33 percentage points, and large objects by 27.4 percentage
points, and YOLOX-s improves the recall of small objects by 17.4 percentage points, medium objects
by 11.4 percentage points, and large objects by 1.3 percentage points. This indicates on the one hand
that the model achieved a large improvement in both detection and classification performance for
small targets after adding the PPN network; on the other hand, it also indicates that models such as
YOLOVS are more sensitive to the loss of information classification in multiple categories and can
improve the performance of the model in detecting and identifying objects of all sizes when the lost
information is reduced.

4.4.2 The Ablation Analysis of SPP-ST Block

As shown in Fig. 10, in this process, we replaced all the C3 modules in YOLOX with SPP-ST, the
effect was not obvious, and the number of model parameters increased more, so we only replaced Cl1,
C2, and CS5 in the backbone, after such adjustments, our effect reached the best, and the number of
model parameters increased by only 5%.

YOLOX achieved a large improvement in small object detection performance (from 69.1 to 88.3)
after the improvement by PPN before replacing our proposed module, but this process led to a decrease
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in the detection of large objects. After the improvement by our proposed SPP-ST module, the YOLOX-
s algorithm achieves an overall performance improvement and achieves the best detection results, as
shown in Table 5.

Table 4: The analysis of the effectiveness of the PPN

Methods Precision (%) Recall (%)

Small Medium Large Small Medium Large
YOLOvS-s  79.0 65.5 87.2 37.5 47.3 54.0
YOLOX-s 64.4 72.8 76.1 66.2 72.1 86.0

YOLOvS5- 74.6(—4.4)  76.1(+10.6) 84.7(—2.5)  73.9(+36.4) 80.3(+33) 81.3(4+27.3)
s+ PPN

YOLOX- 79.1(+14.7) 80.0(+7.2) 84.1(+8) 83.6(+17.4) 83.5(+11.4) 87.3(+1.3)
s+ PPN

Backbone Backbone

c6 .
s G —— SPP-ST SPP-ST,
c7
C4/16 i—» C4/16 SEP-ST
4 cs 4
C3/8 — C3/8 SPP-ST, |

C2/4 i SPP'STi
cIr GE— B ——

Figure 10: SPP-ST module replaces the C3 module in the same position in YOLOX

Table 5: The analysis of the effectiveness of the SPP-ST module

Methods mAP@0.5 (%) mAP@0.5: 0.95 (%) Speed (ms)
Small Medium  Large Small Medium  Large

YOLOX-s 09.1 75.3 87.7 47.0 56.4 69.9 3.1

YOLOX- 88.3 81.4 60.6 60.4 66.2 52.0 38.5

s+ PPN

YOLOX- 84.9 83.8 93.7 64.4 69.9 82.2 42.9

s+ PPN + SPP-

ST

To visualize the effect of replacing the SPP-ST module, we visualize the thermal features of the
C2/4 module in the Backbone and C7 module in the Neck before improving YOLOX-s. As shown
in Fig. 11, the more intense heat of the feature represents the higher probability of the presence of
traffic signs in the region. Before the improvement, the feature heat map of the C2/4 module shows
more scattered and unfocused, especially the features at the small target of traffic signs have a lot of
interference, and the feature information of the small target is not accurately extracted, and most of
the feature attention is put into other irrelevant scene information; the feature heat map of C7 module
shows a broader area, the positioning is not clear enough, and the feature areas are many but not
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fine; after improvement, it can be seen that the features after the model focus on the traffic sign target
with dramatic brightness and less interference from surrounding information, which indicates that
SPP-ST can extract more detailed feature information and find the location features and classification
features of traffic signs more easily by fusing the multi-scale information of SPP and the rich global
information of Swin-Transformer.

Figure 11: The feature visualization heat map

Asshown in Fig. 12, compared with the base network, before the improvement, the base networks
such as YOLOvV5 and YOLOX had more serious missed detection for small objects (0, 32], and the
classification confidence of each target is not high, by adding the PPN network, the loss of small object
information was avoided, and the introduction of the SPP-ST module enhanced the feature extraction
capability of the module. Our modified network mainly improves the performance for (0, 32] and (32,
96) sizes.

YOLOvs

YOLOV5
- +PPN

Figure 12: (Continued)
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Figure 12: Before the improvement, the base network YOLOvS and YOLOX had the phenomenon of
missing detection for small objects

5 Conclusion

In this paper, we propose a novel traffic sign recognition method by combining a lightweight
localizer with a refinement classifier. The method is capable of detecting and recognizing various
subclasses of traffic signs in complex scenes. The lightweight localizer is used to locate the approximate
area where traffic signs are present in the original map and transform the large-size original map
directly into a specific-size submap for subsequent classification and regression, which avoids the loss
of small object information. Moreover, we construct a feature extraction module that incorporates
the Swin-Transformer and SPP modules for information fusion. The experiment results show that
the proposed method is effective and outperforms the competitive methods. Furthermore, ablation
experiments illustrate that the two-stage detection architecture has brought considerable performance
improvement for the small object of traffic signs. Meanwhile, the information fusion of the SPP-ST
module also contributes to performance improvement.

However, there is still a lot of room for optimization of our method. In this paper, we mainly
focus on avoiding the loss of small object information and using the limited input information more
effectively, without considering other realistic factors, such as bad weather conditions and dark scenes,
which can greatly affect the effectiveness of traffic sign recognition techniques. From the perspective
of ground application, the detector also needs to be more lightweight and efficient and reduce the false
detection rate.
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