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Abstract: Cross-modality pedestrian re-identification has important appli-
cations in the field of surveillance. Due to variations in posture, camera per-
spective, and camera modality, some salient pedestrian features are difficult to
provide effective retrieval cues. Therefore, it becomes a challenge to design an
effective strategy to extract more discriminative pedestrian detail. Although
many effective methods for detailed feature extraction are proposed, there are
still some shortcomings in filtering background and modality noise. To further
purify the features, a pure detail feature extraction network (PDFENet) is
proposed for VI-ReID. PDFENet includes three modules, adaptive detail
mask generation module (ADMG), inter-detail interaction module (IDI) and
cross-modality cross-entropy (CMCE). ADMG and IDI use human joints
and their semantic associations to suppress background noise in features.
CMCE guides the model to ignore modality noise by generating modality-
shared feature labels. Specifically, ADMG generates masks for pedestrian
details based on pose estimation. Masks are used to suppress background
information and enhance pedestrian detail information. Besides, IDI mines
the semantic relations among details to further refine the features. Finally,
CMCE cross-combines classifiers and features to generate modality-shared
feature labels to guide model training. Extensive ablation experiments as well
as visualization results have demonstrated the effectiveness of PDFENet in
eliminating background and modality noise. In addition, comparison experi-
ments in two publicly available datasets also show the competitiveness of our
approach.
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1 Introduction

In recent years, extensive research [1,2] has begun to focus on the application of artificial
intelligence in people’s lives, such as healthcare, security, and transportation. Pedestrian retrieval is
one of the critical problems in the security field, and its derived ReID task has essential research
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significance. VI-ReID aims to discover pedestrians with the same identity across different spectral
cameras. Mining rich and modality-invariant pedestrian features are the key to solving this problem.
Many early methods [3–5] directly pool the feature maps output by the network as pedestrian
representations. However, this mode only preserves globally significant features, which loses some
details (e.g., body characteristics, gender, clothing style) leading to a lack of discriminative features.

To preserve detailed information, Sun et al. [6] introduce a part pooling method, which extracts
salient local features of pedestrians by limiting the pooling area. On this basis, Wang et al. [7] design
three branches to perform part pooling with different steps to obtain multi-scale pedestrian features.
Zhang et al. [8] propose an AlignReID strategy that computes the shortest path between part features
of two images as a similarity metric. Part pooling alleviates the drawbacks of global pooling to a
certain extent. When pedestrians are not covered with images, pooing is still disturbed by background
information. Some methods [9–11] utilize pose estimation models to generate accurate human masks.
However, these methods don’t explicitly judge the reliability of joint predictions. Thus, these methods
rely heavily on the accuracy of predictions.

Features, such as colorization, texture, and pedestrian appearance, change due to differences in
the camera spectrum. This feature is called modality noise. VI-ReID requires features to contain as
many modality-invariant features as possible. The current method takes the feature distance between
modalities as the training target and designs the loss to suppress the modality-variant information in
the features. However, as mentioned in literature [12], distance limitation is not conducive to the model
learning sample distribution and affects the feature representation ability.

To address the above issues, a pure detail feature extraction network (PDFENet) is proposed.
First, the adaptive detail mask generation module (ADMG) is introduced for solving the background
noise problem introduced by part pooling. The ADMG adaptively generates the pedestrian detail
mask based on the joint position derived from the pose estimation. Unlike the existing pose-based
methods, ADMG explicitly evaluates the accuracy of each joint position, greatly alleviating the adverse
effects caused by incorrect position. Due to the poor performance of the pose estimation model in
the lower body, ADMG is only used to pool the upper body of the pedestrian, and part pooling
is still utilized for the lower body. To purify the lower body features, the inter-detail interaction
module (IDI) is further proposed, which utilizes the location information provided by ADMG to
eliminate irrelevant backgrounds included in the part. IDI interacts with features’ semantic and spatial
information by modeling the correlation between detail features. Combined with ADMG and IDI, the
background noise in pedestrian features is effectively suppressed. Finally, cross-modality cross-entropy
(CMCE) loss is proposed to guide the model to filter modality noise from a representational learning
perspective. Rather than indirectly limiting modality noise from feature distance, CMCE directly trains
the model to filter the noise by generating modality-irrelevant pedestrian feature labels. By combining
the above three modules, PDFENet can well purify pedestrian features. The main contributions of this
paper are as follows:

1. The ADMG is proposed, which can adaptively generate masks of pedestrian details based on
the features captured by the model. The mask is used to suppress background noise in the
features.

2. The IDI is designed, which explicitly transmits semantic information according to detail
relevance and further suppresses irrelevant background features.

3. The CMCE is established, which suppresses modality-variant noise by combining classifiers
and features from different modalities. The classification results are used as soft labels to guide
model training.
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2 Related Work
2.1 Cross-Modality Pedestrian Re-ID

VI-ReID aims to match pedestrian images of different modalities captured by infrared and visible
cameras. VI-ReID can be divided into three categories according to how modality differences are
handled: pixel-level, feature-level, and a combination of both. Pixel-level methods are mainly based on
GAN networks. Wang et al. [13] reduce modality differences by rendering visible images as infrared-
style fake images through a GAN model. Wang et al. [14] entangle pixels according to modality-variant
and modality-invariant and reconstructs the image with the help of the GAN network. Since the
modality gap at the pixel level requires complex network structures for mapping, the quality of the
generated images is difficult to guarantee.

At the feature-level, Zhang et al. [15] proposes to generate cross-modality fake feature vectors
through GAN in the deep layers of the network. Compared with the shallow layers, the deep
layers of the network contain more semantic information and the modality differences are reduced.
Park et al. [5] propose to compute the dense correspondence of feature maps between modalities,
and generate corresponding modality feature maps according to the relationship. Combining the two
levels, Li et al. [16] first proposed to use a lighter-weight generative network to map visible images to
an intermediate X-modality, and then guide the network to learn modality-invariant features from the
feature-level. Zhang et al. [17] introduces two intermediate modalities to alleviate further the inter-
modality differences at the pixel level of the image.

2.2 Part-Based Methods for Pedestrian Re-ID
Human detail features are considered to be important cues for establishing homogeneous pedes-

trian connections. To extract pedestrian detail features, Sun et al. [6] introduce the method of part
pooling for the first time, which divides the feature map into strips in the vertical direction and pools
them. In reality, pedestrians may only occupy a part of the image, so part pooling will inevitably
introduce background information. To suppress background noise and enhance local features, some
methods [18,19] introduce a pose estimation model, which helps the network to extract fine local
features through its output heatmap. However, these methods ignore the prediction that may be wrong.

2.3 Loss Function
The loss function of VI-ReID is to train the network to learn pedestrian features with modality-

invariant information. The current method designs the loss function from the perspective of classifi-
cation and feature metrics. Some methods [20–23] treat pedestrian ReID as a classification problem
and train the network with pedestrian IDs as labels. However, the label does not contain modality
information, so it is difficult to train the network to learn modality-invariant features. Most methods
[24–26] use the distance of features to measure the modality differences. Ye et al. [27] propose a BDTR
loss to shorten the distance of the same pedestrians between modalities. Liu et al. [28] introduce a
hetero-center triplet loss, which abandoned the traditional triplet and only limited the distance between
modality feature centers. Ling et al. [29] propose the cross-modality earth mover distance (CM-
EMD) loss, which suppresses the modality-variant information by reducing the optimal transport
cost between features. Although these methods help the network alleviate modality differences to some
extent, strict distance restrictions will prevent the model from perceiving the actual sample distribution.
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3 Methodology
3.1 Overview

Backbone. As shown in Fig. 1, backbone of PDFENet includes a main branch and an auxiliary
branch. The main branch contains a pre-trained ResNet-50 to extract the global features of pedestrians
Fm

g ∈ R(C×Hg×Wg)(m ∈ {V , I}). The auxiliary branch contains a pre-trained pose estimation model,
which generates the heatmap Hm ∈ R(16×H×W) corresponding to the 16 pedestrian joints.

Figure 1: The structure of proposed PDFENet

Framework. After Backbone, ADMG, IDI, and CMCE are introduced to filter the background
and modality noise in the features, respectively. First, ADMG learns the semantic correlation between
Hm and Fm

g to evaluate the quality of each Hm and weights Hm to generate a mask of detailed features.
The top and mid part of pedestrian features are filtered by mask and extracted by global pooling, and
the lower part of pedestrian features are extracted by part pooing. Then, IDI is introduced to model
the connections between detailed features and further suppress irrelevant background information.
Finally, CMCE unites modality-specific classifiers and features to obtain modality-shared feature
labels and guides the model to filter modality noise through the cross-entropy function. Beside CMCE,
a center loss [30] function is employed to guide the model training.

3.2 Adaptive Detail Mask Generation Module (ADMG)
GCM [31] pretrained on MPII [32] is employed as our pose estimation model. Considering that

GCM is affected by dataset and modality differences, random experiments is conducted on the SYSU-
MM01 [33], and the results are shown in Table 1. The joint with more balanced accuracy between
the two modalities is selected to participate in mask generation. The selected heatmap of the joint is
denoted as Hm ∈ R(9×H×W). By spatial location, Hm are divided into two groups, Hm

top ∈ R5×H×W (thorax,
upper-neck, head-top, left shoulder, right shoulder) and Hm

mid ∈ R4×H×W (left hip, left elbow, right
elbow, left wrist). Since the pose estimation doesn’t perform well on the lower body of pedestrians,
part pooling is utilized extract the corresponding position features. Inspired by SENet [34], a GM

module is proposed, which contains a linear layer to sense the semantic connection between Hm and
Fm

g . GM perceives the semantic affiliation to determine the credibility of each heatmap. First, Hm are
downsampled to the same size as Fm

g by max pooling. Connect Hm and Fm
g along the channel to obtain

the pose feature map Fm
pose ∈ R((C+9)×Hg×Wg), and send Fm

pose to the GM module. First, GM performs global
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average pooling on Fm
pose to obtain the descriptor GAP(Fm

pose) ∈ R((C+9)×1) of each channel and captures
the dependencies between channels through the linear layer:

W m = Sigmoid
(

GAP
(
Fm

pose

)T
W1 + b1

)
(1)

where W1 ∈ R((C+9)×9) and b1 ∈ R(1×9) represent the parameters of the linear layer, and W m ∈ R(1×9)

represents the credibility of each heatmap in Hm. W m is divided into W m
top ∈ R(1×5), W m

mid ∈ R(1×4). W m

are accumulated Hm to generate Mm
top and Mm

mid corresponding to each group. The formula is:

Mm
top = W m

topH
m
top (2)

Mm
mid = W m

midHm
mid (3)

where the heatmap is squeezed into two dimensions, Hm
top ∈ R(5×HgWg), Hm

mid ∈ R(4×HgWg). Mm
top and Mm

mid

restores the spatial dimension R(Hg×Wg). Finally, we enhance the detail information and suppress the
background information through Mm

top, Mm
mid:

Fm
top = Mm

top � Fm
g (4)

Fm
mid = Mm

mid � Fm
g (5)

where � represents the dot product operation. For the pedestrian lower body information, Fm
g are

divided into three equal parts along the vertical direction, and the last part Fm
low ∈ R(C× Hg

3 ×Wg) is used as
the lower body representation.

Table 1: The accuracy of the heatmap generated by GCM for 16 joints in two modalities

Joint R-ankle R-knee R-hip L-hip L-knee L-ankle Pelvis Thorax

VIS 70.3% 70.3% 43.7% 70.3% 65.6% 70.3% 43.7% 70.3%
IR 31.2% 31.2% 43.7% 65.6% 31.2% 31.2% 43.7% 65.6%
Joint Upper-neck Head-top R-wrist R-elbow R-shoulder L-shoulder L-elbow L-wrist
VIS 70.3% 65.6% 31.2% 65.6% 65.6% 70.3% 70.3% 65.6%
IR 65.6% 70.3% 43.7% 65.6% 70.3% 70.3% 65.6% 70.3%

3.3 Inter-Detail Interaction Module (IDI)
The global feature map Fm

g and the three detailed feature maps Fm
top, Fm

mid, and Fm
low are pooled to get

their corresponding feature vectors f m
g ∈ R(C×1), f m

top ∈ R(C×1), f m
mid ∈ R(C×1), and f m

low ∈ R(C×1), respectively.
As mentioned before, Fm

low contain background noise, while Fm
top and Fm

mid contain accurate pedestrian
details. Therefore, IDI module is introduced, which exploits the affiliations between features to
suppress background noise further. First, the three detail features are concatenated to get f m

d ∈ R(3×C).
Then, three linear layers, Q(·), K(·), and V(·), are set up to get the query, key, and value corresponding
to f m

d . Query and key are multiplied to establish the semantic relationship between features. The value
is accumulated according to the semantic relationship to obtain the purified feature f̂ m

d ∈ R3×C.

The process is formulated as follows:

f̂ m
d = softmax

(
Q

(
f m

d

) (
K

(
f m

d

))T

√
C

)
V

(
f m

d

)
(6)
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Then, an adaptive weight is used to enhance the discriminative features. The weights are generated
by two linear layers and a ReLU layer, and the calculation formula is:

W m
d = ReLU

(
f̂ m

d W2 + b2

)
W3 + b3 (7)

where W2 ∈ R(C× C
4 ), W3 ∈ R( C

4 ×1), b2 ∈ R( C
4 ×1), b3 ∈ R(1×1) represent linear layer parameters. We dot-

multiply W m
d with f̂ m

d to get the enhanced detail feature f̃ m
d .

f̃ m
d = W m

d � f̂ m
d (8)

The global feature f m
g and the detail feature f̃ m

d ∈ RC×1 are concatenated along the channel as the
final pedestrian representation f m ∈ R4C×1.

3.4 Cross-Modality Cross-Entropy (CMCE)
In classification tasks, cross-entropy measures how similar the predictions of the classifier are to

the labels, guiding the model to learn identity features. We want the network to only focus on the
identity features shared by the modalities, but the labels do not contain the feature information of
the other modality. Therefore, we set up two modality-specific classifiers that only compute feature
prediction results in a specific modality. The probability of the category predicted by the classifier is
actually the cosine similarity of its parameters and features, as shown in Fig. 1. We use f V , f I , clsV

and clsI to represent the pedestrian features and classifiers in the two modalities, respectively, and y to
represent the one-hot identity label. Taking visible as an example, clsI is utilized to predict the category
f V belongs to. The parameters of the clsI reflect the typical identity characteristics of infrared modality,
while f V represents the pedestrian characteristics under visible. Therefore the cosine similarity between
clsI and f V can suppress the modality-specific information to a certain extent. We denote pm1m2 =
Softmax(clsm1 (f m2) , m1, m2 ∈ {V , I}. The cross-modality cross-entropy function is:

LV
M = −

∑Np

i=0
pIV(i) log

(
pVV(i)

)
(9)

LI
M = −

∑Np

i=0
pVI(i) log

(
pII(i)

)
(10)

where Np is the number of pedestrian categories. Using pIV and pVI as the soft label can guide the model
to discover features that coexist in two modalities. The identity cross-entropy also constrains f V and
f I :

LV
ID = −

∑Np

i=0
y(i) log

(
pVV(i)

)
(11)

LV
ID = −

∑Np

i=0
y(i) log

(
pII(i)

)
(12)

To stably reflect the situation of feature learning under two modalities, the momentum versions
of the modality classifier clsV

M , clsI
M are designed, whose parameters adopt a slow update strategy [35]:

θV
M = αθV

M + (1 − α)θV
C (13)

θ I
M = αθ I

M + (1 − α)θ I
C (14)

where θ
V/I
C and θ

V/I
M are the parameters of clsV/I and clsV/I

M , respectively, and α is the momentum
coefficient. The momentum version of the classifier generates pIV and pVI . CMCE loss is summarized:

LCM = λ1(LV
M + LI

M) + λ2(LV
ID + LI

ID) (15)
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where λ1 and λ2 are hyperparameters to balance the contribution of each function.

3.5 Loss
Based on CMCE, a center loss is introduced to train the model, which relaxes the strict distance

restriction between sample pairs with the help of feature centers. The feature center is calculated as
follows:

Cp = 1
K

∑K

k=1
f m

p,k (16)

where Cp denotes the feature center of the p-th pedestrian, p ranges from 0 to Np, and K denotes the
number of samples labeled as p. f m

p denotes the feature of the pth pedestrian. The equation of the center
contrast loss function is as follows:

LC = ||f m
p,k − Cp||2 + ||Cp − Cq||2 (17)

where Cp and Cq represent the feature centers of different pedestrians. Finally, overall loss function is:

Ltotal = LCM + LC (18)

4 Experiment
4.1 Datasets and Evaluation

Dataset: We evaluated PDFENet proposed by us on two mainstream public datasets, SYSU-
MM01 [33] and RegDB [36]. SYSU-MM01 was the mainstream large Visible-Infraed database in VI-
ReID tasks. The dataset contained 491 identities, including 29,033 RGB images and 15,712 IR images
from 4 visible and 2 IR cameras in indoor and outdoor environments. The train set contained 395
identities, including 22,258 visible images and 11,909 IR images. The test set contains 96 identities,
which were divided into query and gallery by modality. Among them, the query contained 3,803 IR
images, and the gallery randomly selected 301 or 3010 images (single-shot or multi-shot) from visible
images according to different test modalities. The gallery contained two camera selection modes: all-
search (all cameras) and indoor-search (only indoor cameras).

The RegDB dataset consisted of 412 identities, each containing 10 Visible images and 10 Infrared
images from a pair of overlapping VIS and IR cameras. We used the evaluation scheme in [37], which
randomly divided the dataset into half identities for training and a half for testing. The experiment
was repeated 10 times on the test set and the average was taken as the final test result.

Evaluation Protocol: Standard Cumulative Matching Characteristics (CMC) curve and mean
Average Precision (mAP) were applied to evaluate the performance of our model.

4.2 Experimental Details
During the training phase, all images are randomly cropped to 384 × 128. The batch is set to 64

and contains four images for each modality of 8 pedestrians. The model is trained for a total of 240
epochs. The optimizer chooses Adam. The initial learning rate is set to 2 × 10−4, which decays with
a decay rate of 0.1 at 80 and 120 epochs, respectively. The weight decay is set to 5 × 10−4. λ1 and λ2

are set to 2.5 and 0.5, respectively. Momentum coefficient α is set to 0.7. The backbone is ResNet-50,
pre-trained on ImageNet. Baseline uses identity loss and center loss [30] on the backbone. In the test
phase, we calculate the similarity between each query image and all images in the gallery and rank
them. The rank result is used to calculate the evaluation protocol.
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4.3 Comparison with the State-of-the-Art
Tables 2 and 3 show the experimental results. These methods are classified into three categories

to mitigate the differences between modalities: pixel-level, feature-level, and a combination of both.
For the pixel-level methods (JSIA [14], AlignGan [13]), the main idea is to generate pixel-level fake
images to assist cross-modality retrieval. However, the sizeable modality difference at the pixel level
requires a complex network structure for mapping, and fake images lose many pedestrian details. On
SYSU-MM01, we achieved a 29.5\% lead on rank1 compared to AlignGan.

Table 2: Comparison of CMC (%) and mAP (%) performances with the state-of-the-art methods on
SYSU-MM01

Method Pub All-search Indoor-search

R1 mAP R1 mAP

JSIA [14] AAAI’20 38.10 36.90 43.80 52.90
AlignGAN [13] ICCV’19 42.40 40.70 45.90 54.30
cm-SSFT(sq) [38] CVPR’20 47.70 54.10 57.40 59.10
XIV-ReID [16] AAAI’20 49.92 50.73 – –
CMAlign [5] ICCV’21 55.41 54.14 58.46 66.33
MSO [1] MM’21 58.70 56.42 63.09 70.31
DG-VAE [39] MM’20 59.49 58.46 – –
MID [40] AAAI’22 60.27 59.40 64.86 70.12
cm-SSFT [38] CVPR’20 61.60 63.20 70.50 72.60
HCT [28] TMM’20 61.68 57.51 63.41 68.17
SPOT [41] TIP’22 63.34 62.25 69.42 74.63
MCLNet [4] ICCV’21 65.40 61.98 72.56 76.58
FMCNet [15] CVPR’22 66.34 62.51 68.15 74.09
Ours – 71.92 68.94 75.87 79.64

Eliminating inter-modality differences at the feature level as the current mainstream approach
achieves good results on VI-ReID. Method (MSO [1], HCT [28]) design the loss function to narrow
the feature distance between different modalities. Method (CMAlign [5], FMCNet [15], DG-VAE [39])
learn modality-irrelevant features by establishing the mapping relationship of features between two
modalities. These methods treat modality differences as feature distances to eliminate rather than
guiding the model to learn modality-invariant features. Compared with the state-of-the-art method
FMCNet, we can achieve a 5.5% Rank1 improvement and 6.43% mAP improvement. To combine the
advantages of pixel and feature level, some methods (XIV-ReID [16], MID [40]) put forward the idea
of X-modality. However, its essence still depends on feature distance to eliminate modality differences.
Compared with the method MID, we achieve 11.6% and 9.5% improvement on Rank1 and mAP,
respectively.
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Table 3: Comparison of CMC (%) and mAP (%) performances with the state-of-the-art methods on
RegDB

Method Pub Visible to infrared Infrared to visible

R1 mAP R1 mAP

JSIA [14] AAAI’20 48.1 48.9 48.5 49.3
AlignGAN [13] ICCV’19 57.9 53.6 56.3 53.4
CMM+CML [42] MM’20 59.8 60.9 – –
cm-SSFT(sq) [38] CVPR’20 65.4 65.6 63.8 64.2
DG-VAE [39] MM’20 73.0 71.8 – –
MSO [1] MM’21 73.6 66.9 74.6 67.5
CMAlign [5] ICCV’21 74.17 67.64 72.43 65.46
SIM [43] IJCAI’20 74.47 75.29 75.24 78.30
MCLNet [4] ICCV’21 80.31 73.07 75.93 69.49
GECNet [44] TCSVT’22 82.33 78.45 78.93 75.58
SPOT [41] TIP’22 80.35 72.46 79.37 72.26
Ours – 83.06 80.07 82.57 79.79

4.4 Ablation Experiments
In this section, extensive ablation experiments are set up to demonstrate the effectiveness of each

module in our proposed PDFENet. In Table 4, we show experimental results on two datasets. On
SYSU-MM01, we show the results in an all-search environment. The results of RegDB are displayed
in the format of infrared to visible (visible to infrared).

Table 4: Ablation study in terms of CMC (%) and mAP (%) on SYSU-MM01 and RegDB

Components SYSU-MM01 RegDB

Baseline ADMG IDI CMCE R1 mAP R1 mAP
√ × × × 56.77 55.96 68.88(67.33) 66.79(66.85)√ √ × × 63.31 61.89 73.35(73.30) 70.73(71.02)√ × × √ 63.54 59.61 75.83(73.45) 70.52(69.87)√ √ × √ 68.08 65.44 78.40(79.56) 75.94(76.09)√ √ √ √ 71.92 68.94 82.57(83.06) 79.79(80.07)

4.4.1 Effectiveness of ADMG

As shown in Table 4, the detailed information extracted by ADMG is introduced based on the
baseline, and the performance of the two datasets is significantly improved. To demonstrate the
superiority of ADMG in dealing with background noise, it is compared with the mainstream part
pooling methods, as shown in Table 5. The top, mid, and low correspond to the extraction methods
of the three position details, respectively. For simplicity, we denote part pooling [6] as P, ADMG as
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A. As shown in the red font in Table 5, as P is replaced with A in turn, the performance in the two
datasets is also gradually improved. This proves that high-purity detail information can lead to better
improvements than complete details with noise. Due to the poor performance of GCM in the lower
body, the performance of P replaced A decreased. Therefore, we still use part pooling for the lower
body. To visually demonstrate the effectiveness of ADMG, we visualize the detailed features enhanced
by the Mm

top/mid and the process of ADMG adaptive weighted Hm
top/mid, respectively, as shown in Fig. 2.

As shown in Fig. 2b, for low-quality heatmap (red box), ADMG assigns a smaller weight to ensure the
quality of the generated mask. This proves that ADMG can weaken the wrong localization by weight
and preserve the accurate localization.

Table 5: The comparison between PCB and ADMG on SYSU-MM01 and RegDB

Components SYSU-MM01 RegDB

Top Mid Low R1 mAP R1 mAP

P P P 67.25 64.73 78.16(79.27) 75.07(76.25)
A P P 68.36 65.67 81.21(80.15) 78.27(76.90)
A A P 71.92 68.94 82.57(83.06) 79.79(80.07)
A A A 69.56 66.45 78.69(80.24) 76.01(76.59)

Figure 2: Visualization of ADMG on SYSU-MM01. (a) Detail features enhanced by mask. (b) Mask
generated by ADMG adaptive weighted heatmap

4.4.2 Effectiveness of IDI

Table 4 shows that after introducing IDI, Rank1 increases by 3.84% and 4.17% (3.50%) on the two
datasets, respectively. It is proved that IDI can further improve the representation ability of features
by interacting the information between features.
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4.4.3 Effectiveness of CMCE

CMCE are compared with the mainstream distance-based loss function. To be fair, we only replace
the loss function based on the baseline. Table 6 shows our results. HCT abandons the strict distance
limit of traditional triples and only limits the distance between modality centers, achieving good
results. However, its center is based on the current batch calculation, which lacks representativeness.
Compared with HCT, we achieved a 2.5% increase in Rank1 and a 1.5% increase in mAP. To intuitively
feel the impact of distance limitation, we visualize the sample distribution of the network after different
loss training. Fig. 3a shows the original feature distribution. Fig. 3b shows the distribution of samples
learned by the network under the modality distance constraints. The distance between modalities
within the same class is reduced, but the distance between classes is also narrowed. This proves that the
distance limitation affects the model fitting the actual sample distribution. As shown in Fig. 3c, when
CMCE is utilized, the intra-class sample points are evenly distributed, and the inter-class distances
are well separated. Table 4 also shows that CMCE can significantly improve the performance of the
model on both datasets.

Table 6: Comparison between CMCE and loss based on feature distance

Loss function SYSU-MM01

R1 mAP

Baseline 56.77 55.96
B + expAT [45] 58.76 57.81
B + WRT [46] 59.03 57.81
B + HCT [28] 61.03 58.10
B + CMCE 63.54 59.61

Figure 3: Visualization of features distribution, where colors represent pedestrian categories, circles
represent visible images, and triangles represent infrared images. (a) Distribution of features perceived
by the original model. (b) Distribution of features perceived by model after training based on modality
distance. (c) Distribution of features perceived by model after CMCE training

4.4.4 Visualization

To further demonstrate the benefits of PDFENet, we have visualized the retrieval results of the
Baseline model and PDFENet, respectively. The experiment is conducted in the multi-shot mode
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under the all-search environment of the SYSU-MM01. As shown in Fig. 4, each row represents the
retrieval results of a pedestrian and is sorted from the largest to the smallest according to the similarity.
Obviously, compared with the baseline, our model can find more target pedestrians and improve
retrieval accuracy.

Figure 4: Compare the retrieval results of PDFENet and baseline on SYSU-MM01. Each row
represents the retrieval result of a query image in the gallery. We show similar top 10 images in the
gallery. The green box indicates successful retrieval, and the red box indicates failure
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5 Citations

To suppress the background noise and modality noise contained in the feature, we proposed
a pure detail feature extraction network (PDFENet). Against background noise, we utilized joint
predictions generated by pose estimation to generate accurate detail masks. Mask can enhance
corresponding details. Besides, we explicitly interacted with semantic information between details to
suppress background noise further. For modality noise, we combined classifiers and features from
different modalities and utilized the classification results as labels to guide network learning. Extensive
experiments demonstrated the effectiveness of our method.
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