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Abstract: Recent state-of-the-art semi-supervised learning (SSL) methods
usually use data augmentations as core components. Such methods, however,
are limited to simple transformations such as the augmentations under the
instance’s naive representations or the augmentations under the instance’s
semantic representations. To tackle this problem, we offer a unique insight
into data augmentations and propose a novel data-augmentation-based semi-
supervised learning method, called Attentive Neighborhood Feature Aug-
mentation (ANFA). The motivation of our method lies in the observation
that the relationship between the given feature and its neighborhood may
contribute to constructing more reliable transformations for the data, and
further facilitating the classifier to distinguish the ambiguous features from
the low-dense regions. Specially, we first project the labeled and unlabeled
data points into an embedding space and then construct a neighbor graph
that serves as a similarity measure based on the similar representations in the
embedding space. Then, we employ an attention mechanism to transform the
target features into augmented ones based on the neighbor graph. Finally, we
formulate a novel semi-supervised loss by encouraging the predictions of the
interpolations of augmented features to be consistent with the corresponding
interpolations of the predictions of the target features. We carried out exper-
iments on SVHN and CIFAR-10 benchmark datasets and the experimental
results demonstrate that our method outperforms the state-of-the-art methods
when the number of labeled examples is limited.

Keywords: Semi-supervised learning; attention mechanism; feature
augmentation; consistency regularization

1 Introduction

Deep neural networks have achieved favorable performance on a wide variety of tasks [1–5].
Training deep neural networks commonly requires a large amount of labeled training data. However,
since collecting labeled data necessarily involves expert knowledge, labeled data is usually unavailable
for many learning tasks. To address this problem, numerous semi-supervised learning (SSL) methods
have been developed, which exploit abundant unlabeled data effectively to improve the performance
of deep models and relieve the pressure brought by the lack of labeled data.
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Existing SSL methods are mainly based on a low-density separation assumption, that is, the
decision boundary learned by the model is supported to lie in low-density regions of the instances.
Consistency regularization is a typical measure to implement the low-density separation assumption,
which has been widely used on many benchmarks. The main idea of consistency regularization is to
enforce the model to produce the same output distribution for an input instance and its perturbed
version. The conventional consistency-regularization-based methods mainly focus on how to construct
effective perturbations. For instance, Laine et al. [6] generated different perturbations by two network
models to make them predict agreement. Miyato et al. [7] produced the worst perturbations according
to the adversarial direction when adversarial training [8,9], and then enforced the outputs from the
original example and its perturbed version to be consistent.

Recently, data augmentation has quickly turned into the mainstream technique of consistency
regularization in SSL due to its powerful capability of expanding the examples’ feature representations.
The essence of data augmentation is to expand the feature representations from the given training
dataset. To this end, numerous data-augmentation-based SSL methods are developed. For instance,
Verma et al. [10] proposed an interpolation consistency training (ICT) algorithm to train deep neural
networks in the semi-supervised learning paradigm. This algorithm enforced the prediction at an
interpolation of unlabeled points to be consistent with the interpolation of the predictions at those
points. Xie et al. [11] presented a new perspective on how to effectively noise unlabeled examples. This
work verifies that the quality of noising produced by advanced data augmentation methods is very
important for semi-supervised learning. Berthelot et al. [12] presented a MixMatch approach to guess
the low-entropy labels for data-augmented unlabeled examples and mixes labeled and unlabeled data
using the MixUp strategy. Sohn et al. [13] presented the FixMatch algorithm to simplify existing SSL
approaches. The model’s predictions on weakly-augmented unlabeled pictures are used to construct
pseudo-labels, which are then trained to predict the pseudo-label when fed a strongly-augmented
version of the same image.

The aforementioned methods commonly generate augmented instances on their naive representa-
tions, which are unable to derive abstract semantic representations for the learning of semi-supervised
models. Accordingly, inspired by the idea of feature fusion [14–18], several works focus on augmenting
data by merging the feature representations of the instances from the semantic layer. Verma et al. [19]
proposed a manifold mixup method to encourage neural networks to predict less confidently on inter-
polations of hidden representations. This method leveraged semantic interpolations as an additional
training signal, obtaining neural networks with smoother decision boundaries at multiple levels of
representation. Upchurch et al. [20] proposed a deep feature interpolation (DFI) method for automatic
high-resolution image transformation. DFI can be used as a new baseline to evaluate more complex
algorithms and provides a practical answer to the question of which image transformation tasks are
still challenging after the advent of deep learning. Kuo et al. [21] proposed a novel learned feature-
based refinement and augmentation method which produces a varied set of complex transformations.
The transformations, combined with traditional image-based augmentation, can be used as part of
the consistency-based regularization loss.

The existing feature fusion methods boost the capability of the feature representations to some
extent [22]. However, they only consider the information of a single given example when merging the
features. The overlooking of the relationship between the given feature and its neighborhood may
lead to false predictions for the unlabeled examples and further limit the performance of SSL. To
clarify this phenomenon and put forward our motivation, we take a simple example as shown in
Fig. 1. As shown in Fig. 1a, we can see that in low-density feature embedding regions, it is difficult
for the classifier to distinguish the ambiguous unlabeled features. Here, the ambiguous unlabeled
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features are the features that are derived from the unlabeled examples and have approximately identical
margins to the boundaries in the embedding spaces. The ambiguous unlabeled features have similar
representations, thus they may yield similar outputs from the SSL model and then generate unreliable
pseudo labels for the unlabeled examples. This fact leads to false decision boundaries during the
training process. Whereas, as shown in Fig. 1b, if the neighborhood of the given feature is considered,
the representation of the feature can be strengthened and refined. Based on the cluster characteristics
of the neighborhood, the ambiguous unlabeled features have discriminative representations, which
contributes to yielding more reliable pseudo labels for the training. Therefore, it is reasonable
to generate diverse and abstract transformations by exploiting the neighborhood information of
examples on their semantic feature spaces. To this end, we use the self-attention [23] mechanism to
aggregate the neighbor features, and then apply a neighbor graph to refine and augment the target
features. By creating such a neighborhood graph, it is possible to obtain more discriminative feature
representations, which help to produce more trustworthy decision boundaries for the SSL model and
more private pseudo labels (as shown in Fig. 1c).

Figure 1: A simple case to clarity the motivation of our method. The blue and red circles represent
represents unlabeled samples that have been divided into different clusters by the SSL model. Triangles
represent labeled samples. The gray circles represent feature representations that are difficult to be
discriminated by the classifier. (a) illustrates that the ambiguous unlabeled samples are difficult to be
classified by their representations. (b) indicates the use of ANFA to aggregate neighboring samples,
the thicker the line, the greater the attention weight. (c) shows that the SSL model can correctly classify
unlabeled samples with refined features

According to the foregoing analysis, this paper proposes a novel feature augmentation framework
called Attentive Neighborhood Feature Augmentation (ANFA) for SSL. First, given labeled and
unlabeled data examples, we project them to an embedding space and construct a neighborhood graph
based on the similarity of representations on their embedding spaces. Second, we refined the features
via weighting the neighbor representations of the target features, where the weights are adaptively
acquired relying upon the similarity between the target features and the neighborhood graph. Finally,
we mix up the target and refined features to obtain the interpolated features and then propose a
novel consistency regularization loss that encourages the predictions of the interpolated features to
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be consistent with their corresponding interpolated pseudo-labels. Moreover, we test our method on
standard SSL datasets such as SVHN [24] and CIFAR-10 [25] and neural network architectures CNN-
13 and WRN28-2 [26], and the experimental results demonstrate that our approach outperforms the
baseline methods.

This paper is organized as follows. First, we survey the related work and analyze their advantage
and disadvantage in Section 2. Then, we elaborate the proposed method in Section 3. Next, we conduct
experiments and analyze the results in Section 5.

2 Related Work

In the past, many semi-supervised deep learning methods have been developed. In this section,
we focus on some related works, including the consistency regularization methods, augmentation
methods, and the attention scheme.

2.1 Consistency Regularization Methods
Current state-of-the-art SSL methods mostly use this technique. The key idea of consistent

regularization methods is that the model should be robust to local perturbations in the input space,
which requires the deep neural network to be consistent with the original samples and the prediction
results after adding small perturbations. In image classification tasks, the approach is to make the
model’s predictions invariant to texture or geometric changes in the image.

Different consistency regularization techniques differ in how they choose perturbations δ. One
simple alternative is to use random perturbations δ, which is to add Gaussian noise to the image.
However, random perturbation is inefficient in high dimensions because only a small fraction of the
input perturbation can push the decision boundary to low-density regions. To alleviate this problem,
Virtual Adversarial Training [7] searches for adversarial perturbation directions that maximize the
change in model predictions. This involves computing the gradient of the classifier input [27–29],
which can be very expensive for large neural network models. In addition to adding perturbations
to the image, we can also add perturbations to the model. Laine et al. simply implemented this
approach by training two perturbed neural network models. They used dropout [30] to randomly drop
a part of the network parameters as a perturbation process. In supervised learning, de et al. proposed
the Mixup [31] method, which encourages the model’s prediction of a linear combination of two
samples to be close to the linear combination of their labels, and interpolates and obtains different
samples between the two samples to enhance the generalization ability of the model. Verma et al. [10]
proposed interpolation consistency training (ICT) to introduce Mixup into semi-supervised learning
by using pseudo-labels of unlabeled data. ICT encourages predictions on interpolated sample pairs
to be consistent with their interpolated predictions. Wei et al. [32] proposed FMCmatch to further
develop the method of sample mixing enhancement and improved the Cutout and Mixup methods
to generate samples to effectively smooth the training space. However, simply cutting and mixing in
the image space may produce meaningless samples. Introducing Noise, which makes the image out
of the low-dimensional manifold in the high-dimensional embedding space. Chen et al. [33] proposed
attention-based label consistency regularization, which uses channel and sample attention to describe
the similarity of different samples, maintaining label consistency across samples and enhancing the
smoothness of label prediction between data. However, this approach is limited to the similarity of
samples in the same batch and cannot describe the similarity in global samples.

Recently, a series of methods that combine consistent regularization techniques with other
semi-supervised learning methods have achieved the best performance, such as MixMatch [12],
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ReMixMatch [34], and FixMacth [13], using strong data augmentation to create perturbations,
while also using pseudo-labels, entropy Minimization, sharpening, and other techniques improve the
confidence of the model. At the same time, several works have improved some graph-based methods
to better extract intrinsic features from raw data. Yang et al. [35] used self-paced regularization to
better factorize matrices and introduced adaptive graphs using dynamic neighbor assignment to find
low-dimensional manifolds. Chen et al. [36] improved the Graph non-negative matrix factorization
(GNMF) method, introduced the l0 norm to enhance the sparsity of factorized matrices and improved
the robustness of feature extraction using GNMF.

We summarize the advantages and disadvantages of some consistency regularization methods
shown in Table 1.

Table 1: Key findings and limitations of some typical consistency regularization methods

Method Key findings Limitations

TE [1] Better prediction by ensembling the
outputs of the network in previous
epochs.

Expensive calculation in a huge dataset.

VAT [7] Better generalization by learning
adversarial perturbations.

Additional backpropagation to
compute the adversarial direction.

ICT [10] Reduce overfitting to labeled points
under high confidence.

Random interpolation may generate
unreal samples leading to prediction
bias.

MixMatch [12] Unifying the dominant approaches of
semi-supervised learning.

Multiple forward and back
propagation calculations.

FeatMatch [21] Better feature learning by exploiting
category information.

Neighborhood information is ignored
during feature learning.

FMCmatch [32] Smoothed the training space using
more diverse image transformations.

Random Cutout and Mixup introduce
noise.

ALC [33] Smoothed label predictions across data
using channel and sample attention.

Similarity measurement limited to
batch samples.

2.2 Data Augmentation
For SSL with the deep model, most recent works incorporate different data augmentation methods

into their baseline models to achieve higher performance. Data augmentation alleviates the problem
of limited data by performing diverse but reasonable transformations on the data and has been widely
used in the training of deep models [37]. Data augmentation increases data diversity and prevents
overfitting in the training of deep models. Simple data augmentation methods include random flips,
blurs, transitions, geometric transformations, changing the contrast and color of images, and so on.
In addition, complex augmentation operations also exist. Mixup enforces interpolation smoothness
between every two training samples by generating new training samples through a convex combination
of two images and their corresponding labels. It has been shown that models trained with Mixup
are robust to out-of-distribution data and facilitate the uncertainty calibration of the network. In
recent years, an SSL data augmentation strategy for strong image processing has attracted attention.
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In image classification, unsupervised data Augmentation (UDA) [11] uses AutoAugment [38], which
uses reinforcement learning [39,40] to search for the best combination of different image augmentation
operations based on the confidence of a validated model. In addition, the CTAugment proposed by
Remixmatch [34] and the RandAugment [41] used in Fixmatch [13] use different strategies to maximize
the effect of data enhancement.

We summarize the key findings and limitations of some data augmentation methods shown in
Table 2.

Table 2: Key findings and limitations of some typical data augmentation methods

Method Key findings Limitations

Mixup [31] A linear combination between two
samples and their corresponding labels
can improve generalization.

Simple interpolation may produce
meaningless samples.

AutoAugment [38] Automatically search for the best data
augmentation policy.

Using reinforcement learning as a
search algorithm requires additional
training.

CTAugment [34] Using control theory to dynamically
infer the magnitude of the transition
during training.

Dynamic updates require additional
computational cost

RandAugment [41] Only two augmentation parameters are
needed the number and magnitude of
augmentation transformations.

For different data sets, two
augmentation parameters still need
to be determined, which still has a
large experimental cost.

2.3 Attention
Vaswani et al. [23] define scaled dot-product attention as an operation that maps a query and a set

of key-value pairs to an output that computes a dot product of the query and key and scales it, using a
softmax function for normalization and computing attention weights. It can be expressed as follows:

Attention (Q, K, V) = softmax
(

QKT

√
dk

)
V (1)

where dk denote the dimension of keys. Attention mechanisms can pay more attention to the
characteristics of more attention to task correlation between input information, reduce the attention
to irrelevant characteristics, and even filter out irrelevant features, thereby improving the efficiency
and accuracy of task processing.

In recent years, attention mechanisms have been successfully applied to various computer vision
tasks [42,43]. SENet [44] obtains the weight of each channel of the input feature layer and uses its
weight to make the network focus on more important information [45]. Residual attention networks
[46] are built by stacking attention modules that generate attention-aware features. As the modules
go deeper, the attention-aware functions from different modules change adaptively. CBAM [47]
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sequentially infers the attention map along two independent dimensions of channel and space and
then multiplies the attention map with the input feature map for adaptive feature refinement [48].

We summarize the key findings and limitations of some attention methods shown in Table 3.

Table 3: Key findings and limitations of some attention methods

Method Key findings Limitations

SENet [44] Automatically obtain the
importance of each channel.

Ignoring the importance of
spatial information.

Residual attention networks [46] Multiple attention modules can
be stacked.

Can only effectively
capture local information,
but cannot establish remote
channel dependencies.

CBAM [47] Simultaneously calculate the
attention map of the two
dimensions of channel and
space.

Only consider the
calculation of the local
area, ignoring the
information of other
global areas.

3 Methodology

In this section, we present our work for semi-supervised deep learning. A glimpse of our approach
is shown in Fig. 2. Our approach consists of three parts, namely neighbor graph representation,
feature augmentation, and consistency regularization. We first construct a neighborhood feature graph
that represents the relationship between the target feature and its neighbors. Then, based on the
neighborhood feature graph, we augment the features by attention mechanism. Finally, we propose
a new loss that encourages the prediction at an interpolation of features to be consistent with the
interpolation of the predictions at those features.

3.1 Preliminary
In SSL tasks, we given a labeled dataset Dl = {xi, yi}L

i=1 and a unlabel dataset Du = {xi}U
i=1, where

L and U denote the number of Dl and Du. Formally, a feature extractor fθ (·) with parameter θ is used
to extract input image features fi = fθ (xi), a classifier hφ, and the memory bank M = {

fi, ŷi

}k

i=1
, where

fi is the extract features of input sample xi, for labeled data, ŷi is the ground-truth label, while for the
unlabeled, ŷi is pseudo-label, and k is the size of M.
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Figure 2: The pipeline of attentive neighborhood feature augmentation for semi-supervised
learning

3.2 Neighborhood Feature Graph
In order to efficiently leverage the knowledge of neighbors for regularization, we propose to

construct a graph among the samples and their neighborhoods in the feature semantic space. To select
suitable neighbors from the dataset, we propose to use k-nearest neighbor representation in the feature
space to extract neighbors for each sample.

we first extract the feature fθ (xi) and label predictions ŷi for unlabeled sample xi at each iteration
of the training loop, and collected and recorded them in a memory bank M as (fθ (xi) , ŷi) pairs. We
first pre-train a feature extractor, and then use the extracted features and pseudo-labels to initialize the
memory bank. During each forward pass in the training loop, we separate the features and pseudo-
labels and push them into the memory bank. Since the training of the model will influence the extracted
features, we update the features corresponding to the current training sample after each iteration. To
gain a more accurate prediction, we use target prediction generated by the teacher model [49]. Based on
the features in the memory bank, we calculate the cosine similarity between the features and construct
a similarity matrix S ∈ Rn×n with

Sij = fθ (xi)
T fθ

(
xj

)
|fθ (xi) |2| fθ

(
xj

) |2

(2)

where Sij ∈ S is a measurement of the similarity between the samples xi and xj. n is the number of
training samples. Compared with other similarity metrics, such as Euclidean distance, we find that
cosine similarity has a better performance. Higher similarity indicates the two samples are closer in
the feature space, so we choose the k samples with the highest similarity as neighbors for an input
sample and construct a neighborhood graph N ∈ Rn×n as follows:

Nij =
{

Sij Sij ≥ Sk
i

0 Sij < Sk
i

(3)
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where Nij is the weight of node i (sample xi) and j (sample xj). Sk
i is denoted k-th value in the i-th row

of S where the values of elements in i-th row of S are ranked in ascending order from small to large.
The embedding of a sample can take advantage of a neighborhood graph to exploit more abundant
information. When we go over the whole dataset, we use the features saved in the memory bank to
calculate the global similarity matrix and build a neighbor graph through the k-nearest neighbor
algorithm.

3.3 Feature Augmentation
With a neighborhood feature graph built by the process described above, we propose a learned

feature augmentation module via self-attention to improve target feature embedding by aggregating
the neighborhood features. The proposed module refines input image features in the feature space by
leveraging important neighborhood information.

Formally, Given a neighborhood feature graph N , for an input sample with extracted feature fx

and the i-th neighbor feature fx,i. we linearly project them into an embedding space as:

px = φa (fx; wa) , px,i = φb

(
fx,i; wb

)
(4)

where wa and wb are the learned parameters of FC layer φa and φb, respectively. We define the attention
function using a softmax function as:

w
(
px, pn,i

) = exp
(
pT

x px,i

)∑k

i=1 exp
(
pT

x px,i

) (5)

In detail, we first compute the dot product similarity between px and px,i, and get the final attention
weights by normalizing the similarity with the softmax operation. Then, we aggregate neighborhood
information for input sample feature augmentation can be denoted as:

Fx = px + ψt

(∑k

i=1
w

(
px, px,i

)
px,i

)
(6)

where ψt is a non-linear transformation. In this work, ψt is implemented by a Multi-Layer Perceptrons
(MLP) layer, this layer contains two-layer with ReLU, i.e., FC-ReLU-FC-ReLU. Fig. 3 shows the
detailed architecture of the proposed module.

Figure 3: Illustration of the proposed attentive neighborhood feature augmentation module
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3.4 Consistency Regularization
We obtain refined features by aggregating neighborhood information via the module described

above. To relate refined features containing knowledge of neighbors to each other, we employ the
Mixup strategy, which encourages predictions based on linear combinations of two features to
approximate linear combinations of their pseudo-labels.

Formally, given two random refined features Fi, Fj and their pseudo labels yi, yj, the Mixup can
be written as follows:

F̂ ij = λFi + (1 − λ) Fj

ŷij = λyi + (1 − λ) yj

(7)

where F̂ ij is the interpolation between the refined feature of Fi and Fj, and λ ∈ [0, 1] is sampled from
the distribution Beta (α, α).

The goal of Feature Mixup Model is minimizing the divergence between the model prediction on
the interpolated feature hφ (Fx) and the soft label ŷij, which on an unlabeled minibatch Bu of size U
can be formulated as:

Lmix = 1
|U|

∑
i∈B̂u

|hφ

(
F̂ ij

)
− ŷij|2 (8)

3.5 Loss Function
Given a labeled data minibatch Bl of size L and the unlabeled data minibatch Bu of size U . The

loss function for our approach consists of two terms: a supervised loss Lsup applied to labeled data and
a consistency regularization term Lmix. Specifically, for labeled data x with label y, the cross-entropy
loss can be applied Lsup is the cross-entropy loss [50] on labeled data x:

Lsup = 1
|L|

∑
i∈Bl

H
(
y, hφ (Fx)

)
(9)

where y is the label of x and Fx is an augmented feature.

Therefore, the total loss can be written as:

L = Lsup + αLmix (10)

where α is weight for consistency regularization term.

Our propose method for SSL is summarized in Algorithm 1.

Algorithm 1: The proposed Attentive Neighborhood Feature Augmentation (ANFA) Algorithm
for semi-supervised learning

3.6 Complexity Analysis
Because we need to build a global neighborhood graph, the computational complexity and

memory overhead for our proposed method will unavoidably rise. We must specifically pre-train the
feature extractor on labeled data before calculating the similarity matrix. We retrieve the neighborhood
of each test sample from the memory bank created in the training phase and directly construct
the neighborhood subgraph in the test phase. Although additional calculations are required, the
convergence rate of our proposed method is much quicker than that of strong enhancement-based
methods such as FixMatch and ReMixMatch, which typically require thousands of training epochs,
whereas our method only requires 500 training epochs to converge.
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Algorithm 1: The proposed Attentive Neighborhood Feature Augmentation (ANFA) Algorithm for
semi-supervised learning
Require: labeled training set Dl (x, y), unlabeled set Du (x), initial memory bank M
Require: Feature Extractor f (θ), Classifier hφ

Require: Attentive Neighborhood Feature Augmentation ANFA (·)
for t = 1, . . . , T do

initialize the memory bank M
using Eq. (2) calculate the similarity matrix S
Sample a labeled batch:

Bl = {(xi, yi)}L
i=1 ∼ DL (x, y)

Sample an unlabeled batch:
Bu = {xi}U

i=1 ∼ DU

B = Concat (Bl ∪ Bu)

fi = fθ (xi∈B)

zi = hφ (fi)

construct the neighborhood graph N according to Eq. (3):
Ni = CONSTRUCTNEIGHBORSGRAPH (fi, S)

Craft a feature augmentation batch:
Bl = {(Fi = FEATUREAUGMENTATION

(
fi∈Bl

,Ni

)
, yi

)}L

i=1

Craft a feature augmentation batch with soft labels:
Bu = {(Fi = FEATUREAUGMENTATION

(
fi∈Bu ,Ni

)
, zi

)}U

i=1

compute the labeled feature augmentation loss:

Lsup = 1
|L|

∑
i∈Bl

H
(
yi, hφ (Fi)

)
Shuffle Bu as Bs

Sample λ ∼ Beta (α, α)

Compute interpolation B̂u =
{(

F̂i, ŷi

)}u

i=1
with:

F̂ ij = λF 1
i + (1 − λ) F 2

i

ŷij = λy1
i + (1 − λ) y2

i

where
(
F 1

i , y1
i

) = Bu [i],
(
F 2

i , y2
i

) = Bs [i]
Compute the consistency regularization term:

Lmix = 1
|U|

∑
i∈B̂u

|hφ

(
F̂ ij

)
− ŷij|2

L = Lsup + αLmix

θ ← ∇θL
end for
return θ

4 Experiments

In this section, we evaluate the proposed framework on commonly used SSL benchmark datasets,
CIFAR-10 [25] and SVHN [24], and discuss the experimental results. We report the error rates are
averaged over 5 runs with different seeds for data splitting. Specifically, we first briefly introduce the
SSL benchmark datasets. Then, we show the implementation details of our proposed framework. In
the end, we conduct ablation studies to validate the effectiveness of our proposed framework for SSL.
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4.1 Datasets
4.1.1 SVHN

SVHN is a street view house numbers dataset, which has 73,257 training samples and 26,032 test
samples from 10 number classes. The samples are 32×32 pixel RGB images. In SVHN, each sample is
a number in a street View house number, and the class represents the identity of the digit in the image.
Following the standard approach in SSL, we randomly select a certain number of training samples as
labeled data and discard the labels of the remaining data as unlabeled data. In SVHN, we randomly
select 25, 50, 100 labeled samples from each class as the labeled samples, respectively. The batch size is
set to 64 for labeled data and 128 for unlabeled data.

4.1.2 CIFAR10

CIFAR10 is a natural image dataset, which has 50,000 training samples and 10,000 test samples
belonging to 10 natural classes. The samples are RGB images of 32 × 32 size. The images in the
CIFAR10 dataset are from real natural objects with large differences between categories and a certain
degree of recognition difficulty, which is a classic dataset in image classification tasks. For the semi-
supervised experiment, we randomly select 25, 50, 100 labeled samples from each class as the labeled
samples, respectively. The batch size is set to 64 for labeled data and 128 for unlabeled data.

4.2 Implementations
Data Augmentation. We adopt standard data augmentation and data normalization in the

preprocessing phase following our baselines. On the CIFAR10 dataset, we first augment the training
data by random horizontal flipping and random translation (in the range of [−2, 2] pixels), and then
apply global contrast normalization and ZCA normalization based on statistics of all training samples.
On the SVHN dataset, we first augment the training data with random translations. Inspired by [11,13],
we also employ RandAugment [41] strategy to augment the training samples, which gives us a strong
baseline.

Model Architecture. We conduct our experiments using a 13-layer CNN network and Wide-
Resnet-28-2 architectures. For CNN-13, we adopt the exactly same 13-layer convolution neural
network architecture as in [10], which eliminates the dropout layers compared to the variants in
other SSL methods. The Wide-Resnet-28-2 architecture [51] is a specific residual network architecture,
with extensive hyperparameter search to compare the performance of various consistency-based semi-
supervised algorithms, which has been adopted as the standard benchmark architecture in recent state-
of-the-art SSL methods.

Training. We use an SGD optimizer with a momentum of 0.9 and a weight decay factor 1×10−4; the
batch size is 64 for labeled data and 128 for unlabeled data. We conduct a hyperparameter search over
the hyperparameters introduced by our method: the value of the consistency coefficient α (we searched
over the values in {0.1, 0.2, 0.5, 1.0}). During the training, we set an initial learning rate of 0.1 and then
decayed using the cosine annealing strategy and obtain the final results after 500 epochs. We adopt
standard data augmentation such as random cropping and horizontal flipping. As our method relied
on the feature representation to build the neighborhood feature graph, we pre-train the model only on
labeled training samples for 10 epochs.

4.3 Results
We show our results on the CIFAR10 and SVHN datasets in Tables 4 and 5 and we have the

following observations.
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Table 4: Comparison of our ANFA with state-of-the-art methods on CIFAR-10

Method CNN-13 WRN-28-2
1000 4000 1000 4000

PI-Model [1] – 12.36 ± 0.31 23.07 ± 0.66 17.41 ± 0.37
TE [1] – 12.16 ± 0.24 – –
MeanTeacher [49] 21.55 ± 1.48 12.31 ± 0.28 17.32 ± 4.00 10.36 ± 0.25
SNTG [52] 18.41 ± 0.52 10.93 ± 0.14 – –
VAT [7] – 10.55 18.68 ± 0.40 11.05 ± 0.31
ICT [10] 15.48 ± 0.78 7.29 ± 0.02 – 7.66 ± 0.17
PLCB [53] 6.85 ± 0.15 5.97 ± 0.15 – 6.28 ± 0.30
MixMatch [12] – 6.84 7.75 ± 0.32 6.24 ± 0.06
UDA [11] – – 6.39 ± 0.32 5.27 ± 0.11
DMT [54] – – 8.49 ± 0.90 5.79 ± 0.19
SimPLE [55] – – 5.16 5.05
DNLL [56] 12.13 7.94 7.97 5.71
ANFA(Ours) 6.70 ± 0.13 5.33 ± 0.05 6.52 ± 0.10 5.57 ± 0.15

Table 5: Comparison of our ANFA with state-of-the-art methods on SVHN

Method CNN-13 WRN-28-2
250 500 1000 250 500 1000

PI-Model [1] – 6.65 ± 0.53 4.82 ± 0.17 18.96 ± 1.92 – 7.54 ± 0.06
TE [1] – 5.12 ± 0.13 4.42 ± 0.16 – – –
MT [49] – 21.55 ± 1.48 12.31 ± 0.28 6.45 ± 2.43 3.82 ± 0.17 3.75 ± 0.10
SNTG [52] 4.29 ± 0.23 3.99 ± 0.24 3.86 ± 0.27 – – –
VAT [7] – – – 8.41 ± 1.01 7.44 ± 0.79 5.98 ± 0.21
ICT [10] 4.78 ± 0.68 4.23 ± 0.15 3.89 ± 0.04 – – –
PLCB [53] 3.66 ± 0.12 3.64 ± 0.04 3.55 ± 0.08 – – –
MixMatch
[12]

3.59 – 3.39 3.78 ± 0.26 3.64 ± 0.46 3.27 ± 0.31

SimPLE [55] – – 3.96 ± 0.10 – – 2.75 ± 0.15
FixMatch [13] – – – 2.64 ± 0.64 – 2.36 ± 0.19
ANFA(Ours) 3.41 ± 0.12 3.39 ± 0.07 3.20 ± 0.08 3.56 ± 0.11 3.45 ± 0.21 3.12 ± 0.05

For CIFAR10, our method achieves comparable results with state-of-the-art methods. It is worth
mentioning that current methods with leading performance methods on the CIFAR-10 need require
thousands of training epochs. In contrast, our approach converges more easily. Meanwhile, our method
outperforms all the baselines under the CNN-13 architecture with 1 and 4 k labeled training samples.

For SVHN, this is much easier than the task on CIFAR-10 and the baselines already achieve
a quite high accuracy. Nonetheless, our method still demonstrates a clear improvement over all the
baselines across different numbers of labeled data. In particular, our method outperforms all of the
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baselines under the CNN-13 architecture with 250, 500, and 1 K labeled training data, which already
beats the results of all baselines with 500 labeled samples.

4.4 Ablation Study
Comparison with other attention functions. In the proposed method, we investigate the impact

of various attention functions, and we choose classical attention functions for the experiments: dot-
product attention, additive attention, hard attention, and multi-head attention. The experimental
findings on the CIFAR-10 dataset are shown in Fig. 4. We can see that the proposed method has the
same performance when using the additive attention function as when using the dot product attention
function, but the calculation is faster when using the dot product attention function because it can
be computed using highly optimized matrix multiplication. At the same time, when using the hard
attention function, performance is slightly lower because using the one-hot weight loses some local
information. Multi-head attention performs slightly better than dot-product attention, but it requires
more memory and calculations. In conclusion, we employ dot-product attention, which has slightly
lower performance but lower computational overhead.

Figure 4: Comparison with other attention functions on CIFAR-10

Effectiveness of Attentive Aggregation. We propose an attention-based feature augmentation
module that aggregates the neighboring features to enhance the features of the target instance, which
improves the performance of the model. To show the effectiveness of attention-based aggregation,
we compare the proposed attentive aggregation with the average feature aggregate method, which
is the most straightforward strategy for summarizing features. We adopt ICT as the baseline model
and conduct experiments on the CIFAR10 dataset with 4000 labeled samples. We conduct a baseline
experiment providing the comparison results in Fig. 5. We can observe that the attention-based
neighborhood feature augmentation module improves the performances of the ICT model (from
91.4% to 93.2%), and the neighborhood information helps the model to learn discriminative feature
embeddings. Meanwhile, attention-based aggregation performs better than average aggregation and
attentive aggregation converges faster because the adaptive weight learned by attention fully captures
the neighborhood information.
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Figure 5: Test classification accuracy on CIFAR-10

Evaluation of the Neighborhood Feature Graph Size. We find that different numbers of neighbors
affect the performance of the experiment. Our previous experiments on CIFAR10 fixed the size of the
neighbor graph to 16. Here we explore different neighbor graph sizes for our attentive neighborhood
feature augmentation. Specifically, we conduct experiments with different neighbor graph sizes on the
CIFAR10 and SVHN datasets, respectively, and present the results in Fig. 6. It can be seen from the
figure that the final performance will be reduced if the number of neighbors is too large or too small.
This may be explained by the fact that a too-small number of neighbors will not obtain sufficient
neighbor information, while a too-large number of neighbors will introduce irrelevant neighbors,
which may weaken the effectiveness of neighborhood aggregation and thus impair the target features
[57].

Figure 6: Evaluation of number of neighbor graph size on CIFAR-10(a) and SVHN(b)

Combination of Augmentation Strategy. Since our method employs a data augmentation strategy,
we will further investigate the impact of commonly used pixel-based data augmentation strategies on
the performance of the proposed method. We conduct ablation experiments on CIFAR10 datasets
with WRN-28-2 architecture to study the influence of strong augmentation policies (RandAugment)
and Mixup on experimental performance. The results are shown in Table 6. As we can see, excellent
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data augmentation techniques give a boost to our approach. Our method can be well combined with
other pixel-based augmentation strategies, as various transpositions can provide richer neighborhood
information and drive our model to learn better feature representations for refinement.

Table 6: Comparison of our ANFA with data augmentation on CIFAR-10

Ablation 4000 labeled

ANFA w/o data augmentation 91.56
ANFA with Mixup 93.01
ANFA with RandAugment 94.43

5 Conclusion

In this paper, we propose a novel data augmentation method for semi-supervised learning by
exploiting neighborhood information of a given instance in its semantic feature. First, for the target
instance, we construct a neighbor graph based on a similarity matrix calculated by its neighbor features
in the semantic layer. Second, we refine the target features with an attention-based module according
to the neighbor graph. Finally, we mix up the target features and their corresponding predictions
and promote a novel consistency loss as the consistency regularization. We conducted experiments on
SVHN and CIFAR10 datasets. The experimental results demonstrate that our proposal is superior
to the state-of-the-art SSL methods under CNN-13 neural architecture when the number of label
examples is small. Moreover, the attention-based module in our method can be combined with some
mainstream semi-supervised learning methods to further improve the SSL performance. Note that
it might be time-consuming to create the neighborhood graph in our method when the number of
training examples is large. Thus, for future work, we will focus on reducing the time complexity of
constructing the neighborhood graph by exploring a parallel computation strategy. In addition, we
will consider the scenario where the training dataset is unbalanced.
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