
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScience

DOI: 10.32604/iasc.2023.039380
Article

Hyper-Heuristic Task Scheduling Algorithm Based on Reinforcement Learning
in Cloud Computing

Lei Yin1, Chang Sun2, Ming Gao3, Yadong Fang4, Ming Li1 and Fengyu Zhou1,*

1School of Control Science and Engineering, Shandong University, Jinan, 250061, Shandong, China
2School of Software, Shandong University, Jinan, 250101, Shandong, China

3Academy of Intelligent Innovation, Shandong University, Shunhua Road, Jinan, 250101, Shandong, China
4Inspur Cloud Information Technology Co., Ltd., Inspur Group, Jinan, 250101, Shandong, China

*Corresponding Author: Fengyu Zhou. Email: zhoufengyu@sdu.edu.cn
Received: 25 January 2023; Accepted: 13 April 2023; Published: 23 June 2023

Abstract: The solution strategy of the heuristic algorithm is pre-set and has
good performance in the conventional cloud resource scheduling process.
However, for complex and dynamic cloud service scheduling tasks, due to the
difference in service attributes, the solution efficiency of a single strategy is low
for such problems. In this paper, we presents a hyper-heuristic algorithm based
on reinforcement learning (HHRL) to optimize the completion time of the
task sequence. Firstly, In the reward table setting stage of HHRL, we introduce
population diversity and integrate maximum time to comprehensively deter-
mine the task scheduling and the selection of low-level heuristic strategies.
Secondly, a task computational complexity estimation method integrated
with linear regression is proposed to influence task scheduling priorities.
Besides, we propose a high-quality candidate solution migration method to
ensure the continuity and diversity of the solving process. Compared with
HHSA, ACO, GA, F-PSO, etc, HHRL can quickly obtain task complexity,
select appropriate heuristic strategies for task scheduling, search for the the
best makspan and have stronger disturbance detection ability for population
diversity.

Keywords: Task scheduling; cloud computing; hyper-heuristic algorithm;
makespan optimization

1 Introduction

The development of cloud computing provides stable and efficient solutions for the information
industry, which attracts many researchers to study application problems. The resources in a cloud
environment are shared among users through virtualization technology [1,2], which is one of the
essential functions of cloud computing as well as realizes the dynamic sharing of physical resources and
the execution of multiple programs in different virtual machines (VMs) on a physical server [3]. Cloud
providers can achieve personalized customization of different users with lower energy consumption
and maintenance costs via virtualization technology.

https://www.techscience.com/journal/iasc
https://www.techscience.com/
http://dx.doi.org/10.32604/iasc.2023.039380
https://www.techscience.com/doi/10.32604/iasc.2023.039380
mailto:zhoufengyu@sdu.edu.cn

1588 IASC, 2023, vol.37, no.2

Based on virtualization technology, cloud resource providers will create multiple Virtual
Machines(VM) [4] based on physical resources to process tasks submitted by users. Tasks are assigned
to a designated virtual machine by a scheduling algorithm. Reasonable allocation of tasks on each VM
not only makes full use of cloud computing resources but also improves task completion efficiency.
Besides, it has a significant impact on the stability of cloud services, user satisfaction, and providers’
operating costs. Therefore, efficient scheduling algorithms are indispensable for cloud computing
centers.

Currently, traditional algorithms or heuristic algorithms are generally used to achieve task
scheduling in the cloud environment. However, the above algorithms still have two problems.

(a) Traditional scheduling algorithms have the advantages of stable performance and easy imple-
mentation. However, large-scale task scheduling problems in complex cloud environments
are often an NP-hard problem. Common non-heuristic task scheduling algorithms such as
First Come First Serve (FCFS), max-min [5], linear-programming [6], Round Robin, Weighted
Round Robin, RASA, Segmented Min-Min algorithm are static algorithms following a pre-
defned approach of scheduling the tasks in the computing environment. These algorithms have
poor parameter dynamic performance and high computational resource consumption. Amir
presented the cTMvSDN to improves resource management based on combination of Markov-
Process and Time Division Multiple Access (TDMA) protocol, which does not apply to
resource scheduling tasks with different task attributes [7].The heuristic intelligence-based task
scheduling is adaptive, intelligent, collective, random, decentralized, self-collective, stochastic
and is based on biologically inspired mechanisms than the other conventional mechanisms.
Researchers also apply meta-heuristic algorithms [8] to large-scale task scheduling problems
in a complex cloud environment, such as particle swarm optimization algorithm (PSO) [9], ant
colony algorithm (ACO) [10], chicken swarm optimization algorithm (CSO) [11], etc. Due to
different solving strategies, meta-heuristic algorithm can search results quickly, but it is easy to
fall into local optimal in different tasks. Recently, based on the advantages of different heuristic
algorithms, Hyper-heuristic algorithms have been applied in task scheduling problems [12] and
get a more comprehensive search range and better scheduling results. Tsai et al. [13] proposed
algorithm provides balanced scheduling solutions by employing the honey bee load balancing
and improvement detection operator to conclude which low-level heuristic is to be utilized to
search improved candidate solutions. However, the high-level selection strategy still relies on
human experience and does not dynamically adjust the strategy along with the calculation
process.

(b) The task’s computational complexity, that is, the time consumed in the unit computing
power, cannot be accurately estimated in practical application scenarios. The computational
complexity of different tasks cannot be expressed by a single linear relationship, which makes
it difficult for us to obtain the computational complexity as accurate as in the simulation
environment. Moreover, task complexity is critical to the selection of underlying algorithm
and the overall algorithm effect, especially in real application scenarios.

This work proposes a hyper-heuristic algorithm based on reinforcement learning (HHRL). HHRL
uses a high-level heuristic based on a reward table updated with iterations. The makespan and the
population diversity form the state information. PSO [14], Fuzzy PSO (F-PSO) [15], Genetic algorithm
(GA) [16], and ACO [17] are used to form the action set. The high-level heuristic strategy is based on the
reward table, which is updated with iteration. The increase of population diversity and the decrease
of makespan will increase the reward value of this action. The high-level heuristic strategy tends to

IASC, 2023, vol.37, no.2 1589

choose the action with the highest reward value. A candidate solution migration mechanism based
on random perturbation is also proposed to ensure the continuity of the solving process. HHRL can
effectively improve the population diversity, expand the search range, and get better scheduling results.

To accurately predict the computational complexity of tasks, this paper proposes a task complexity
estimation method based on linear regression. Although it is difficult to estimate the computational
complexity of different categories of tasks, there is an obvious linear relationship in the similar tasks.
We record the execution of 100 tasks in each category and explore the linear relationship among
them. The results show that the linear relationship exists obviously and can significantly improve task
complexity estimation accuracy.

The remainder of the paper is organized as follows. The related work of task scheduling in cloud
computing is given in Section 2. Section 3 provides the introduction of the scheduling problem in
cloud environment and the relevant technologies of hyper-heuristic algorithms. Section 4 describes
the proposed algorithm in detail. The experiment results, on both CloudSim and the real cloud server,
are discussed in Section 5. Finally, Section 6 concludes the this work and presents the future research.

2 Related Work

Effective scheduling of tasks submitted by users can effectively reduce the cost and reduce resource
consumption of the cloud computing center. From rule-based algorithms to meta-heuristic algorithms,
and then to hyper-heuristic algorithms, scheduling algorithm has a wider search range, and gradually
has the evolutionary ability.

Plenty of scheduling algorithms is rule-based. Zhu et al. [18] proposed an energy-aware scheduling
algorithm based on rolling-horizon scheduling architecture named EARH for real-time, aperiodic,
independent tasks. EARH is easy to implement and has strong versatility. However, it does not take
into account the differences in the deadlines of each task. Javadpour et al. [19] proposed a scheduling
algorithm that dynamically provisions the resource according to the deadline, but it cannot effectively
reduce makespan. Javadpour et al. [20] proposed an algorithm that prioritizes the tasks regarding their
execution deadline and reduce the consumed energy of the machines processing the low-priority tasks
using the DVFS method. To solve this problem, Coninck et al. [21] proposed an adaptive modular
nonlinear job scheduling algorithm with parallelism in the meteorological cloud. Compared with the
previous methods, the average and optimal makespan values obtained by this method are reduced
by 10%. Besides, some algorithms can achieve multi-objective optimization. GIoTDVFS_mGA [22]
based on GA was proposed to to balance workload and reduce energy consumption using Dynamic
Voltage Frequency Dcaling and microgenetic algorithm. Yu et al. [23] proposed a Runtime Balance
Clustering Algorithm (RBCA) based on backtracking approach to improve the load balance of
each cluster. Zhu et al. [24] proposed a Multi-stage scheduling algorithm based on LSHP and
ALSHP search techniques. This algorithm minimizes the renting VMs and increases or decreases the
resources according to upcoming requests. The above-mentioned rule-based methods are stable and
easy to implement. However, they cannot change the scheduling strategy according to the different
environment information. As a result, there is still much room for improvement.

Representative heuristic algorithms are also used in task scheduling. Chaudhary et al. [25]
proposed Hybrid Genetic-Gravitational Search Algorithm (HG-GSA) to reduce the total cost of
computation. Jacob et al. [26] proposed CPSO by combining the advantages of Cuckoo Search (CS)
and PSO. CPSO is effective in reducing the makespan of the workflow. Gu et al. [27] proposed a
bat-based algorithm called Energy Aware, Time, and Throughput Optimization heuristic (EATTO).

1590 IASC, 2023, vol.37, no.2

EATTO can effectively save energy consumption and minimize the makespan of computation-
intensive workflows. Xie et al. [28] proposed a directional and non-local-convergent particle swarm
optimization (DNCPSO), which minimize the execution time and cost dramatically. By the directional
search process based on non-linear inertia weight with selection and mutation operation, DNCPSO
acquires a balanced result. Although these mata-heuristic algorithm of PSO [29–31], GA [32–34]
and ACO [35–37] have a wider search range and faster operation speed. Although they obtained
better scheduling schemes, there is still much room for improvement. Because a heuristic algorithm is
designed for a special problem, it is easy to fall into local optimum when solving problems in other
domains.

To get better solutions, Hybrid heuristic algorithms [38], evolutionary algorithms [39], and Q-
learning [40] are also used to solve scheduling problems. However, there is a problem with excessive
computational overhead. At the beginning of the iteration, the candidate solutions obtained are
inferior. Compared with the above methods, hyper-heuristic also has better learning ability, and will
not bring too complicated calculations. Tsai et al. proposed a hyper-heuristic scheduling algorithm
(HHSA) [12]. By diversity detection and improvement detection operators, HHSA dynamically
determine which low-level heuristic will be selected to find better scheduling solutions. In order to
optimize scientific workflow scheduling cost in a cloud environment, Alkhanak et al. [41] proposed a
Completion Time-Driven Hyper-Heuristic (CTDHH) approach. Panneerselvam et al. [42] discussed
the application of hyper-heuristics in resource supply for MapReduce workflow execution in IaaS
cloud. Although the above work can obtain better scheduling results than traditional methods, their
high-level selection strategies are based on preset rules and do not have the ability of online learning.
Besides, Lin et al. [40] proposed a genetic programming hyper-heuristic (GP-HH) algorithm to address
the Multi-skill resource-constrained project scheduling problem. Pahlevan et al. [43] proposed a hybrid
approach using genetic programming hyper-heuristics combined with rules designed in advance to
solve the two-level container allocation problem. Laboni et al. [44] presented a hyper-heuristic (AWSH)
algorithm by leveraging the combined powers of A nt Colony, Whale, Sine-Cosine, and H enry Gas
Solubility Optimization algorithms at the higher level to adapt to changes in 5G network parameters.
Zade et al. [45] presented a hyper-heuristic ALO (HH-ALO-Tabu) that automatically chooses CMs,
OBLs, and random walk strategies depending on the differential evolution (DE) algorithm. The above
work uses a hyper-heuristic algorithm to solve the task scheduling problem in a cloud environment.
However, researchers often set the existing hyper-heuristic algorithms according to their experience,
and its selection strategy cannot evolve with iteration.

3 Background and Problem Formalization

This section describes the task scheduling problem and the hyper-heuristic scheduling algorithm
in Cloud Computing.

3.1 Task Scheduling Problem
Cloud Computing Center virtualizes physical resources and establishes multiple VMs with differ-

ent performances. In practical applications, since the creation and initialization of virtual machines
will lead to unnecessary consumption of time and energy, users’ tasks are generally executed on
existing VMs.

Part of the performance of VMn can be expressed as {pesnumbern, mipn, bwn}, where bwn represents
bandwidth used to transmit related data, mipn represents the information processing speed of CPU,
and pesnumbern represents number of CPU cores. The characteristics of the taskm are expressed as

IASC, 2023, vol.37, no.2 1591

{
complexitym, sizem, resultm

}
, where complexitym represents the computational complexity of the task,

sizem represents the related data size of the task, and resultm represents the related data size of the
calculated result.

The essence of the task scheduling algorithm in cloud computing is to schedule the task to the
appropriate virtual machine and complete the execution in less time. Since VMs and tasks have various
characteristics, the results of different scheduling schemes will be significantly different. For example,
taskm only needs to upload a small number of related data, but the computational complexity is
exceptionally high. The bottleneck of this task is the information processing speed but not bandwidth.
The task can be executed quickly on the virtual machine with high information processing speed and
small bandwidth, but with low information processing speed and high bandwidth it will consume a lot
of time. The scheduling algorithm’s function is to search for a better solution for solving the current
task sequence in the vast solution space. This paper discusses the scheduling of independent tasks, so
there is no transmission between different tasks. The task scheduling problem in cloud computing will
be described in detail below.

Cloud Computing System is composed of a large number of Physical Machines (PM).

CS = [
PM1, PM2, . . . , PMi, . . . , PMNpm

]

where PMi represents the physical resources in the Cloud Computing System, and the VMs built on
the physical machine can represent as:

PMi = [
VM1, VM2, . . . , VMi, . . . , VMNVM

]

where VMj represents the VMs created in the PMi. The performance of VMj can represent as:

VMn = [pesnumbern, mipn, bwn]

where pernumbern represents the number of CPU cores, mipn represents the information processing
speed of a core, and bwn is the network bandwidth. Task set T can represent as:

T = [
task1, task2, . . . , taskm, . . . , taskNtask

]

The characteristics of the taskm can represent as follows:

taskm = [complexitym, sizem, resultm]

where complexitym represents the computational complexity of the task, sizem represents the related
data size of the task, and resultm represents the related data size of the calculated result.

Assuming that taskm starts to upload to VMn at SUTm , the upload cost time (UCTm) can
represent as:

UCTm = sizem

bwn

(1)

The time finished upload (FUTm) is:

FUTm = UCTm + SUTm (2)

The executing cost time (ECTm) of taskm on VMn can represent as:

ECTm = complexitym

pesnumbern × mipn

(3)

1592 IASC, 2023, vol.37, no.2

Assuming that taskm needs to wait for WTm to execute after completing the upload, the execution
finished time (FETm) of taskm can represent as:

FETm = FUTm + WTm + ECTm (4)

The download cost time (DCTm) of the result can represent as:

DCTm = resultm

bwn

(5)

The Expect Finish Time (EFTm) is:

EFTm = FETm + DCTm (6)

Assuming that EFTm,n represents the Expect Finish Time for taskm to complete the calculation on
VMn, the matrix of size Ntask × Nvm denotes the Expect Finish Time required to run the task on each
virtual machine:

EFT =

⎡
⎢⎢⎢⎢⎢⎢⎣

EFT1,1 EFT1,2 . . . EFT1,n . . . EFT1,NVM

EFT2,1 EFT2,2 . . . EFT2,n . . . EFT2,NVM

.

EFTm,1 EFTm,2 . . . EFTm,n . . . EFTm,NVM

.

EFTNtask ,1 EFTNtask ,2 . . . EFTNtask ,n . . . EFTNtask ,NVM

⎤
⎥⎥⎥⎥⎥⎥⎦

A Feasible Solution (FS) in the domain can represent as:

makespan = max

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

EFT1,n1

EFT2,n2

. . .

EFTm,nj

. . .

EFTNtask ,nNtask

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, n ∈ [1, Nvm] , n ∈ N+ (7)

3.2 Hype-Heuristic Scheduling Algorithm
In 2001, Cowling proposed the Hyper-heuristic algorithm and used it to solve the scheduling

problem. Cowling described the Hyper-heuristic algorithm as the heuristic algorithm to find the
heuristic algorithm. With the development of research, Hyper-heuristic algorithms are used to manage
or manipulate a series of low-level heuristic algorithms to solve various combinatorial optimization
problems [46–50]. Differences between the Hyper-heuristic algorithm and the traditional heuristic
algorithm are shown in Table 1.

Table 1: Differences between the hyper-heuristic algorithm and the traditional heuristic algorithm

Hyper heuristic algorithm Heuristics algorithm

Search space Set of low level heuristic
algorithm

Solution space of problem

Professional knowledge Less or no problem domain
knowledge is required

Knowledge of intelligent computing
and problem domain is required

(Continued)

IASC, 2023, vol.37, no.2 1593

Table 1: Continued
Hyper heuristic algorithm Heuristics algorithm

Scope of application Can be applied to different
problems

To solve new problems, redesign is
generally needed

Generally speaking, the goal of the Hyper-heuristic algorithm aims to extend the intelligent
computing technology to more fields and reduce the difficulty of heuristic algorithm design. A typical
Hyper-heuristic algorithm consists of a control domain and problem domain. The problem domain
contains the constraints, basic functions, evaluation functions and low-level heuristics (LLH) designed
by domain experts. The high-level heuristic in the control domain is designed by the hyper heuristics
experts, including how to use the low-level heuristics to construct feasible solutions or improve the
quality of solutions. The standard interface between the problem domain and the control domain is
defined for information transfer between two layers.

The task scheduling application of generally Hyper-heuristics algorithm in cloud computing is
shown in Fig. 1, and the pseudocode is shown in Algorithm1.

High-Level heuristic High-L heuristic

LLH1 LLH2 LLHn

Hyper heuristics algorithm

g

Basic function

Constraints

Evaluation function

Tasks

physical resourcesphysical esources

VM1 VM2 VMn

Virtual Machines

Cloud Computing System

Figure 1: Hyper heuristics algorithm in cloud computing

Algorithm 1: Hyper heuristic algorithm in cloud computing
1: Input the scheduling problem
2: Output the best solution as the final solutions
3: Initialize the population of solution Z = {z1, z2, . . . , zn}
4: Initialize the parameters of Hyper heuristics algorithm
5: Randomly select a Low-Level heuristic algorithm LLHi

6: While (t < tmax) do
7: Update the population of solutionsZ by LLHi

8: Select a new LLHi by the High-level heuristic
9: Update the High-level heuristic
10: End while

1594 IASC, 2023, vol.37, no.2

The flow of the whole algorithm is shown in Fig. 2. Firstly, the population will be initialized
and randomly selected LLH for iterative and get the corresponding evaluation function. The high-
level selection strategy will get the reward value according to the evaluation function and update the
reward table. Then, the high-level selection strategy will select LLH based on the reward table and
migrate some high-quality candidate solutions. Finally, the population will be initialized again and
iterative to get a solution until the termination condition is reached.

Start

Initialization

Calculate Evaluation
Function

termination
conditions

Best Results

FinishUpdate the reward
table

Select low-level
algorithm

High-quality de-
migration and re-

initialization

Iterative solution

Yes

No

Randomly select low-
level algorithm

Figure 2: The flow of hype-heuristic SCHEDULING Algorithm

4 The Proposed Approach

In this section, we present the hyper-heuristic algorithm based on reinforcement learning to solve
the task scheduling problem in cloud computing. Moreover, task computational complexity estimation
method is used to accurately obtain the execution cost time of the task.

4.1 Hyper Heuristic Algorithm Based on Reinforcement Learning
To learn a high-level heuristic method based on current state information, HHRL uses

makespan and population diversity to construct reward-table. The pseudocode of HHRL is shown in
Algorithm 2.

Algorithm 2: Hyper heuristic algorithm based on reinforcement learning
1: Input the scheduling problem
2: Output the best solution as the final solutions
3: Initialize the population of solution S = {

X1, X2, . . . , Xi, . . . , XNsolution

}
4: Initialize the parameters of high-level heuristic
5: Randomly select a low-level heuristic algorithm LLHi

(Continued)

IASC, 2023, vol.37, no.2 1595

Algorithm 2: Continued
6: While (Termination condition not satisfied) do
7: Initialize the parameters of LLHi

8: While (t < tmax) do
9: Update the population of solutions S by LLHi

10: Get the makespan of the optimal solutions
11: Get the population diversity
12: End while
13: Calculate the reward value of the current iteration
14: Update the Reward-table
15: Select LLH according to Reward-table
16: Transfer of candidate Solutions
17: End while

4.1.1 Action Set

Action set is composed of ACO, GA, F-PSO and PSO. Although the particle swarm can quickly
find the solution, the quality is not stable. Fuzzy-PSO improves the efficiency of conventional PSO
by using fuzzy logic systems, and it’s less convergent. Although ant colony algorithm can search the
optimal solution quickly, it is also easy to fall into local optimal. Because the sequence of candidate
solutions generated by GA is very suitable for representing task scheduling, GA has a good effect in
task scheduling, which is also proved by experiments.

4.1.2 State Information

The state information consists of makespan and the population diversity. The calculation method
of makespan is introduced in Section 3. Because in meta-heuristic algorithm, other candidate solutions
will be fitted to the optimal solution. The difference between the optimal solution and other candidate
solutions can indicate the diversity of the current candidate solution set. In HHRL, the population
diversity is represented by the Hamming distance between the optimal solution and other candidate
solutions. The set S of candidate solutions can represent as:

S = {
X1, X2, . . . , Xi, . . . , XNsolution

}

where the candidate solution Xi can represent as Xi = {
xi,1, xi,2, . . . , xi,j, . . . , xi,Ntask

}
and the optimal

solution can represent as B = {
b1, b2, . . . , bj

}
. Use popsize represents the population size of LLH.

Then the population diversity can represent as:

distance =
Nsolutiong∑

i=1

Ntask∑
j=1

(
bj ⊕ xi,j

)
(8)

diversity = distance
popsize × Ntask

(9)

Eqs. (8) and (9) are utilized to calculate the population diversity and supervise the selection process
of the underlying algorithm. In Eq. (8), xi,j denotes i-th solution j-th position. bj represents i-th position
of the best individuals. Ntask denotes the total number of tasks. Nsolution denote the number of solutions.
⊕ represents exclusive or operation. It is used to calculate the diversity index of the population and
supervise the selection process of the underlying algorithm.

1596 IASC, 2023, vol.37, no.2

4.1.3 Update of Reward-Table

The high-level heuristic method selects a low-level heuristic algorithm (LLH). After the iterations
of the LLH, the execution result of the current algorithm can be obtained. The reward value is consists
of two parts. The first part of the reward value determined by the makespan of the current iteration
result and the makespan obtained from the previous iteration. The reward value of the current LLH
iteration can represent as:

R1 (s, a) = 1
1 + eλ

λ = −σ × makespan
Nnum

(10)

where a represents the action information, and s represents the state information, which is composed
of the value interval of makespan and population diversity. σ represents the constant can ensure that
makespan significantly influences on R1 in the effective range and has a certain marginal effect outside
the range. The update formula of reward value can represent as:

R1 (s, a) = R1 + a
[
r + λmaxa′R′

1 (s, a) − R1 (s, a)
]

(11)

where maxs′ R′ (s′, a′) represents the maximum expect future reward in the new state s′.

R2 (s, a) = diversityn − diversityn−1 (12)

where diversityn represents the unit population diversity in the current iteration, and diversityn−1

represents the unit population diversity in the last iteration. The total reward value can represent as:

R (s, a) = R1 (s, a) + R2 (s, a) (13)

4.1.4 Selection of LLH

When selecting the LLH, the high-level heuristic is determined by the reward value of the
current reward-table under the state information. LLH with the highest reward value will have a 50%
probability to be selected, and other actions will be selected randomly.

4.1.5 Transfer of Candidate Solutions

The candidate solution Xi = {
xi,1, xi,2, . . . , xi,j, . . . , xi,Ntask

}
consists of a sequence of numbers with

the length of Ntask. Where xi,j ∈ [1, Nvm] , xi,j ∈ N+, that is, the value of the sequence indicates that taskj

is executed on the VMxi,j . After the current LLH completes the iteration, HLH will select the LLH
method again. The current candidate solution information needs to be transferred to a new round of
LLH iteration to realize the continuation of the solution. However, with the iteration of an LLH, the
set of candidate solutions tends to approach the current optimal solution, and the population diversity
will also decrease. In order to ensure the population diversity, only the optimal solution and the five
suboptimal solutions satisfying the different conditions are reserved when the candidate solutions are
migrated. 50% of the candidate solutions will be generated by random perturbation on the above
transferred solutions. The remaining candidate solutions will be generated randomly.

4.1.6 The Complexity of Proposed Algorithm

Generally speaking, the computational complexity of the heuristic algorithm is , where represents
the iteration round of the algorithm, M represents the length of feasible solutions, and N represents
the number of candidate solutions.

IASC, 2023, vol.37, no.2 1597

The algorithm proposed in this paper is solved by the selected LLH, and the computation cost of
high-level selection strategy is very small, so the complexity of the algorithm proposed in this paper is
very close to .

4.2 A Task Computational Complexity Estimation Method
The essence of the task scheduling algorithm in cloud computing is to schedule the task to the

appropriate virtual machine and complete the execution in a short time. For example, CPU intensive
tasks ought to be assigned to high information processing speed resources, but I/O-intensive tasks are
more suitable for assignment to resources with large bandwidth.

In the simulation environment, the characteristics of the tasks can be accurately obtained.
However, although the category of task and the size of relevant data can be accurately obtained in
the real application environment, its computational complexity can’t be accurately estimated. Because
the computational complexity of a task is related to the task category, it is not linearly related to the size
of relevant data. Computational complexity is vital priority information in task scheduling. Inaccurate
computational complexity will lead to the degradation of scheduling algorithm performance and
failure to obtain high-quality scheduling results. A method to estimate the complexity of three common
cloud computing tasks is proposed. For a particular category of task, its computational complexity is
often related to the relevant data’s size. The regression formula of task complexity can represent as:

complexity = a + b × X + e (14)

where a represents the initialization cost of related resources, b represents the key parameter of the
formula, X represents the related data size and e represents error term. After testing in the practical
application environment, the method can fit the task’s actual calculation cost. The experimental results
will be shown in Section 5.

5 Experiments and Discussion

In this section, the proposed method HHRL is compared with other traditional and meta-heuristic
algorithms. The empirical results in simulation environment Cloudsim and real tasks show that the
proposed HHRL keeps the population diversity effectively and outperforms other algorithms.

5.1 Experiments in CloudSim
In this experiment, CloudSim 4.0 is used to test the algorithms. The performance of HHRL is

evaluated and compared with existing meta-heuristics algorithms such as PSO, F-PSO, GA and ACO,
and traditional algorithms such as FIFO and Max-min. The parameters of meta-heuristic algorithms
are given in Table 2.

Table 2: Parameter setting

Algorithm Parameters Value

HHRL The iterations of LLH 50
Population size 100

The max iterations of LLH 50
HHSA The max iterations of no-improved LLH 5

Threshold of diversity 2500

(Continued)

1598 IASC, 2023, vol.37, no.2

Table 2: Continued
Algorithm Parameters Value

GA Crossover problem 0.8
Mutation rate 0.01

Inertia weight 0.8
PSO Cognitive coefficient c1 1.0

Cognitive coefficient c2 1.0

Pheromone residue coefficient 0.5
ACO Information elicitation factor 0.5

Relative influence weights 1

Table 3 shows the Cloudsim experimental settings. We experiment in 500, 1000, 3000, 5000
tasks and compared with other algorithms to verify the scalability of the proposed algorithm.
The performance of the algorithm is analyzed by optimal result, average result and variance. The
experiment also analyzed the relationship between LLH selection and state information.

Table 3: Cloudsim parameters setting

Entity Parameters Value

Cloudlet
No of Cloudlets 500–5000
length 500–15000

Virtual machine

No of VM 10
RAM 1024–4096 MB
MIPS 500–5000
Bandwidth 1000–5000
Policy type Time shared
VMM Xen
Operation system Linux
No of cores 1–2

Physical machine

No of PM 2
RAM 20480 MB
Storage 100000 MB
Bandwidth 20000
Policy type Time shared

5.1.1 Comparison Between HHRL and Traditional Algorithms

The result of each experiment is the makespan of the current scheduling scheme. The average
result and best result obtained by the traditional algorithms and the proposed HHRL algorithm after
30 times are given in Table 4. The convergence process of makespan is shown in Fig. 3, and variance of

IASC, 2023, vol.37, no.2 1599

the results is given in Fig. 4. From these results we can see that HHRL outperforms other scheduling
algorithms under different number of tasks.

Table 4: Experiment results in Cloudsim

No. Algorithm HHRL HHSA GA ACO F-PSO PSO FIFO Max-min

500
Best 155.43 155.43 155.43 158.43 157.50 188.47 218.52 162.85
Average 158.10 159.42 160.21 163.40 162.83 203.90 218.52 162.85

1000
Best 295.61 300.89 302.07 313.28 310.77 382.58 427.42 324.62
Average 300.28 303.16 307.04 317.72 321.18 395.81 427.42 324.62

3000
Best 959.60 962.85 973.24 992.86 1000.85 1022.67 1169.32 1011.53
Average 962.17 966.73 978.17 1002.39 1011.61 1036.27 1169.32 1011.53

5000
Best 1597.09 1600.29 1600.02 1623.83 1632.36 1681.83 1826.54 1674.63
Average 1600.35 1603.92 1607.43 1633.69 1646.41 1697.83 1826.54 1674.63

Figure 3: Convergence process of makespan

1600 IASC, 2023, vol.37, no.2

Figure 4: The variance of the different number tasks

As shown in Table 4, although the number of tasks is different, HHRL can almost get smaller
best and average results. This means that HHRL can get a better scheduling scheme than several other
algorithms. When the number of tasks is 500, HHRL, the space for selecting solutions is small. Thus,
HHSA and GA get the same best results. As shown in Fig. 4, the variance of HHRL and HHSA is
significantly smaller than other methods. For example, the difference of best results between GA and
HHSA is similar, but the average result and variance difference is remarkable. On the other hand, as the
number of tasks increases, the variance does not increase significantly as other methods. It indicates
that the performance of the two hyper-heuristics is more stable. Since the hyper-heuristics can bring
a more comprehensive search range and significantly avoid falling into local optimum, high-quality
solutions can be obtained in most iterations.

5.1.2 Influence of Population Diversity

In the iteration of the meta-heuristic algorithm, the population diversity significantly impacts
the optimal result. With the continuous fitting of candidate solutions to the optimal solutions, the
population diversity will decrease. If the population diversity decreases too fast, it is easy to fall
into local optimum, and better candidate solutions cannot be obtained. The variation of population
diversity of HHRL and other meta-heuristic algorithms is shown in Fig. 5.

From this result, it can be observed that the population diversity of PSO and F-PSO will gradually
decrease, then it tend to be stable and maintain at a high level. The high population diversity means
that PSO falls into local optimum in many places, and no high-quality scheduling results are found.
On the contrary, the population diversity of ACO and GA can get convergence and better scheduling
results. However, the set of candidate solutions is completely fitted to the optimal solution, which
leads to serious local optimization. HHSA has a diversity detection operator. When the population
diversity is lower than the preset threshold, disturbance information will be introduced to improve
the population diversity. As a result, the population diversity varies dramatically. HHRL rewards
the population diversity, which effectively avoids the excessive convergence or violent fluctuation of
population diversity. This ensures the balance between search range and algorithm efficiency.

IASC, 2023, vol.37, no.2 1601

0 20 40 60 80 100 120 140 160 180 200
Interation

0
0

10

20

30

40

50

DD
iv

er
si

ty
D

iv
er

si
ty

D
iv

er
si

ty
D

iv
er

si
ty

(a) No. of tasks:500

HHRL
HHSA
GA
ACO
F-PSO
PSO

0 20 40 60 80 100 120 140 160 180 200
Interation

0
0

10

20

30

40

50

(b) No. of tasks:1000

HHRL
HHSA
GA
ACO
F-PSO
PSO

0 20 40 60 80 100 120 140 160 180 200
Interation

0
0

10

20

30

40

50

(c) No. of tasks:3000

HHRL
HHSA
GA
ACO
F-PSO
PSO

0 20 40 60 80 100 120 140 160 180 200
Interation

0

10

20

30

40

50

(d) No. of tasks:5000

HHRL
HHSA
GA
ACO
F-PSO
PSO

Figure 5: The curve of population diversity

1602 IASC, 2023, vol.37, no.2

5.1.3 The Relationship Between Population Diversity and LLH Selection

The population diversity as HHRL state information directly affects the selection of LLH. To
analyze the influence of the population diversity on LLH selection, this work counted the 6,000
selections of LLH obtained from 30 runs of HHRL, and the results obtained are shown in Fig. 6.
Taking the population diversity as the criterion, the population diversity is divided into three cases:
high, medium and low. The classification of the three situations can represent as:

Figure 6: The selected frequency of LLH in each state

case =
⎧⎨
⎩

low diversity > 10
medium 5 ≤ diversity ≤ 10
high diversity < 5

(15)

In the experiment, there were 1126 high, 2856 medium and 2018 low. When population diversity
is in a high state, GA is selected most, while PSO and F-PSO are rarely selected. At the beginning
of HHRL iteration, the increase of the population diversity leads to small reward value, while the
decrease of makespan can bring more reward value. Therefore, GA, which can significantly reduce
makespan, is selected multiple times. On the contrary, when population diversity is in a low state, PSO
and F-PSO are selected more times. Because PSO and F-PSO can effectively maintain the population
diversity, it can bring large reward value.

5.2 Experiment in Actual Tasks
In the simulation environment, the computational complexity of the task is considered to be

accurately obtained. But in practical application, because of the different categories of tasks, it is not
easy to estimate the complexity of tasks in practical application scenarios. This significantly affects
the scheduling effect. Their computational complexity does not show a simple linear relationship with
the size of related data for all tasks because the task categories are different. For example, training the
neural network model with a data set of 2000 MB on the virtual machine consumes significantly more
computing power than the only test. However, there is a linear relationship between the data size and
the computational complexity for a certain task category. This makes it possible for us to estimate the
computational complexity. To verify the effect of this method on improving scheduling effect, linear
regression analysis was carried out on three categories of tasks: CNN model training, CNN model

IASC, 2023, vol.37, no.2 1603

testing and RNN model testing. The experimental environment is shown in Table 5. The experimental
results are shown in Fig. 7 and Table 6.

Table 5: Characteristics of hosts

Configuration

CPU Intel Core i5-8500 3.00 GHz
GPU Nvidia GeForce GTX 1080Ti
RAM 16G
Operating System Linux
Storage 1 TB
Policy Time Shared

Figure 7: Linear regression of task complexity

Table 6: Analysis of linear regression

Slope RMSE R-square P-value

Category 1 CNN model
training

2.345 54.5 0.599 1.74e-10

Category 2 CNN model
testing

0.501 8.73 0.833 3.84e-37

Category 3 RNN model
testing

0.290 5.53 0.819 1.67e-18

CNN model includes a classification model and a generative model based on VGG-16 and
Resnet-34. RNN model includes text generation based on GRU. As shown in Fig. 6 and Table 6,
there is a significant linear relationship between the computational complexity of same type tasks
and relevant data size. The three linear relationships have obviously different slopes, and the slope of
category1 is exceptionally high. RMSE is sensitive to large or small errors in a group of measurements
and can well reflect prediction accuracy. The RMSE value of category 1 is significantly higher than
that of other categories. It is due to the randomness of the CNN training process, which leads to
the fluctuation of actual computing cost. R-square is a statistical index reflecting the reliability of
dependent variables, indicating the degree of linear regression fitting. The R-square of category 2 and
category 3 is more significant than 0.8, which indicates that the computational complexity can be

1604 IASC, 2023, vol.37, no.2

accurately predicted. The P-values of the three categories are all less than 0.05, which indicates that
the chance of not meeting the above linear relationship is extremely small.

The experimental steps are as follows. Firstly, the execution time of 100 tasks in each category
on the host is obtained, which is called complexity 1, and the linear relationship between the
computational complexity of different categories of tasks and the size of relevant data is obtained.
Then the computational complexity of all tasks will be predicted, which is called complexity 2. In
addition, there is a complexity 3 based on the size of the relevant data. In Cloudsim, scheduling result
1 based on complexity 3 and scheduling result 2 based on complexity 2 are obtained. It should be noted
that complexity 1 is the real computational power consumption, while complexity 2 and complexity
3 are estimated. Two scheduling results are obtained through complexity2 and complexity 3, but the
real makespan of the two scheduling results still needs to be obtained according to complexity 1. The
average result and best result of 30 times between the traditional algorithms and the proposed HHRL
algorithm are given in Table 7 and Fig. 8.

Table 7: Experiment results of real tasks

HHRL HHSA GA ACO F-PSO PSO FIFO Max-min

Result 1 Best 82.57 82.04 83.51 82.63 82.60 82.78 94.56 91.57
Average 88.12 89.70 91.06 90.46 93.36 93.47 94.56 91.57

Result 2 Best 80.96 80.96 80.96 80.96 82.16 82.58 94.38 84.39
Average 84.59 85.80 86.22 87.75 89.42 92.37 94.38 84.39

Figure 8: The variance of the real tasks

As shown in Table 1, the computational complexity can’t be accurately estimated, which signif-
icantly increases the randomness and contingency of scheduling. Several meta-heuristic algorithms
get similar optimal values and average values. At the same time, Result 2 in Table 2 is similar to the
simulation experiments in Section 5.1. HHRL can always get smaller best values, average values and
variance. This means that HHRL can get better scheduling results, and it has a stable effect. Compared

IASC, 2023, vol.37, no.2 1605

with result1 and result2, the scheduling effect of each algorithm is improved. This shows that the
proposed method is effective.

From the experiment results in this section it can be concluded that, the proposed HHRL
algorithm get better results than the traditional scheduling algorithms. Experiments in cloudsim show
that HHRL can effectively reduce makespan and improve the stability of the scheduling scheme. This
improvement comes from the reward for the improvement of population diversity. The results of real
tasks show that makespan can be effectively improved after the task complexity is estimated, and the
experimental conclusion is similar to that in the simulation environment.

6 Conclusion

This work proposed a hyper-heuristic algorithm based on reinforcement learning (HHRL).
HHRL obtained reward value by makespan and population diversity. The action set of HHRL was
formed by four mata-heuristic algorithms-GA, ACO, PSO, and F-PSO. By rewarding the decrease of
makespan and improving population diversity, HHRL kept the population diversity and got a better
scheduling scheme. This work also proposed a task computational complexity estimation method
in a cloud environment by linear regression to reduce task complexity estimation error. Firstly, we
carried out experiments from 500 to 5000 tasks in Cloudsim. The results of 30 times executed of
each algorithm showed that HHRL could get better average results and optimal results than other
algorithms. This result also showed that the variance of HHRL was the smallest, which indicated that
the solution effect of HHRL was the most stable. By analyzing population diversity, we found that
HHRL can effectively maintain population diversity by rewarding the improvement of population
diversity. Simultaneously, the relationship between the selected frequency of LLH and the population
diversity was also explained. On the other hand, the task complexity estimation method proposed in
this work was verified to be effective. Experiments show that after the estimation of this method, the
effects of each scheduling algorithms are significantly improved.

In the future, we plan to study a hyper-heuristic scheduling algorithm that optimizes multi-
objective such as load balancing, energy consumption, and user expenditure in a cloud environment.
We also plan to implement another HHRL version that can schedule workflow. At the same time, we
are also committed to research a method to achieve synchronous fitting of various task computational
complexity in the iterative process of the scheduling algorithm.

Acknowledgement: No further acknowledgments to provide than those already listed in the authors’
section. In addition, the authors thank the anonymous reviewers for providing valuable comments to
improve this paper.

Funding Statement: This work was supported in part by the National Key R & D Program of China
under Grant 2017YFB1302400, the Jinan “20 New Colleges and Universities” Funded Scientific
Research Leader Studio under Grant 2021GXRC079, the Major Agricultural Applied Technological
Innovation Projects of Shandong Province under Grant SD2019NJ014, the Shandong Natural Science
Foundation under Grant ZR2019MF064, and the Beijing Advanced Innovation Center for Intelligent
Robots and Systems under Grant 2019IRS19.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

1606 IASC, 2023, vol.37, no.2

References
[1] M. Mishra, A. Das, P. Kulkarni and A. Sahoo, “A dynamic resource management using virtual machine

migrations,” IEEE Communications Magazine, vol. 50, no. 9, pp. 34–40, 2012.
[2] I. Mavridis and H. Karatza, “Combining containers and virtual machines to enhance isolation and extend

functionality on cloud computing,” Future Generation Computer Systems, vol. 94, no. 1, pp. 674–696, 2019.
[3] F. D. Prieta, S. Rodríguez, J. Bajo and J. M. Corchado, “A multiagent system for resource distribution

into a Cloud Computing environment,” in Int. Conf. on Practical Applications of Agents and Multi-Agent
Systems, Berlin, Heidelberg, Springer, vol. 1, pp. 37–48, 2013.

[4] N. M. Donnell, E. Howley and J. Duggan, “Dynamic virtual machine consolidation using a multi-agent
system to optimise energy efficiency in cloud computing,” Future Generation Computer Systems, vol. 108,
no. 1, pp. 288–301, 2020.

[5] B. Radunovic and J. Y. LeBoudec, “A unified framework for max-min and min-max fairness with
applications,” IEEE/ACM Transactions on Networking, vol. 15, no. 5, pp. 1073–1083, 2007.

[6] M. Patidar, R. Bhardwaj and S. Choudhary, “The study of linear programming approach for optimal
scheduling of work in a corporation with different models,” Materials Today: Proceedings, vol. 29, pp.
661–667, 2020.

[7] A. Javadpour and G. Wang, “cTMvSDN: Improving resource management using combination of Markov-
process and TDMA in software-defined networking,” The Journal of Supercomputing, vol. 1, pp. 1–23,
2022.

[8] M. Kumar, S. C. Sharma, A. Goel and S. P. Singh, “A comprehensive survey for scheduling techniques in
cloud computing,” Journal of Network and Computer Applications, vol. 143, no. 2, pp. 1–33, 2019.

[9] K. Chen, F. Zhou and A. Liu, “Chaotic dynamic weight particle swarm optimization for numerical function
optimization,” Knowledge-Based Systems, vol. 139, no. 12, pp. 23–40, 2018.

[10] D. Johann and P. Siarry, “Continuous interacting ant colony algorithm based on dense heterarchy,” Future
Generation Computer Systems, vol. 20, no. 5, pp. 841–856, 2004.

[11] D. Zouache, Y. O. Arby, F. Nouioua and F. B. Abdelaziz, “Multi-objective chicken swarm optimization: A
novel algorithm for solving multi-objective optimization problems,” Computers & Industrial Engineering,
vol. 129, pp. 377–391, 2019.

[12] A. Gupta, H. S. Bhadauria and A. Singh, “RETRACTED ARTICLE: Load balancing based hyper
heuristic algorithm for cloud task scheduling,” Journal of Ambient Intelligence and Humanized Computing,
vol. 6, no. 12, pp. 5845–5852, 2021.

[13] C. W. Tsai, W. C. Huang, M. H. Chiang, M. C. C.hiang and C. S. Yang, “A hyper-heuristic scheduling
algorithm for cloud,” IEEE Transactions on Cloud Computing, vol. 2, no. 2, pp. 236–250, 2014.

[14] M. A. Rodriguez and R. Buyya, “Deadline based resource provisioning and scheduling algorithm for
scientific workflows on clouds,” IEEE Transactions on Cloud Computing, vol. 2, no. 2, pp. 222–235, 2014.

[15] H. Liu, A. Abraham and A. E. Hassanien, “Scheduling jobs on computational grids using a fuzzy particle
swarm optimization algorithm,” Future Generation Computer Systems, vol. 26, no. 8, pp. 1336–1343, 2010.

[16] C. Jatoth, G. R. Gangadharan and R. Buyya, “Optimal fitness aware cloud service composition using an
adaptive genotypes evolution based genetic algorithm,” Future Generation Computer Systems, vol. 94, no. 4,
pp. 185–198, 2019.

[17] C. Jatoth, G. R. Gangadharan and R. Buyya, “An improved ant colony optimization algorithm based on
hybrid strategies for scheduling problem,” IEEE Access, vol. 7, pp. 20281–20292, 2019.

[18] X. Zhu, L. T. Yang, H. Chen, J. Wang, S. Yin et al., “Real-time tasks oriented energy-aware scheduling in
virtualized clouds,” IEEE Transactions on Cloud Computing, vol. 2, no. 2, pp. 168–180, 2014.

[19] A. Javadpour, A. K. Sangaiah, P. Pinto, F. Jafari, W. Zhang et al., “An energy-optimized embedded load
balancing using DVFS computing in cloud data centers,” Computer Communications, vol. 197, no. 1, pp.
255–266, 2023.

[20] A. Javadpour, A. H. Nafei, F. Ja’fari, P. Pinto, W. Zhang et al., “An intelligent energy-efficient approach
for managing IoE tasks in cloud platforms,” Journal of Ambient Intelligence and Humanized Computing,
vol. 1, no. 1, pp. 1–7, 2022.

IASC, 2023, vol.37, no.2 1607

[21] E. D. Coninck, T. Verbelen, B. Vankeirsbilck, S. Bohez, P. Simoens et al., “Dynamic auto-scaling and
scheduling of deadline constrained service workloads on IaaS clouds,” Journal of Systems and Software,
vol. 118, no. 1, pp. 101–114, 2014.

[22] Y. Hao, L. Wang and M. Zheng, “An adaptive algorithm for scheduling parallel jobs in meteorological
Cloud,” Knowledge-Based Systems, vol. 98, no. 1, pp. 226–240, 2016.

[23] D. Yu, Y. Ying, L. Zhang, C. Liu, X. Sun et al., “Balanced scheduling of distributed workflow tasks based
on clustering,” Knowledge-Based Systems, vol. 199, no. 1, pp. 105930, 2020.

[24] J. Zhu, X. Li, R. Ruiz, X. Xu and Y. Zhang, “Scheduling stochastic multi-stage jobs on elastic computing
services in hybrid clouds,” in 2016 IEEE Int. Conf. on Web Services (ICWS), San Francisco, CA, USA,
IEEE, pp. 1–10, 2016.

[25] D. Chaudhary and B. Kumar, “Cost optimized hybrid genetic-gravitational search algorithm for load
scheduling in cloud computing,” Applied Soft Computing, vol. 83, no. 1, pp. 105627, 2019.

[26] T. P. Jacob and K. Pradeep, “A multi-objective optimal task scheduling in cloud environment using cuckoo
particle swarm optimization,” Wireless Personal Communications, vol. 109, no. 1, pp. 315–331, 2019.

[27] Y. Gu and C. Budati, “Energy-aware workflow scheduling and optimization in clouds using bat algorithm,”
Future Generation Computer Systems, vol. 113, no. 9, pp. 106–112, 2020.

[28] Y. Xie, Y. Zhu, Y. Wang, Y. Cheng, R. Xu et al., “A novel directional and non-local-convergent particle
swarm optimization based workflow scheduling in cloud-edge environment,” Future Generation Computer
Systems, vol. 97, no. 1, pp. 361–378, 2019.

[29] N. Mansouri, B. M. Zade and M. M. Javidi, “Hybrid task scheduling strategy for cloud computing by
modified particle swarm optimization and fuzzy theory,” Computers & Industrial Engineering, vol. 130,
no. 1, pp. 597–633, 2019.

[30] Y. Zhang, Y. Liu, J. Zhou, J. Sun and K. Li, “Slow-movement particle swarm optimization algorithms for
scheduling security-critical tasks in resource-limited mobile edge computing,” Future Generation Computer
Systems, vol. 112, no. 1, pp. 148–161, 2020.

[31] Z. Miao, P. Yong, Y. Mei, Y. Quanjun and X. Xu, “A discrete PSO-based static load balancing algorithm
for distributed simulations in a cloud environment,” Future Generation Computer Systems, vol. 115, no. 1,
pp. 497–516, 2021.

[32] P. Salza and F. Ferrucci, “Speed up genetic algorithms in the cloud using software containers,” Future
Generation Computer Systems, vol. 92, no. 1, pp. 276–289, 2019.

[33] Y. Xiong, S. Huang, M. Wu, J. She and K. Jiang, “A Johnson’s-rule-based genetic algorithm for two-stage-
task scheduling problem in data-centers of cloud computing,” IEEE Transactions on Cloud Computing,
vol. 7, no. 3, pp. 597–610, 2017.

[34] B. Keshanchi, A. Souri and N. J. Navimipour, “An improved genetic algorithm for task scheduling in
the cloud environments using the priority queues: Formal verification, simulation, and statistical testing,”
Journal of Systems and Software, vol. 124, no. 1, pp. 1–21, 2017.

[35] A. Ragmani, A. Elomri, N. Abghour, K. Moussaid and M. Rida, “FACO: A hybrid fuzzy ant colony
optimization algorithm for virtual machine scheduling in high-performance cloud computing,” Journal of
Ambient Intelligence and Humanized Computing, vol. 11, no. 10, pp. 3975–3987, 2020.

[36] Y. Gao, H. Guan, Z. Qi, Y. Hou and L. Liu, “A multi-objective ant colony system algorithm for virtual
machine placement in cloud computing,” Journal of Computer and System Sciences, vol. 79, no. 8, pp. 1230–
1242, 2013.

[37] A. M. Kumar and M. Venkatesan, “Multi-objective task scheduling using hybrid genetic-ant colony
optimization algorithm in cloud environment,”Wireless Personal Communications, vol. 107, no. 4, pp. 1835–
1848, 2019.

[38] M. A. Elaziz, S. Xiong, K. Jayasena and L. Li, “Task scheduling in cloud computing based on hybrid moth
search algorithm and differential evolution,” Knowledge-Based Systems, vol. 169, no. 1, pp. 39–52, 2019.

[39] X. Ye, S. Liu, Y. Yin and Y. Jin, “User-oriented many-objective cloud workflow scheduling based on an
improved knee point driven evolutionary algorithm,” Knowledge-Based Systems, vol. 135, no. 1, pp. 113–
124, 2017.

1608 IASC, 2023, vol.37, no.2

[40] J. Lin, L. Zhu and K. Gao, “A genetic programming hyper-heuristic approach for the multi-skill resource
constrained project scheduling problem,” Expert Systems with Applications, vol. 140, pp. 112915, 2020.

[41] E. N. Alkhanak and S. P. Lee, “A hyper-heuristic cost optimisation approach for scientific workflow
scheduling in cloud computing,” Future Generation Computer Systems, vol. 86, no. Suppl. C, pp. 480–506,
2018.

[42] A. Panneerselvam and S. Bhuvaneswari, “Hyper heuristic MapReduce workflow scheduling in cloud,” in
2018 2nd Int. Conf. on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), Palladam, India,
IEEE, pp. 1–9, 2018.

[43] A. Pahlevan, X. Qu, M. Zapater and D. Atienza, “Integrating heuristic and machine-learning methods
for efficient virtual machine allocation in data centers,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 37, no. 8, pp. 1667–1680, 2017.

[44] N. M. Laboni, S. J. Safa, S. Sharmin, M. A. Razzaque, M. M. Rahman et al., “A hyper heuristic algorithm
for efficient resource allocation in 5G mobile edge clouds,” IEEE Transactions on Mobile Computing,
vol. 1, pp. 1–13, 2022.

[45] B. M. Zade, N. Mansouri and M. J. Mohammad, “A new hyper-heuristic based on ant lion optimizer and
Tabu search algorithm for replica management in cloud environment,” Artificial Intelligence Review, vol. 1,
pp. 1–111, 2022.

[46] I. Chana, “Bacterial foraging based hyper-heuristic for resource scheduling in grid computing,” Future
Generation Computer Systems, vol. 29, no. 3, pp. 751–762, 2013.

[47] G. Koulinas, L. Kotsikas and K. Anagnostopoulos, “A particle swarm optimization based hyper-heuristic
algorithm for the classic resource constrained project scheduling problem,” Information Sciences, vol. 277,
no. 1, pp. 680–693, 2014.

[48] M. A. Elaziz and S. Mirjalili, “A hyper-heuristic for improving the initial population of whale optimization
algorithm,” Knowledge-Based Systems, vol. 172, no. 1, pp. 42–63, 2019.

[49] W. Li, E. Özcan and R. John, “A learning automata-based multiobjective hyper-heuristic,” IEEE Transac-
tions on Evolutionary Computation, vol. 23, no. 1, pp. 59–73, 2017.

[50] S. S. Choong, L. P. Wong and C. P. Lim, “Automatic design of hyper-heuristic based on reinforcement
learning,” Information Sciences, vol. 436, no. 1, pp. 89–107, 2018.

	Hyper-Heuristic Task Scheduling Algorithm Based on Reinforcement Learning in Cloud Computing
	1 Introduction
	2 Related Work
	3 Background and Problem Formalization
	4 The Proposed Approach
	5 Experiments and Discussion
	6 Conclusion
	References

