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Abstract: Developing a high-performance public key cryptosystem is crucial
for numerous modern security applications. The Elliptic Curve Cryptosystem
(ECC) has performance and resource-saving advantages compared to other
types of asymmetric ciphers. However, the sequential design implementation
for ECC does not satisfy the current applications’ performance requirements.
Therefore, several factors should be considered to boost the cryptosystem
performance, including the coordinate system, the scalar multiplication algo-
rithm, and the elliptic curve form. The tripling-oriented (3DIK) form is imple-
mented in this work due to its minimal computational complexity compared
to other elliptic curves forms. This experimental study explores the factors
playing an important role in ECC performance to determine the best combi-
nation that leads to developing high-speed ECC. The proposed cryptosystem
uses parallel software implementation to speed up ECC performance. To
our knowledge, previous studies have no similar software implementation for
3DIK ECC. Supported by using parallel design, projective coordinates, and
a fast scalar multiplication algorithm, the proposed 3DIK ECC improved the
speed of the encryption process compared with other counterparts and the
usual sequential implementation. The highest performance level for 3DIK
ECC was achieved when it was implemented using the Non-Adjacent Form
algorithm and homogenous projection. Compared to the costly hardware
implementations, the proposed software implementation is cost effective and
can be easily adapted to other environments. In addition, the power con-
sumption of the proposed ECC is analyzed and compared with other known
cryptosystems. thus, the current study presents a detailed overview of the
design and implementation of 3DIK ECC.
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1 Introduction

Elliptic curve cryptosystem (ECC) is a relatively new family of public key cryptosystems whose
security level depends on the difficulty of solving the discrete logarithm problem for elliptic curves
(EC). ECC is immune to many cryptanalysis attacks and can provide an equivalent level of security
to that of other types of public key cryptosystems using much shorter key sizes. This ECC feature
results in saving the time and resources required for cryptographic operations. Hence, ECC is attractive
for newly introduced security applications requiring high-performance crypto processors, such as
cryptocurrencies and multimedia applications [1].

However, the current implementation of ECC operations has several limitations that reduce its
utility for modern security applications. The significant drawbacks of the current ECC implementation
are the time consumption and high costs or resources-consumptions. These problems limit the ECC’s
ability to meet the requirements of modern security applications [2–5].

Many ECC implementations use the affine coordinates that require performing the modular
inversion operation. However, this operation consumes a longer time and causes an extra delay
for ECC point operations [2]. Additionally, the sequential design pattern adopted in most ECC
implementations increases the time delay for encryption and decryption processes [3]. Furthermore,
current ECC implementations use standard EC forms with relatively high computational complexity,
thus negatively impacting performance [4]. Moreover, hardware implementation for ECCs require
dedicated resources and might be expensive for many applications [5–7].

These problems hinder ECC from fulfilling the performance requirements for modern applica-
tions and make it an expensive option for applications with limited resources.

Many studies have attempted to solve the problem of the time-consuming inversion operation
using projective coordinate systems [2]. However, projective coordinates eliminate inversion oper-
ations, but they cause more multiplication operations, imposing limitations regarding ECC speed,
particularly when using sequential design patterns [3].

Researchers used inherited parallelism in ECC computations using parallel hardware design
patterns to implement cryptographic operations. This optimized the ECC performance level compared
to sequential design implementations [4,5]. However, such designs cost additional resources and
consume extra hardware components and computational power [4–6].

It should also be noted that most previous studies focused on the standard form of EC, which
has higher level of computational complexity, and may deepen the time delay problem. Conversely,
the newly introduced forms of EC with lower computational complexity have not been widely
investigated [7]. Therefore, using such forms of ECs can reduce the Galois Field (GF) calculations
required to perform ECC point operations. This makes them attractive and helpful in developing high-
speed ECCs.

National Institute of Standards and Technology (NIST) has recommended some EC forms that
have lower computational complexity, such as Montgomery and 3DIK curves [8].

Although few studies investigated the performance level of the different EC alternatives, most of
these works used the hardware implementations of ECC, which are considered expensive and requires
extra hardware resources precisely when adopting the parallel design patterns [9–11].

Software implementation for ECC has emerged as a cost effective solution, which can be
supported by parallel design implementation to boost cryptosystem performance [12,13].
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Recent studies have investigated parallel software implementations for relatively new forms of
ECs, such as the Montgomery curve, which achieved promising improvement on the performance level
[14]. Therefore, this motivates more studies to explore potential enhancements that could be achieved
on the speed (performance) of ECC using other EC forms, which have less computational complexity.

This study addresses significant research problems represented by the long-time delay and hence
low-performance level for ECC. Additionally, this study proposes an efficient, low-cost software
implementation for ECC to address the issue of costly resources required for hardware-based ECC.

The main aims of this research are to improve ECC cryptographic operations’ speed by solving
the time-delay-related issues and to develop an efficient, low-cost software-based ECC.

Therefore, to achieve the aims above, this study presents a parallel software implementation
for ECC using a new form called tripling-oriented (3DIK) EC. In addition to using parallel design
patterns, the factors affecting the performance, such as the projective coordinates and the scalar
multiplication algorithms are also explored. This study seeks to understand the best ECC design
and implementation choices and develop a high-performance cryptosystem that consumes the least
resources and computational power.

This article discusses, in great details, the development stages of the proposed high-speed 3DIK
ECC. The promising implementation results show that the proposed cryptosystem achieves high
performance.

The following section elaborates on the motivation behind the current research work.

2 Research Motivation

Many recently emerged applications, such as multimedia and wireless sensors, require a high-
performance and low-cost cryptosystem that can provide security services and satisfy performance and
resource constraints. Unfortunately, the current cryptosystems, including usual ECC implementations,
suffer from time delay and resource consumption issues and thus have limited ability to serve modern
applications.

Therefore, developing a high-performance and cost effective ECC has become an urgent and
pressing requirement for modern applications nowadays. Moreover, ECC is used for many purposes,
including digital signatures and key exchange, which are incorporated into many information security
systems and TLS protocols. Therefore, improving the performance and reducing the cost of ECC
will positively impact many modern applications. This motivated the current study and encourages
researchers to investigate several ways to enhance the performance of ECC.

The current research develops better understanding of the impact of the different factors affecting
the ECC performance, such as projective coordinate systems, scalar multiplication algorithms, and
the use of parallel design. This enables a tune-up of these significant factors to accomplish higher
performance and lead to the development of high-speed ECC.

3 Background

Since the development of EC cryptography in 1985, several EC forms have been proposed, one
of which is the tripling-oriented curve (3DIK) [15]. The 3DIK, is suitable for security applications
requiring high-speed due to its relatively low computational complexity compared to the standard EC
form. The 3DIK curve equation over the prime field GF (p) is defined as follows:
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y2 = x3 + 3a (x + 1)
2, where the value of ‘a’ is predefined, and a (4a − 9) �= 0, x, y, a are elements

of the finite field.

ECC is based on the EC discrete logarithm problem, which is considered more challenging to solve
than the various factorization and general discrete logarithm problems used in other cryptosystems.
Therefore, ECC can provide a comparable level of security with shorter key sizes. This feature
reduces storage and transmission requirements and considerably improves the performance of the
cryptosystem. The increased performance and the lower resource consumption represent the primary
benefits of ECC compared with other public key cryptosystems [1].

The EC can be defined using either a prime (GF(p)) or a binary (GF(2m)) finite field.

ECC comprises multiple layers of computations, as shown in Fig. 1. Note that the lower level of
computations includes finite field arithmetic, particularly modular addition, subtraction, multiplica-
tion, and division operations.

Figure 1: The elliptic curve cryptography hierarchy

However, the latter requires calculating the multiplicative inverse, which is the most time-
consuming operation. The basic building blocks for the upper level of computations are point doubling
and addition. The next level includes The scalar multiplication operation as depicted in Fig. 1. It
is considered the major operation in ECC encryption. Finally, ECC protocols represent the top of
the hierarchy and use the lower computational levels to perform cryptographic protocols such as key
exchange and digital signatures, among others [1,14–16].

The scalar multiplication algorithm performs either one or both point operations in each iteration.
The point addition operation adds two different points, G and Q to obtain another EC point, R.
The point addition can be calculated by computing the coordinates (x3, y3) of the resulting point, as
follows [1]:

G(x1, y1) + Q(x2, y2) = R(x3, y3), where x1 �= x2

The slope (M) = y2 − y1

x2 − x1

x3 = M2 − x1 − x2

y3 = M (x1 − x3) − y1
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Alternatively, the point doubling operation adds the point to itself (Q = G) and can be calculated
as follows [1]:

G(x1, y1) + G(x1, y1) = R(x3, y3), where x1 �= 0

The Tripling-oriented slope m = 3x2 + 6a (x + 1)

2y

x3 = M2 − 2x1

y3 = M (x1 − x3) − y1

It is worth noting that the EC form does not affect the point addition calculations because it does
not rely on the EC form. In contrast, point doubling calculation changes according to the EC form
and the use of coordinate systems since it requires deriving the slope equation from the EC equation
[3–5].

The points on an EC can be represented using different types of coordinate systems. The standard
coordinates are the affine coordinates P(x, y). Alternatively, projective coordinates can improve
the performance of ECC computations because of their ability to avoid time-consuming inversion
operations. It should be noted here that the use of certain projection system plays a vital role in
determining the complexity level of ECC computations and thus represents a significant factor that
should be considered when designing an efficient cryptosystem [1,3–7].

Three main algorithms were used to perform scalar multiplication: the Montgomery ladder, NAF,
and Binary left to right (LTR). Scalar multiplication algorithms vary in speed and security levels
[15–17]. Therefore, this study investigates their characteristics to determine the most efficient algo-
rithm for developing high-speed ECC.

Furthermore, using parallel design to implement ECC operations is another important factor
in improving cryptosystem performance [4–6,13]. This factor will also be considered in this study to
achieve the maximum gain in performance.

4 Literature Review

Many studies have been conducted to improve the performance of ECC. However, most previous
studies investigated the main elements that could improve the ECC performance, such as using a
specific EC form, projective coordinates, parallel and concurrent elliptic curve computations, and
efficient scalar multiplication techniques. These factors impact the ECC performance and should be
considered when developing a high-speed cryptosystem.

Conversely, some studies have focused on improving the security level of ECC from certain types
of attacks, such as simple time attacks (STA).

This section summarizes the most important studies that explored several ways to improve ECC’s
performance and security.

According to the infrastructure used to implement cryptographic computations, studies related to
ECC implementations can be categorized into hardware and software-based implementations.

Numerous studies on the hardware implementation of ECC exist, where some employed sequential
implementations while others used parallel hardware implementations to improve performance.
Researchers in [4] and [5] proposed several parallel hardware architectures for ECC point doubling
and addition, respectively. Interestingly, both used the projective coordinates to eliminate the modular
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inversion operation. Researchers also employed parallel hardware implementation to use the inherent
parallelism in ECC computations, which boosts the speed of ECC computations. The authors of
[10], using various projective coordinates, presented concurrent data flows for the tripling-oriented
(3DIK) ECC calculations over GF (P). Researchers have built an optimal parallel data flow that takes
advantage of the highest degree of parallelism. According to this study, the 3DIK curve is an efficient
choice for constructing a high-speed EC crypto-processor, particularly when used with appropriate
projection and parallel design. In [6], researchers explored the different parallel design choices for
Binary Edward ECC over GF(p), which led to considerable improvement in the performance, but
with consuming extra hardware resources. Similar studies were conducted in [9] and [18] to investigate
the impact of parallel hardware designs and projective coordinate factors on Montgomery and Edward
ECCs, respectively. It has been proven that using these two factors is vital in enhancing the ECC
performance. The Montgomery and 3DIK forms of EC perform better than others since they require
less finite field operations and better use of parallel design implementations.

Other studies that used parallel hardware implementations further implemented the upper level of
computations, represented by points doubling and addition, in parallel to optimize the performance
level. For example, in [19], researchers used a modified Right to Left (RL) binary algorithm to
implement point doubling and addition operations in parallel. In contrast, in [20], researchers used the
NAF algorithm for the same purpose. Although both studies successfully improved the performance
level, they require extra hardware resources.

The main disadvantage of hardware implementations is that they require separate crypto-
processor and hardware components, significantly increasing the cost of designing and implementing
the cryptosystem. Therefore, many security applications, particularly those with limited resources,
find hardware implementation of ECC to be an expensive and complicated choice, becoming even
worse when using parallel design patterns.

However, software implementation for ECC has lower development costs, is easier to upgrade,
and is more adaptable. The following is a brief overview of previous studies that used software
implementation to develop ECC.

The study published in [21] introduced a sequential software implementation of ECC using
the standard Weierstrass form over GF(p). This study investigated the use of projective and affine
coordinate systems. It has been shown that Jacobean and mixed coordinates can eliminate the costly
modular inversion operation. The study evaluated all EC operations on the different coordinate
systems using a 256-bit key size. Therefore, this study’s experimental results show that the time required
to perform scalar multiplication using projective coordinates require only 5.037 milliseconds. Another
study published in [6] presented a software implementation for ECC Diffie–Hellman, Encryption, and
Decryption using the GMP library, which supports large integers. The C software used Lopez–Dahab
coordinates to avoid the affine coordinates’ inversion.

In [22], researchers presented software implementation for ElGamal ECC over GF(P). The
study fully described the ElGamal ECC’s essential phases and used the NAF algorithm for scalar
multiplication. The general Weierstrass EC equation and affine coordinates for the point represen-
tation were adopted in this study. The authors in [17] suggested a new ECC that prevents the need
for the mapping procedure used in previous studies. This result was accomplished by constructing
the mapping technique using ASCII values for each character rather than a specific algorithm,
enabling the encryption process to run faster. The study published in [23] provided detailed software
implementation for ECC, which can encrypt and decrypt text and images. The main advantage of
such a study is that it presents significant technical details about developing software-based ECC.
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Therefore, this could be useful for researchers and organizations that work on manufacturing-efficient
cryptosystems.

The study in [24] explained how to create a software-based ECC using Java over the prime and
binary fields. The study used the SunEC provider to implement key pair creation, exchange, and
ECDSA. Another study [25] employed the Java Development Kit version 1.2 to develop the EC Digital
Signature Algorithm. Different key sizes were applied to test the proposed cryptosystem. Additionally,
the experimental results showed that generating 256-bit key pairs takes 13.6 milliseconds, while the
digital signing takes 13.7 milliseconds. However, the signature validation process takes a similar time
as the signing process. Other researchers examined the performance of Java implementation of EC
operations on both standard and finite fields [26]. According to this study, the Java BigInteger class
is more efficient for software implementations of EC operations in the GF(p) than GF(2n). The study
reported in [27] proposed a Java implementation of the EC with an integrated encryption scheme over
both finite fields. Another study [28] provided a performance evaluation of software implementations
ECC encryption and decryption over GF(p) than GF(2n) using different key sizes that vary between
228-bits and 1864-bits. The results showed that the GF(p) is faster than the GF(2n), making it better for
software implementations. In [29], the authors demonstrated a simple software ECC. The cryptosystem
encrypts data sent between client and server applications using Java socket programming. In another
technical, applied study published in [30], the authors developed an email encryption and decryption
system using ECC.

The authors of [31] surveyed the scalar multiplication algorithms commonly used to perform ECC
point operations. The execution time, the hamming weight of the scalar k, the number of doubling
operations, and the required precomputation were compared. It has been concluded that the addition
and subtraction method is more efficient than the binary scalar technique since it uses the (NAF),
which has less hamming weight. It is worth noting that NAF uses a table of pre-computed points; the
window technique is ideal for less limited memory. This study showed that the NAF algorithm has
the shortest execution time compared with other algorithms. Furthermore, the results proved that the
prime field is more efficient for software implementations than the binary field; scalar multiplication
over the prime field is faster.

Notably, a parallel software implementation for ECC operating in a multithreading environment
was introduced in [13]. The suggested parallel ECC uses Karatsuba and Montgomery algorithms
for point multiplication. Additionally, the GF(p) was faster than the GF(2n). Therefore, this study
supports the use of GF(p) for ECC software implementations.

It can be noted that most previous studies concentrated on sequential software implementation
for ECC computations and only investigated one scalar multiplication method per suggested ECC
implementation. Unfortunately, the sequential implementation limits the cryptosystem speed and
exposes it to the risk of side-channel attacks such as STA. Moreover, they considered the standard
form of EC and affine coordinates; however, it turns out that using other EC alternatives can lead
to lower computational complexity levels and hence better performance. Another disadvantage of
previous studies is that they rarely provide comprehensive performance analysis and testing for their
proposed ECC software implementation to demonstrate its efficiency.

Notably, a promising study has been recently published in [14]. The authors proposed parallel
software implementations for the Montgomery ECC over GF(p). Additionally, different factors were
used to improve the cryptosystem performance, such as a projective coordinate system and parallel
design. Furthermore, experimental results showed that using light EC forms such as Montgomery
and an efficient scalar multiplication algorithm could greatly improve ECC performance. This finding
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motivated this study to investigate other EC forms with low computations, particularly the recently
introduced tripling-oriented EC form.

This study explores the performance of 3DIK ECC when implemented with the support of a
projective coordinate system and parallel design. The Java multithreading technique was used to
realize parallel processing of EC computations. Projective coordinates were used to avoid the time
consumption modular division operation. Additionally, several scalar multiplication algorithms were
used to implement ECC operations. Finally, a comprehensive performance analysis was performed
using the different scalar algorithms.

This study aims to determine the best options for all factors affecting ECC performance and align
them to develop a high-speed cryptosystem.

The next sections provide the detailed design and software implementation for 3DIK ECC and
testing and performance analysis.

5 The Cryptosystem Design

This section presents the EC equations and methods used to implement the cryptosystem. Addi-
tionally, the parallel computational schemes, which are required for parallel software implementations,
are presented in this section.

The study used the recently introduced form of EC, the tripling-oriented curve (3DIK), presented
in [32]. As mentioned previously, this form of EC is selected since it has relatively low computational
complexity. Furthermore, EC point calculations are performed using projective coordinates instead of
the affine form to avoid the modular inversion operation. Three types of projective coordinates were
examined in this study, and finally, the one that gave the best performance was selected for developing
the proposed high-speed ECC.

This study employs the Java multithreading technique to implement ECC computations in
parallel by using the inherent parallelism in ECC computations to obtain higher performance levels.
Researchers examined the use of almost all possible parallel designs and eventually selected the one
that scored the best performance results.

This experimental study evaluates the ECC performance using the major scalar multiplication
algorithms: the binary method, the NAF algorithm, and the Montgomery ladder algorithm. The
results show that the cryptosystem performance varies significantly based on the used scalar multi-
plication algorithm.

The following section presents the calculations of the 3DIK point doubling and addition using
the three projection systems.

5.1 ECC Computations
This section introduces the reader to the ECC points doubling and addition computations

using projective coordinates. In [10], the 3DIK ECC computations were performed using projective
coordinates to improve the performance by avoiding the time-consuming inversion operation. Then,
the authors used hardware components to design and implement the encryption processes. This study
adopts a similar methodology to perform ECC computations using projective coordinates. However,
the current research investigates the parallel software implementation of ECC computations using the
multithreading technique.
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The tripling-oriented ECC point doubling computations with homogenous projection can be
performed using the following equations:

X3 = 2YZ
[ (

3X2 + 6aZ (X + Z)
)2 − 8XY2Z

]
(1)

Y3 = [ (
3X 2 + 6aZ (X + Z)

) ∗
[
12XY 2Z − (

3X 2 + 6aZ (X + Z)
)2

]
− 8Y 4Z2

]
(2)

Z3 = 8Y 3Z3 (3)

Point doubling computations using the Lopez–Dahap coordinates can be performed as follows:

X3 = Z
(
3X 2 + 6aZ (X + Z)

)2 − 8XY 2 (4)

Y3 = 2YZ
(
3X 2 + 6aZ (X + Z)

) ∗
[
12XY 2 − Z

(
3X 2 + 6aZ (X + Z)

)2
]

− 16Y 5 (5)

Z3 = 4Y 2Z (6)

Eventually, the Jacobean coordinate system uses the following equations to compute the tripling-
oriented point doubling operation:

X3 = (
3X 2 + 6aZ2

(
X + Z2

))2 − 8XY 2 (7)

Y3 = (
3X 2 + 6aZ2(X + Z2)

)∗
[
12XY 2 − (

3X 2 + 6aZ2
(
X + Z2

))2
]

− 8Y 4 (8)

Z3 = 2YZ (9)

It should be recalled here that point addition computations do not vary with the change in
EC form.

The following section presents the parallel computational designs for ECC point doubling and
addition.

5.2 Parallel Computational Designs
This section presents the parallel designs used to implement ECC computations.

Based on the experiments conducted here, the design with four parallel multiplication (PM)
operations achieves the least time delay for the 3DIK ECC point doubling with the three projections.

This study develops high-speed ECC and thus focuses on the parallel design that achieves the least
number of multiplication cycles since it requires less time to perform EC point computations.

The sequential ECC design was also implemented in this research to prove the possible improve-
ment in the performance level, which can be gained using the parallel design implementation.

Tables 1–3 present the modular arithmetic computations required to perform the tripling-oriented
ECC point doubling using the three projective coordinate systems. Table 1 presents the computations
required to calculate point doubling Eqs. (1)–(3) for a homogenous projection. The table shows the
levels of computations required to perform point doubling. The computation levels can be categorized
as multiplication or addition. Additionally, the table shows the parallel computations performed
at each level. The proposed computational scheme uses four parallel multiplications. Note that the
computations at a certain level cannot be performed until the results of the previous level are received.
For example, the modular multiplication (M12) at level 7 can only be performed after finalizing the
addition (A3) at level 6.
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Table 1: The computation levels for tripling-oriented point doubling using homogenous projection

Level number Type of computations level (multiplication\addition) Modular arithmetic
operations

1 Modular addition A1 = X + Z

2 Modular multiplication M1 = X 2

M2 = Y 2

M3 = Z2

M4 = XZ

3 Modular multiplication M5 = YZ
M6 = ZA1

M7 = M4M2

M8 = M2M2

4 Modular addition A2 = 3M1 + 6aM6

5 Modular multiplication M9 = A2A2

M10 = M3M8

M11 = M5M5

6 Modular addition A3 = M9 − 8M7

A4 = 12M7 − M9

7 Modular multiplication M12 = 2M5A3

M13 = A2A4

M14 = 8M11M5

8 Modular addition A5 = M13 − 8M10

Result : X3 = M12, Y3 = A5, Z3 = M14

Table 2: The computations levels for tripling-oriented point doubling using Lopez–Dahap

Level number Type of computations level (multiplication\addition) Modular arithmetic
operations

1 Modular addition A1 = X + Z
2 Modular multiplication M1 = X 2

M2 = Y 2

M3 = YZ
M4 = ZA1

3 Modular addition A2 = 3M1 + 6aM4

4 Modular multiplication M5 = XM2

M6 = 4M2Z
M7 = M2M2

M8 = A2A2

(Continued)
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Table 2: Continued
Level number Type of computations level (multiplication\addition) Modular arithmetic

operations

5 Modular multiplication M9 = M8Z
M10 = M3A2

M11 = YM7

6 Modular addition A3 = M9 − 8M5

A4 = 12M5 − M9

7 Modular multiplication M12 = M10A4

8 Modular addition A5 = 2M12 − 16M11

Result : X3 = A3, Y3 = A5, Z3 = M6

Table 3: The computation levels for tripling-oriented point doubling using Jacobean projection

Level number Type of computations level (multiplication\addition) Modular arithmetic
operations

1 Modular multiplication M1 = X 2

M2 = Y 2

M3 = Z2

M4 = 2YZ

2 Modular addition A1 = X + M3

3 Modular multiplication M5 = M3A1

M6 = XM2

M7 = M2M2

4 Modular addition A2 = 3M1 + 6aM5

5 Modular multiplication M8 = A2A2

6 Modular addition A3 = 12M6 − M8

A4 = M8 − 8M6

7 Modular multiplication M9 = A2A3

8 Modular addition A5 = M9 − 8M7

Result : X3 = A4, Y3 = A5, Z3 = M4

Similar computations for Lopez–Dahap Eqs. (4)–(5) and Jacobean Eqs. (7) and (8) are presented
in Tables 2 and 3, respectively.

To provide a deeper insight into the parallel implementation of ECC, this study introduces the
computational design schemes for ECC point operations that illustrate how the modular arithmetic
of the 3IDK curve is executed using the 4-PM design. Those designs are implemented later using the
Java multithreading to measure the actual performance level.
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Figs. 2–4 show the computational designs for the tripling-oriented ECC point doubling compu-
tations using the three projective coordinate systems.

Figure 2: Computational design for 3DIK point doubling using homogenous projection
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Figure 3: Computational design for 3DIK point doubling using Lopez–Dahap projection

It can be observed that the Jacobian projection presented in Fig. 4 requires less number of
multiplications; therefore, it may achieve the shortest time delay when using the sequential design
implementation. Conversely, the homogenous projection requires the largest number of finite field
multiplication operations, making it expensive for sequential implementation of the 3DIK ECC.

Note that parallel ECC designs depicted in Figs. 2–4 utilizes the inherited parallelism in ECC
computations by implementing multiple finite field operations in each level of computations in parallel.

It can be observed from the parallel computational designs presented in Figs. 2–4, that all
projections consume a similar number of multiplication cycles when implemented in parallel.

However, the software implementations for presented ECC designs should be performed carefully
to evaluate the performance more accurately and to determine the ECC design that achieves the highest
speed for cryptographic operations

The next section presents the software implementation procedures for the 3DIK ECC.
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Figure 4: Computational design for 3DIK point doubling using Jacobean projection

6 Equations Software Implementation

The software implementation of the proposed parallel and high-speed GF(P) ECC using the 3DIK
curve is illustrated in this section.

The Java BigInteger class was used for programming the prime field since it can support
calculations with much greater integers, often 256 bits, which cannot be performed using regular
primitive data types. Additionally, this class provides many useful built-in methods for implementing
finite field operations.
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In the proposed software implementation for ECC operations, two Java classes were created:
EllipticCurve and Point classes. The point class represents the EC point and has three attributes for
each projective point coordinates X, Y, and Z. and nine operations to set and get these attributes.

The EllipticCurve class has six attributes and ten operations, where the attributes handle the
domain parameters, which are the following:

i. a: the 3 DIK’s EC coefficient.
ii. P: the prime number (the modulus).

iii. n: the cyclic subgroup order.
iv. h: the cofactor, the number of cyclic subgroups in the EC group.
v. orderE: the EC order.

vi. basePoint: the generator point for ECC calculations.

The operations of the EllipticCurve class perform the EC computations and relevant crypto-
graphic operations, which are as follows:

i. EllipticCurve(): constructor to initialize the EC object and the domain parameters.
ii. PointDoubling() : perform the 3DIK point doubling computations.

iii. PointAddition(): perform the ECC point addition computations.
iv. scalarMultplication(): perform the point multiplication computations using the scalar multi-

plication algorithm.
v. Encryption(): return the cipher points after encryption.

vi. Decryption(): return the decipher points after decryption.
vii. selectPrivatekey(): return the private key randomly selected from a range starting from 3 to

the cyclic subgroup order n.
viii. computePublic_key (): return the public point key by invoking a call to the scalar multiplica-

tion method and passing the private key and the base point.
ix. + isInverse(): checks if the two points passed in the parameters are negation of each other.

The sequential implementation of ECC point operations is simple and only executes one operation
per level of computation. Conversely, the parallel software implementation of point operations reflects
the parallel designs provided in section V and performs the cryptosystem computations in parallel.
The Java multithreading technology was employed to perform multiple field operations in each
computation cycle for point doubling and point addition operations to accomplish this operation.
Therefore, the Java thread can execute many operations simultaneously and separately to reduce the
execution time for ECC point operations. Three key methods from the Java thread class were used as
follows:

i. Run (): This method is used to act on a Java thread.
ii. start (): This function is responsible for initiating the thread’s execution of the GF(p)

operation.
iii. join (): This function waits until it receives the results of a GF(p) operation within a particular

Java thread.

As mentioned earlier, more descriptions of the methods can be found in [14].

The proposed implementation assigns one Java thread for each finite field operation. A maximum
of four threads are executed at each computation level. Java codes are inserted within the Run method’s
bracket.
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At the next implementation stage, several threads are programmed at each level of computation
in ECC point operations. The proposed ECC designs in section V for point doubling and addition
operations illustrate the number of threads required per computation cycle.

In the proposed multithreaded implementation of ECC, each thread calls for the joint method
at the end of every computation level. Therefore, this ensures that the thread has completed its
computations before starting the next computation levels. Other ECC point computation levels were
performed in parallel using a similar approach. Overall, 16 Java threads were established to construct
the Tripling-Oriented point doubling using the Homogeneous Projective system.

This study examined the implementation of ECC scalar multiplication using three well-known
algorithms, which are as follows:

i. The Montgomery ladder,
ii. The NAF, and

iii. The Binary (RL) method.

The experimental investigation presented in this study determines the fastest algorithm that
achieves the shortest time delay for ECC encryption and decryption processes.

Experimental results confirmed expectations and found that the NAF algorithm requires execut-
ing fewer EC point operations. This result is expected since it has a lower hamming wait than the
other algorithms. Specifically, NAF algorithms require a few point addition operations because of
their signed binary representation. The LTR Binary method is faster than the Montgomery ladder
algorithm because it requires approximately half the number of point operations. In contrast, the
Montgomery algorithm requires executing both point doubling and addition operations for every
scanned binary bit in the scalar K.

Furthermore, the encryption and decryption functions are parts of the EllipticCurve class. Here,
the encryption function gathers the message and the other party’s public key as inputs and produces
a cipher array of points for each char in the message. Alternatively, the decryption function takes the
cipher array of points and the private key and reproduces the plaintext’s mapped points.

Complete details about the proposed ECC’s software implementation and source code are placed
in [33] They are made available so researchers can use them in future studies and improvement.

A client server application has been developed and made available on the web as a proof of concept.
The application allows testing of the encryption and decryption processes for the proposed 3DIK ECC.
Additionally, the application is supported with instructions and GUIs to guide the user through the
steps to be followed to perform encryption and decryption processes [33].

7 Results and Discussions
7.1 Experimental Environment

This experimental study used a Dell PC (Intel(R) Core(TM) i7-4770 CPU @ 3.40 GHz, 4 GB
RAM) and the Windows 7 operating system to test the proposed ECC implementations. Additionally,
the code used Java version 1.8 and the Eclipse IDE tool.

The Java command System.nanoTime was used to get the current time in Nanosecond (ns) to
calculate the running time for proposed ECC implementations and to obtain precise results. The code
segment below shows the technique for calculating the running time for any Java code segment. At the
beginning of the program execution, the startTime variable of type long is declared to hold the time. In
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contrast, the endTime is displayed at the end of the execution to save the system time after finalizing
a specific task. Finally, the duration is calculated by subtracting the start time from the end time.

7.2 Theoretical Speedup Using Amdahl’s Law
This section estimates the enhancement achieved in the ECC performance using the proposed

parallel design.

Programs that perform parallel processing have some instructions that need to be executed sequen-
tially, limiting the program’s speed. Therefore, adding more parallel processors or multithreading may
not result in the expected improvement level. Amdahl’s law can be used to predict the theoretical
speedup of the parallel execution when using multiple processors [34]. Amdahl’s law can be expressed as

S (n) = 1
S + P

n

where:

S (n) is the theoretical speedup.

S is the fraction of the program that is executed sequentially.

P is the fraction of the program that is performed in parallel.

n is the number of CPU threads.

The execution time of the different parts to perform the computations of Amdahl’s law, paralleliz-
able and non-parallelizable parts of ECC computations, should be analyzed. Furthermore, Tables 4
and 5 present the non-parallelizable and parallelizable parts of the 3DIK ECC operations, respectively.

Table 4: The execution time of the non-parallelizable part of 3DIK point operations

Projective coordinates system Point addition Point doubling

Homogenous 0.36 0.34
Lopez–Dahab 0.31 0.37
Jacobian 0.34 0.41

Table 5: The execution time of the parallelizable part of 3DIK point operations

Projective coordinates system Point addition TDIK point doubling

Homogenous 0.64 0.66
Lopez–Dahab 0.69 0.63
Jacobian 0.66 0.59

It can be observed from Tables 4 and 5 that the time consumed by the part of the computation that
can be implemented in parallel in Table 5 is greater than that of the non-parallelizable computations
in Table 4. Therefore, this motivates the use of parallel implementation since it will save considerable
time for those parallelizable computations.
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The execution time of the program with parallelization factors of N (N Threads) would be

T (N) = S + (1 − S)

N
where N is the number of threads required to implement the parallel computations.

Note that s is the execution time of the non-parallelizable part of the operation; N = 4 and 5
for point doubling and point addition, respectively. Table 6 shows the program’s execution time with
parallelization factors of N.

Table 6: The execution time of the program for n factors

Projective coordinates system Point addition Point doubling

HOMOGENOUS 0.48 0.50
LOPEZ–DAHAB 0.44 0.52
JACOBIAN 0.47 0.55

It can be observed from Table 6 that the use of parallel threads significantly decreases the time
delay for ECC point operations. The best-expected execution time for point doubling is achieved using
homogenous projection. In contrast, the least time delay for point addition is performed using Lopez–
Dahab coordinates.

Eventually, the theoretical speedup results, which can be calculated using the following formula,
are presented in Table 7.

S (n) = 1
T (N)

Table 7: The theoretical speedup results for 3DIK ECC operations

Projective coordinates system Point addition Point doubling

HOMOGENOUS 2.08 2
LOPEZ–DAHAB 2.27 1.92
JACOBIAN 2.12 1.81

It can be observed from the theoretical speed up results presented in Table 7 that the proposed
parallel implementation will speed up the EEC operations two times faster than the sequential
implementation. Consequently, it will improve the ECC performance. For example, the best-expected
speedup for point doubling, which is the dominant operation in ECC, is achieved using a homogenous
projection. In contrast, the Lopez–Dahab coordinates achieved the best speedup for the point addition
operation. This is expected since homogenous and Lopez–Dahab projections achieved the best parallel
execution time for point doubling and addition operations, respectively.

The following section presents the experimental performance results of the proposed 3DIK ECC.

7.3 Experimental Results
This section discusses the results and outcomes obtained from this study and compares several

implementations and algorithms for tripling-oriented ECC over GF (p) using different projective
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coordinates. Additionally, a performance comparison between the proposed high-speed ECC and
private key cryptosystems such as AES and 3DES, and comparisons with previous studies, are
presented to show how the proposed ECC can optimize the performance level and close the gap in
terms of speed between public and private key cryptosystems.

The performance of ECC encryption and decryption can be evaluated through the time delay of
the scalar multiplication process (ECSM). Here, three main methods were used to perform ECSM:
Binary (LTR), NAF, and Montgomery ladder algorithms.

Table 8 compares the time consumption for 3DIK point doubling when operated using sequential
and parallel designs for the three projective coordinate systems.

Table 8: A comparison between time delays of parallel and sequential ECC implementations

Projective coordinates system Sequential Parallel

HOMOGENOUS 443493 ns 217900 ns
LOPEZ–DAHAB 432079 ns 233794 ns
JACOBIAN 89223 ns 61393 ns

Table 8 reveals that the parallel ECC implementation shortens the time delay for the 3DIK point
doubling operation compared with the corresponding sequential implementation. This improvement is
because the parallel implementation can perform up to five parallel fields of arithmetic computations,
multiplications, and additions, per each cycle of computations. Knowing that the time consumed
by one cycle of computations is equivalent to the time of one field arithmetic operation, it can be
realized that parallel ECC implementation greatly enhances the performance level for point operations.
For example, the usual sequential ECC implementation requires 14 multiplication (M) operations to
perform a point doubling. In contrast, the parallel ECC implementation needs only five cycles of
computations, equivalent to the time consumed by 4-M operations. Furthermore, Table 10 shows that
the time consumed by the sequential ECC is 443493 nanoseconds, whereas it requires only 217900
nanoseconds for the corresponding parallel ECC. This supports the fact that parallel implementation
of ECC computations positively impacts the performance level.

Table 9 shows a performance improvement percentage for each parallel ECC operation with each
projection.

Table 9: The performance improvement percentage for proposed parallel ECC implementations

Projective coordinates system Speed up percentage

HOMOGENOUS 203%
LOPEZ–DAHAB 184%
JACOBIAN 145%

Table 9 shows that the best-reported improvement percentage is 203% and was achieved using
the homogenous projection. This indicates that using parallel ECC implementation for homogenous
projection is an effective solution when there is a need to speed up cryptographic operations. The
speedup percentage presented in Table 9 aims to understand better possible enhancements achieved
by the parallel ECC implementation for each type of projective coordinate.
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Table 10: A comparison between the time delays of ECC scalar multiplication algorithms using 3DIK
(Millisecond)

Scalar algorithms Sequential Parallel
HOMOGENOUS LOPEZ–

DAHAB
JACOBIAN HOMOGENOUS LOPEZ–

DAHAB
JACOBIAN

MONTGOMERY
LADDER

18.175 21.800 23.184 11.287 14.912 19.015

NAF 13.224 12.961 15.440 7.900 11.337 13.331
BINARY (LTR) 17.461 21.395 22.105 10.713 18.033 20.530

This study investigates the performance of the main scaler multiplication algorithms to determine
which one is the most efficient choice when a high-speed ECC is required. Table 10 presents a
comparison in terms of time delays between the sequential and parallel ECC implementations using
the three scalar multiplication algorithms; Montgomery ladder, NAF, and Binary (LRT) method.

It can be observed from Table 10 that the NAF algorithm achieved the least time consump-
tion (7.900 ms) for 3DIK ECC encryption when applied using a parallel (multithreaded) design
and homogenous projection. Furthermore, the NAF algorithm achieved the shortest time delay
(12.961 ms) for the sequential ECC implementation when used with Lopez–Dahab coordinates. It
should be noted here that the NAF algorithm has a low humming wait, which means that NAF requires
performing fewer point operations, particularly point addition, to compute the outputs of ECC scalar
multiplication compared with other algorithms. Accordingly, this is the main reason for its improved
performance level.

Regarding the performance level, the Binary (LTR) and Montgomery ladder algorithms achieved
second and third places. Note that LRT requires less number of point addition operations compared
to the Montgomery ladder method, and thus it achieved a shorter time delay for scalar multiplication.

Table 11 compares with the previously published studies to prove the accomplished improvement
in the performance level of ECC. Therefore, only software implementations of ECC are considered
to make reasonable and accurate comparisons. It should be stated here that there are insufficient
published studies that present detailed performance analyses for software implementation of ECC,
especially for the newly introduced curves.

Table 11: Comparison with other research works

RESEARCH WORK TIME DELAY

Proposed ECC implementation using NAF
algorithm

Parallel implementation Sequential
implementation

7.9 ms 12.961 ms

[14] (khatib et al.) 8.009 ms
[23] (Kolhekar et al.) 50.68153 ms
[26] (Aung et al.) 3770 ms
[31] (Reyes et al.) 556.51 ms
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Table 11 shows the time delay of the encryption operations for the recently developed software
implementations of ECC. Additionally, it can be observed that the performance of the proposed par-
allel cryptosystem implementation for the tripling-oriented curve overcomes the other counterparts.

The significant factors that played an essential role in optimizing the performance level are the
parallel multithreaded implementation, the application of projective coordinates, the use of an EC
form with low computational complexity, and final implementation of scalar multiplication using the
fast NAF algorithm. All these factors are adopted in the proposed ECC implementation, making it
an efficient solution for applications that need high-speed ECC.

Fig. 5 shows the results of the running time of all scalar multiplication algorithms on the tripling-
oriented curve using sequential and parallel implementations. The results indicate that NAF with the
parallel implementation and the use of homologous projection takes the least time compared to the
other implementations. Conversely, the sequential ECC implementation using the Montgomery ladder
and Jacobin projection consumes the most extended (worst) time delay.

Figure 5: The time-delay for ECSM algorithms using 3DIK curve

Fig. 6 shows a comparison regarding time delays (in milliseconds) between the symmetric and
Public Key cryptosystems. This comparison highlights the improvement that can be achieved using the
proposed cryptosystem concerning minimizing the difference in the time delay between the two types of
cryptoalgorithms. It can be observed from the results presented in Fig. 6 that parallel implementation
significantly improves the 3DIK ECC performance compared with the sequential implementation.
Additionally, it reduces the time delay difference between the EC cryptosystem and AES. However,
the AES’s performance still overcomes the parallel 3DIK ECC, which is expected since symmetric
ciphers are generally faster than asymmetric ciphers Therefore, to provide a better insight into the
resource consumption of the proposed ECCs, the below the charts depicted in Figs. 7 and 8 show a
comparison based on CPU usage and memory consumption between the AES, the sequential, and the
parallel implementation of a homogeneous tripling-oriented ECC.
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Figure 6: A comparison between symmetric and public-key cryptosystems

Figure 7: A comparison based on CPU utilization between symmetric and public-key cryptosystems

Figure 8: A comparison in terms of memory consumption between AES and proposed public-key
cryptosystems
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8 Conclusion

This study presents in great detail, the main development stages of a high-speed EC cryptosystem
that has become a pressing requirement for modern security applications. Therefore, to achieve the
desired improvement, several factors affecting the ECC performance were explored, including the use
of several projective coordinate systems, lightweight form of EC, fast algorithms to implement the
scalar multiplication, and the parallel software implementation of ECC operations. The experimental
results showed that the performance of the proposed multithreaded parallel software implementation
for projective 3DIK ECC overcomes other sequential ECC implementations. Moreover, results showed
that using the NAF algorithm and homogenous coordinates with the 4-PM design achieves the
highest performance level. These results are augmented by the fact that parallel implementation can
considerably reduce the time delay for ECC computations. Additionally, the tripling-oriented EC form
has less computational complexity. Furthermore, the NAF algorithm has a relatively low hamming
weight compared with other scalar multiplication methods. Moreover, projective coordinates’ use also
reduce the time complexity by avoiding the costly inversion operation.

Compared to previous hardware implementations, the proposed software-based cryptosystem
does not require dedicated hardware; thus, it needs fewer resources. It is also considered more flexible
and can be easily integrated into other systems.

As a future study direction, researchers may investigate using newly emerged types of projective
coordinate systems, such as extended Jacobean coordinates, which may lead to lower complexity
levels for ECC point operations and better performance. Additionally, using state-of-the-art hardware
multipliers and adders along with parallel design may play a significant role in optimizing the
performance level of ECC.
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