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Abstract: The accurate prediction of energy consumption has effective role
in decision making and risk management for individuals and governments.
Meanwhile, the accurate prediction can be realized using the recent advances
in machine learning and predictive models. This research proposes a novel
approach for energy consumption forecasting based on a new optimization
algorithm and a new forecasting model consisting of a set of long short-
term memory (LSTM) units. The proposed optimization algorithm is used to
optimize the parameters of the LSTM-based model to boost its forecasting
accuracy. This optimization algorithm is based on the recently emerged
dipper-throated optimization (DTO) and stochastic fractal search (SFS) algo-
rithm and is referred to as dynamic DTOSFS. To prove the effectiveness and
superiority of the proposed approach, five standard benchmark algorithms,
namely, stochastic fractal search (SFS), dipper throated optimization (DTO),
whale optimization algorithm (WOA), particle swarm optimization (PSO),
and grey wolf optimization (GWO), are used to optimize the parameters of the
LSTM-based model, and the results are compared with that of the proposed
approach. Experimental results show that the proposed DDTOSFS + LSTM
can accurately forecast the energy consumption with root mean square error
RMSE of 0.00013, which is the best among the recorded results of the
other methods. In addition, statistical experiments are conducted to prove
the statistical difference of the proposed model. The results of these tests
confirmed the expected outcomes.
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1 Introduction

The consumption of energy is increased over time and thus increases the consumption of fossil
fuels, which might lead to the destruction of our ecosystem irreversibly. Therefore, we need to find
efficient and more innovative technological methods for decreasing energy consumption in all sectors
to protect our environment and ensure future energy supply. Furthermore, these technologies may
assist in making more intelligent decisions about the energy consumption of all types of equipment
more effectively.

The development of smart households is a cost-effective approach that can help in saving energy.
Smart households are usually based on a set of relays, controllers, sensors, and meters, in addition
to a control system to manage the full operation and interaction between them. The main goal of a
smart household is to collect relevant information about the environment and behavior of residents
along with their habits, to make efficient decisions regarding the reduction of energy consumption.
A smart household can learn the routines and lifestyles of its residents using machine learning
techniques, allowing activities and operations to be automated. Based on the absence and presence
of residents, temperature, and light, for example, can be automatically regulated. In addition, the
systems of smart households can be connected with switchboards and other traditional systems to
optimize energy consumption [1]. For linking virtual and physical devices in a smart household to
the Internet, the Internet of Things (IoT) can be utilized. The main advantage of IoT is that it enables
users to automate the functioning of their devices, collect information and remotely manage them. The
scales of applicability of IoT are various, starting from simple appliances, such as washing machines
and refrigerators in a household, on a small scale, to the transportation system of a city in complex
infrastructure, on a large scale.

A significant reduction of environmental effects due to saving can be achieved by predicting the
potential energy consumption of a household [2–4]. Consequently, a lot of time and effort has been
invested in developing solutions to energy consumption optimization in a smart household. The most
essential of these solutions is to use the least amount of energy possible while retaining customer
satisfaction [5]. Several machine learning (ML) techniques for energy prediction of appliances in smart
households have been suggested for this purpose [6,7]. Traditional machine learning methods such as
super vector machines, k-nearest neighbor, neural networks, multi-layer perceptron, decision trees,
deep learning, and ensemble approaches are extensively used to provide efficient solutions to this
problem of accurate energy consumption prediction.

In this paper, a novel approach is proposed for predicting energy consumption using recent
advances in machine learning. The prediction of the energy consumption is performed using a new
LSTM-based model. To improve the performance of the proposed LSTM-based model, we developed
a new optimization algorithm based on the DTO and SFS optimization algorithms to adjust the
parameters of the LSTM-based model. To show the effectiveness of the proposed approach, we
employed a publicly available dataset that contains 121273 measurements gathered over ten years
in the United States. The experiments based on the given dataset show that the proposed approach
outperforms the other forecasting approaches considered in this work.

The following organization is followed in presenting the contents of this work. The relevant related
works are presented in Section 2. The proposed methodology for energy consumption is explained in
Section 3. The results of the conducted experiments are discussed in Section 4. The conclusion is then
presented in Section 5.
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2 Related Works

In recent research, a variety of techniques to energy consumption prediction have been developed,
with the goal of developing effective energy consumption prediction systems to enhance energy savings
and lessen environmental consequences. Most of these methods start with historical energy usage
time series data and use machine learning techniques to create a forecast model. Authors in [6] used
artificial neural network (ANN), linear regression (LR), and decision tree (DT) to forecast energy
consumption in cottages, dwellings, and government buildings. They also looked at the impact of the
number of people, family size, building time, house style, and electrical equipment. Summer and winter
results were obtained. In comparison to ANN and LR, their findings demonstrate that DT has higher
accuracy.

In the same way, the authors in [8] present three models for predicting energy consumption based
on linear regression multiple layers (LRML) and simple linear regression (SLR). They also took into
account three distinct scenarios. The training dataset for energy consumption was divided into three
groups: annually, daily, and hourly peak hours. In comparison to the LRML, their findings reveal that
the SLR-based algorithm is better at forecasting yearly and hourly-based forecasts.

In [9], the authors suggested using a graphical energy consumption prediction model. They target
figuring out how energy consumption is related to human behaviors and routines, specifically the rate
and duration of use of electronic household devices. Temperature differences between the outdoor and
indoor environments and the energy required utilities such as heating are among the model factors.

The study’s objective was to foretell energy usage patterns for the coming week and month.
The extreme learning machine (ELM), the adaptive neuro-fuzzy inference system (ANFIS), and the
ANN are usually introduced as methods for predicting residential energy usage. In addition, they
experimented with a wide range of membership functions, both in terms of quantity and variety,
to determine what made for the most effective ANFIS architecture. They have also tried out their
method with different ANN architectures and levels of hidden complexity. In [10], researchers report
the success of using a recurrent neural network trained on hourly energy consumption data to predict
the cooling and heating energy needs of a building based on the current weather and the present time.

For estimating the yearly energy consumption of households, authors in [11] used SVM, general
regression neural network (GRNN), radial basis function neural network (RBFNN), and backprop-
agation ANN. These models were developed using real-world data from 59 households and tested on
nine others. In comparison to other models, their findings reveal that GRNN and SVM are better
suited to this problem. However, a test of all approaches revealed that SVM predicted the potential
consumption with more accuracy and was superior to the others.

The authors used SVM and MLP in [12] to solve the problem of predicting energy consumption.
In addition, they improved the predictions of district consumption by grouping households according
to their consumption patterns. Moreover, they illustrated how the normalized root mean squared error
diminishes as the number of clients increases in an empirical plot. Up to 782 households are included
in this research. SVM was also used to forecast monthly energy consumption in tropical regions by
the authors of [13]. According to their findings based on three years of power usage data, SVM has a
strong prediction performance.

The authors in [14] used clustering-based Short-Term Load prediction. The prediction is carried
out for the next day’s 48 half-hourly loads. The daily average load of all training and testing patterns
is determined for each day, and the patterns are grouped using a threshold value between the testing
pattern’s daily average load and the training pattern’s daily average load. Their findings reveal that
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the SVM clustering-based strategy is more accurate than the results produced without clustering the
input patterns. The SVM outcome for predicting was better than the Auto Regressive modeling for
the same sort of forecasting, according to the authors in [15]. SVM had a root means square error
(RMSE) of 0.0215 while testing data, whereas LR had an RMSE of 0.0376. The research revealed that
the prediction was more accurate since the RMSE was lower.

Deep learning is a very appealing alternative for longer-term predictions because it can represent
expressive functions through numerous layers of abstraction [16]. In [17], the authors used a deep
recurrent neural network to predict the energy consumption needed for heating in a commercial
building in the United States. They looked at the deep model’s performance across a horizon of long-
to-medium-term prediction.

3 The Proposed Methodology

This section discusses the overall methodology proposed to forecast energy consumption. In
addition, the proposed optimization algorithm is explained.

3.1 General Scheme
The study’s overarching design is shown in Fig. 1. After preparing and preprocessing the dataset,

six optimization algorithms are employed to optimize the parameters of a new LSTM-based model
to improve the prediction accuracy of the energy consumption. These optimization algorithms
include the proposed hybrid optimization algorithm (dynamic DTO and SFS algorithms and is called
DDTOSFS), the standard DTO algorithm, the standard SFS algorithm, the standard particle swarm
optimization (PSO) algorithm, the standard grey wolf optimization (GWO) algorithm, and the stan-
dard whale optimization algorithm (WOA). The optimized LSTM models are: DDTOSFS + LSTM,
PSO + LSTM, DTO + LSTM, SFS + LSTM, GWO + LSTM, and WOA + LSTM). The forecasting
of energy consumption is made in terms of these optimized models, and the accuracy of those
predictions is measured using statistical metrics.

Figure 1: The overall steps of the approach proposed for forecasting energy consumption
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3.2 Long Short-Term Memory (LSTM)
The LSTM model is an enhancement of the traditional neural network model that gained the

capability of solving a variety of problems. Long-term memory retention is one of LSTM’s key
advantages that makes it suitable for modeling temporal dependencies and time sequence predictions,
such as the case of IoT energy consumption prediction. Fig. 2 depicts the structure of the proposed
energy consumption prediction model based on LSTM units. Each LSTM unit consists of three gates:
output o, forget f , and input i. The cell state is referred to as c. The information flow in this model
is usually controlled by the three gates [18]. The input at time t, is denoted by X t. The output of the
hidden layer is ht, and its previous output is denoted by ht−1. The cell input and output are referred to
as c̃t, ct, respectively, and the previous state is denoted by ct−1. The measurement of ct and ht can be
performed by calculating the following equations first.

it = σ
(
Wi X t + Uiht−1 + bi

)
(1)

f t = σ
(
Wf X t + Uf ht−1 + bf

)
(2)

ot = σ
(
Wo X t + Uoht−1 + bo

)
(3)

c̃t = tanh
(
Wc X t + Ucht−1 + bc

)
(4)

where Wi, Wf , and Wo refer to matrices of weights used to connect X t with the input cell and the three
gates. On the other hand, Ui, Uf , who are matrices of weights used to connect ht−1 with the input cell
and the three gates. The bias terms are denoted by bi, bf , bo, and bc, tanh and σ refer to the tangent
and sigmoid functions, respectively. Moreover, the measurement of the cell output state is calculated
as follows.

ct = it � c̃t + f t � ct−1 (5)

The final output of the LSTM cell is measured using the following equation.

ht = ot � tanh tanh
(
ct
)

(6)

Figure 2: The structure of the proposed LSTM-based forecasting model
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3.3 Dipper Throated Optimization (DTO)
The DTO algorithm assumes that there are swimming and flying folks of birds looking for food.

The ability of these birds to find food depends of their locations and speed while search for food. The
following matrices are used to depict the birds’ locations (L) and speeds (S).

L =

⎡⎢⎢⎢⎢⎣
L1,1 L1,2 L1,3 . . . L1,d

L2,1 L2,2 L2,3 . . . L2,d

L3,1 L3,2 L3,3 . . . L3,d

. . . . . . . . . . . . . . .

Lm,1 Lm,2 Lm,3 . . . Lm,d

⎤⎥⎥⎥⎥⎦ (7)

S =

⎡⎢⎢⎢⎢⎣
S1,1 S1,2 S1,3 . . . S1,d

S2,1 S2,2 S2,3 . . . S2,d

S3,1 S3,2 S3,3 . . . S3,d

. . . . . . . . . . . . . . .

Sm,1 Sm,2 Sm,3 . . . Sm,d

⎤⎥⎥⎥⎥⎦ (8)

where Li,j refers to the ith bird in the jth dimension for i C1, 2, 3, . . . , m and j C1, 2, 3, . . . , d, and its
speed is indicated by Si,j for the jth dimension. For each bird, the following matrix represents the values
of the fitness functions h = h1, h2, h3, . . . , hn.

h =

⎡⎢⎢⎢⎢⎣
h1

(
L1,1, L1,2, L1,3, . . . , L1,d

)
h2

(
L2,1, L2,2, L2,3, . . . , L2,d

)
h3

(
L3,1, L3,2, L3,3, . . . , L3,d

)
. . .

hm

(
Lm,1, Lm,2, Lm,3, . . . , Lm,d

)

⎤⎥⎥⎥⎥⎦ (9)

Finally, the location of swimming birds can be updated using the following formulas.

L (i + 1) =
{

Lbest (i) − K1. |K2.Lbest (i) − L (i)| if R < 0.5
L (i) + S (i + 1) otherwise

(10)

S (i + 1) = K3S (i) + K4r1 (Lbest (i) − L (i)) + K5r2 (LGbest − L (i)) (11)

where K1, . . . K5, r1, and r2, are adaptive variables whose values are changed during the optimization
process based on a selection of random values. The DTO algorithm detailed steps are depicted in
Fig. 3a [19].

3.4 Stochastic Fractal Search Algorithm
The natural phenomena of growth served as inspiration for the development of the powerful

meta-heuristic algorithm known as stochastic fractal search (SFS). For optimality, this method
mimics fractal characteristics. Here we discuss the Diffusion and the Update processes, the two key
components of SFS’s search for an optimal solution. To maximize the likelihood of discovering a
better solution and to avoid local minima, the diffusion process involves each point diffusing around
its present position to use the search space. By using a Gaussian walk, this method may produce an
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infinite number of new points. Two statistical approaches are used in the updating process to efficiently
probe the search space. The initial statistical process involves ordering all the points according to their
fitness values and assigning each rank a probability value. The steps of the SFS algorithm are depicted
in the flowchart shown in Fig. 3b.

Figure 3: Flowcharts of the employed optimization algorithms (a) DTO algorithm and (b) SFS
algorithm

3.5 The Proposed DDTOSFS Optimization Algorithm
The proposed optimization algorithm is based on exploring the search space using the DTO and

SFS algorithms interchangeably. The interchange between the two algorithms is based on an iteration
number (k); where the DTO algorithm works with the even iterations and the SFS algorithm works
with the odd iterations. The steps of the proposed dynamic DTOSFS algorithm are shown in the
flowchart depicted in Fig. 4.



2124 IASC, 2023, vol.37, no.2

Figure 4: Flowcharts of the proposed dynamic DTOSFS algorithm

4 Experimental Results

The publicly available hourly energy consumption dataset [20] is employed to validate the
proposed method’s effectiveness. This dataset consists of 121273 measurements gathered over more
than 10 years. To use this dataset, a set of preprocessing steps are performed to ensure the integrity
and consistency of the dataset samples. These preprocessing steps include (Data resampling using
various parameter optimization methods and various base models, Data normalization, Scaling the
values between [0, 1], Handling outliers (using standard deviation), Handling missing values, and
Data Smoothing (exponential smoothing)). Fig. 5 shows the visualization of the energy consumption
distribution during over 24 h/day of a sample day in the dataset as shown in Fig. 5a, over 12 months
of a sample year as shown in Fig. 5b, over the full set of years as shown in Fig. 5c, and the histogram
of the energy consumption values as shown in Fig. 5d.

After data preprocessing, the dataset is divided into testing (20%) and training (80%). The LSTM’s
parameters are optimized using the proposed DDTOSFS algorithm, which is trained using the data
from the training set. The following conditions are chosen for the training procedure. A total of 30
populations will be used, with a maximum of 20 iterations, and 20 runs will be performed. Additionally,
five basic models are trained using the same training data to determine which model will benefit
most from optimization. Multi-layer perceptron (MLP), Support vector regression (SVR), K-nearest
neighbor (KNN), random forest (RF), and the regular LSTM are all examples of such benchmark
forecasting models [21,22]. The eight evaluation metrics used to measure the performance of these
models are presented in Table 1.



IASC, 2023, vol.37, no.2 2125

Figure 5: Visualizing the dataset features

Table 1: The metrics used in evaluating the achieved results

Metrics Formula

MBE = 1
N

∑N

n=1

(
V̂n − Vn

)
MAE = 1

N

∑N

n=1

∣∣V̂n − Vn

∣∣
NSE = 1 −

∑N

n=1

(
Vn − V̂n

)2

∑N

n=1

(
Vn − V̂n

)2

RRMSE = RMSE

Vm

× 100

(Continued)
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Table 1: Continued
Metrics Formula

RMSE =
√

1
M

∑M

m=1

[
V̂m − Vm

]2

R2 = 1 − unexpected variation
Total variation

WI = 1 −
∑M

m=1

∣∣V̂m − Vm

∣∣∑M

m=1

∣∣Vm − Vm

∣∣ +
∣∣∣V̂m − V̂m

∣∣∣
r =

∑M

m=1

(
V̂m − V̂m

) (
Vm − Vm

)
√[∑M

m=1

(
V̂m − V̂m

)2
] [∑M

m=1

(
Vm − Vm

)2
]

The evaluation of these criteria based on the achieved results using the proposed model and other
prediction models is presented in Table 2. As shown in this table, the proposed approach achieves
better values than the other prediction models for all types of evaluation criteria, which proves the
superiority of the proposed model in predicting the energy consumption accurately.

Table 2: The results of the evaluation criteria using the proposed method and other competing methods

SVR KNN RF MLP LSTM DDTOSFS + LSTM

RMSE 0.049 0.012 0.026 0.010 0.004 0.000
RRMSE 70.56 22.05 40.99 11.19 11.19 6.227
WI 0.605 0.913 0.801 0.901 0.954 0.971
MBE −0.057 −0.008 −0.016 −0.017 −0.007 −0.007
r 0.993 0.979 0.946 0.992 0.992 0.994
R2 0.991 0.963 0.900 0.989 0.988 0.993
NSE 0.646 0.961 0.877 0.970 0.987 0.993
MAE 0.048 0.007 0.022 0.008 0.001 −0.001

Five other optimization algorithms are incorporated in the experiments to prove the superiority
of the proposed optimized LSTM. These algorithms are GWO [23], PSO [24], WOA [25], SFS [26], and
DTO [27]. These algorithms are used to optimize the LSTM-based model parameters. The recorded
evaluation results are presented in Table 3 in terms of the prediction results statistical analysis. As
represented by the results in the table, the proposed approach is shown superior when compared to
other optimization algorithms.
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Table 3: Analysis of the results achieved by LSTM when optimized using the proposed optimization
algorithm and other optimization algorithms

DDTOSFS + LSTM DTO + LSTM SFS + LSTM PSO + LSTM GWO + LSTM WOA + LSTM
Range 0.000011 0.00014 0.0002 0.0001483 0.00011 0.0003
Median 0.0001381 0.0004115 0.000537 0.0006387 0.0007115 0.0008872
75% percentile 0.0001381 0.0004115 0.000537 0.0006387 0.0007115 0.0008901
Std. error of
mean

0.000001016 0.00001118 0.00002134 0.00001158 0.000008222 0.00002507

Minimum 0.0001281 0.0003115 0.000337 0.0005387 0.0006612 0.0006872
Std. deviation 0.000003213 0.00003534 0.00006749 0.00003661 0.000026 0.00007929
90% percentile 0.000139 0.0004475 0.000537 0.0006822 0.0007652 0.0009784
Actual
confidence level

97.85% 97.85% 97.85% 97.85% 97.85% 97.85%

Upper
confidence limit

0.0001381 0.0004115 0.000537 0.0006387 0.0007115 0.0008987

10% percentile 0.0001291 0.0003215 0.000347 0.0005487 0.0006662 0.0006972
Mean 0.0001372 0.0004055 0.000507 0.0006335 0.0007124 0.0008684
25% percentile 0.0001381 0.0004115 0.000512 0.0006387 0.0007115 0.0008622
Maximum 0.0001391 0.0004515 0.000537 0.000687 0.0007712 0.0009872
Number of
values

10 10 10 10 10 10

Lower
confidence limit

0.0001381 0.0004115 0.000437 0.0006387 0.0007115 0.0007872

Fig. 6 displays four plots to illustrate the model performance from the point of view of a visual
representation of the prediction results achieved by the proposed approach. The predicted energy
consumption is mapped against the residual error plot shown in Fig. 6a, and the homoscedasticity plot
shown in Fig. 6b. The small size of the residual errors in these plots is an indication of the reliability
of the projected values. Fig. 6c is a quartile-quartile (QQ) plot comparing the predicted and observed
values, illustrating how well they match up [28–35]. To see that the results closely follow a straight line,
as shown in the figure, is conclusive evidence for the validity of the suggested model. Prediction errors
are visualized using the heatmap as in Fig. 6d. From these plots, the proposed DDTOSFS + LSTM
approach is proven to provide the least amount of inaccuracy in forecasting energy consumption.

Figure 6: (Continued)
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Figure 6: Representation of the results achieved using the proposed method

In addition, the suggested DDTOSFS + LSTM approach is compared to the other method
using a statistical difference to determine the p-values, demonstrating the substantial difference
between the two methods. Wilcoxon’s rank-sum test is used to carry out this analysis. Both null and
alternative hypotheses are posited before the test is run. Average algorithmic parameters are equalized
under the null hypothesis H0 (DDTOSFS + LSTM = DTO + LSTM, SFS + LSTM = PSO + LSTM,
GWO + LSTM = WOA + LSTM). Alternatively, H1 proposes that the algorithms’ means are not
comparable. Table 5 displays the results of the Wilcoxon rank-sum test. The table shows a statistically
significant difference between the suggested DDTOSFS + LSTM algorithm and the other algorithms,
with p-values of less than 0.05.

The ANOVA test is also used to further investigate the method’s efficacy. In this analysis, two basic
hypotheses are posed: the alternative and null hypotheses. Mean values of the algorithm are equalized,
DDTOSFS + LSTM = DTO + LSTM = SFS + LSTM = PSO + LSTM = GWO + LSTM = WOA +
LSTM, for the null hypothesis denoted by H0. Whereas, under the alternative hypothesis H1, the
means of the algorithms are not comparable. Table 4 displays the findings of the analysis of variance.
The table shows that the suggested algorithm performs as predicted when compared with alternative
feature selection techniques. The root-mean-squared error (RMSE) between the proposed technique
and the other methods’ predictions is displayed in Fig. 7. You can see that the proposed model has the
lowest RMSE values in this graph. The prediction error histogram is displayed in Fig. 8. As can be
seen in the image, the suggested model yields the lowest error values in its predictions compared to the
other techniques. These figures underline the efficacy of the proposed strategy for estimating energy
needs. The comparison between actual and expected energy use is also displayed in Fig. 9. To illustrate
the reliability of the proposed strategy, the picture above superimposes projected and observed energy
consumption.

Table 4: The results of the one-way ANOVA test based on the results achieved by LSTM when
optimized using the proposed optimization algorithm and other optimization algorithms

SS DF MS F (DFn, DFd) P value

Treatment 3.28E-06 5 6.55E-07 F (5, 54) = 278.4 P < 0.0001
Residual 1.27E-07 54 2.35E-09
Total 3.4E-06 59
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Table 5: Wilcoxon signed-rank test applied to the results of the optimization methods

DDTOSFS + LSTM DTO + LSTM SFS + LSTM PSO + LSTM GWO + LSTM WOA + LSTM
Theoretical
median

0 0 0 0 0 0

Number of
values

10 10 10 10 10 10

Actual median 0.0001381 0.0004115 0.000537 0.0006387 0.0007115 0.0008872
Discrepancy 0.0001381 0.0004115 0.000537 0.0006387 0.0007115 0.0008872
Sum of negative
ranks

0 0 0 0 0 0

P value (two
tailed)

0.002 0.002 0.002 0.002 0.002 0.002

Sum of positive
ranks

55 55 55 55 55 55

Significant
(alpha = 0.05)?

Yes Yes Yes Yes Yes Yes

Sum of signed
ranks (W)

55 55 55 55 55 55

P value
summary

∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

Exact or
estimate?

Exact Exact Exact Exact Exact Exact

Figure 7: RMSE values achieved by LSTM when optimized using different algorithms
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Figure 8: Histogram of RMSE values achieved by LSTM model optimized using optimization
algorithms

Figure 9: The predicted vs. actual energy consumptions resulting using the proposed model

5 Conclusion

In this work, we proposed a new strategy for forecasting energy consumption. The proposed
approach relies on improving the performance of LSTM by adjusting its parameters, which allows
for precise prediction results. Multiple optimization strategies and machine learning models are used
to evaluate the proposed technique against a vast group of methods. Statistical analysis is used to
demonstrate the reliability and validity of the suggested approach, which is validated by the findings.
Additionally, a series of plots, including QQ, residual, homoscedasticity, and histograms, are used to
conduct an in-depth study of the final results. This evaluation verified the efficiency and excellence of
the suggested approach to precisely forecasting energy usage. The findings of this research can help in
decision making and risk management considered by the governing authorities.
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