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Abstract: The numerous photos captured by low-price Internet of Things
(IoT) sensors are frequently affected by meteorological factors, especially
rainfall. It causes varying sizes of white streaks on the image, destroying
the image texture and ruining the performance of the outdoor computer
vision system. Existing methods utilise training with pairs of images, which is
difficult to cover all scenes and leads to domain gaps. In addition, the network
structures adopt deep learning to map rain images to rain-free images, failing
to use prior knowledge effectively. To solve these problems, we introduce a
single image derain model in edge computing that combines prior knowledge
of rain patterns with the learning capability of the neural network. Specifically,
the algorithm first uses Residue Channel Prior to filter out the rainfall textural
features then it uses the Feature Fusion Module to fuse the original image
with the background feature information. This results in a pre-processed
image which is fed into Half Instance Net (HINet) to recover a high-quality
rain-free image with a clear and accurate structure, and the model does not
rely on any rainfall assumptions. Experimental results on synthetic and real-
world datasets show that the average peak signal-to-noise ratio of the model
decreases by 0.37 dB on the synthetic dataset and increases by 0.43 dB on
the real-world dataset, demonstrating that a combined model reduces the gap
between synthetic data and natural rain scenes, improves the generalization
ability of the derain network, and alleviates the overfitting problem.
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1 Introduction

With the development of Internet technologies and service-oriented applications, IoT is increas-
ingly used in various fields of Industry 4.0, Image processing is the primary research direction in IoT
applications (such as intelligent transportation [1,2], smart city [3,4] etc.). Researchers have obtained
a vast number of photographs from various sensors, but generally these photographs from different
devices are inevitably affected by a complex set of meteorological factors. Significantly, the rainfall
patterns or streaks captured by the visual system (e.g., still images or dynamic video sequences) usually
result in sharp fluctuations in the intensity of the image, and always severely affect the performance
of outdoor computer vision tasks. In addition, the refraction and reflection of light by rain lines
leads to a degree of degradation of the content in the optical image, such as blurring, deformation,
etc., therefore, image deraining is a crucial pre-processing step for subsequent tasks. Rainfall streaks
and rainfall accumulation are probably entangled, which creates difficulty for modeling with simple
physical models, hence, developing an efficient derain network structure with low hardware cost and
slight computational complexity is significantly important.

Restoring a rainfall-contaminated image to a clear one is called “image derain”. Compared with
video images, single images lack time series information and the spatio-temporal characteristics of
rain pattern or raindrop changes are hard to capture, making the process of single image derain more
challenging. Most of the traditional methods assume that rain patterns appearing in an image have
local similarities, so they focus on studying the rain pattern and the physical model of the background
layer. For example, rain pattern removal is achieved by exploiting the local similarity pattern of rain
patterns across the image, forcing a predetermined prior on the rain and background layers, and
then constructing a loss function for optimization [5,6]. There are different prior approaches such
as: layer prior [5], sparse representation [7], rainfall dominated region prior [8], and frequency prior
[9,10]. More specifically, Li et al. [5] proposed a prior method based on a Gaussian mixture model
that accommodate multiple directions and scales of rain patterns. Luo et al. [7] proposed a method
to sparsely approximate the patches of two layers by very high discriminative codes over a learned
dictionary with strong mutual exclusivity property. Zhu et al. [8] enforced a specific rainfall direction
based on the area where rainfall dominates specific rainfall directions to distinguish the background
texture from the rainfall streaks. However, the soundness of these conventional rain removal methods
depends on the reliability of the manually designed prior assumptions under unknown backgrounds
and rain streaks.

As artificial intelligence has developed rapidly in recent years, machine learning methods are
also gradually applied to image derain. In these methods, pairs of rainfall/no-rainfall data are used
for training to obtain a mapping function from a rainfall background to a no-rainfall background.
These approaches involve simple Convolutional Neural Network [10–12], adversarial learning [13]
and recurrent and multi-stage networks [14,15]. Most deep learning methods still lack sufficient
interpretability and are not fully integrated with the physical structures inside general rain patterns.
There are methods to fit rain patterns and thus identify to remove them by combining convolution
and dictionary learning where two sub-steps of M-net and B-net algorithm iterations are proposed to
make the network structure with white box interpretability [16]. The interpretability of the network is
improved because the rain patterns are mostly white under the optical effect, but the mere removal of
the rain patterns does not enable good recovery of the background image. The other part implements
the rain removal task by filtering, for example, by using a random synthetic dataset to train a neural
filtering network, which quickly completes the rain removal of a single image [17,18].
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In summary, although the above methods have brought tremendous performance gains, it is
difficult to remove all rain patterns and recover the structural information of the image in complex
scenes due to an over-reliance on model learning capability, resulting in a large number of iterative
optimization and subsequent refinement modules [16,19]. In addition, there are still differences
between the synthesized dataset and the natural rainfall images, and it is hard to include all the
natural rainfall conditions only using the synthesized dataset [20,21]. Fortunately, a prior structure
reasonably regularizes and constrains the solution space, which not only helps to avoid unexpected
image details being identified as rain patterns but also helps to alleviate overfitting problems in the
network [22]. Therefore, to solve the above problem, we propose a channel decomposition-based
rain removal network that combines a prior knowledge of rain patterns with the learning capability
of neural networks. The network maintains the background image structure and performs image
restoration efficiently. This network first removes the rainfall pattern using a residual channel prior
(RCP), which is the result of the residual of the maximum and minimum channel values of the rainfall
image. The decomposed rain-free background is then fused with the original input image using self-
attentive features.

2 Framework Design

Currently, the traditional surveillance field is connected using a wired method, and the wired
network covers all the cameras which transmit the monitoring images through the network to the
cloud or server for storage and processing. This not only increases the load of the network but also
makes it difficult to reduce the end-to-end time delay. As shown in Fig. 1, we consider a monitoring
system with edge cloud collaboration; it contains a centralized cloud within the cloud layer, various
edge servers and a mobile edge computing sever close to the camera end layer, and several cameras in
the end layer. Images are captured by IoT devices deployed in the end layer to generate data. The data
is then handed over to an inference server on the edge side (e.g., the traffic crossing) for image derain
[23,24]. If new rain-free background features appear in the captured images, then the data is uploaded
to the cloud server to optimize, train, and eventually update the new model library for all edge devices
and deploy them to the edge side.

It has two benefits, providing proximity to data transmission and analysis at the edge; deploying
work locally, which significantly reduces the reliance on and consumption of transmission resources
while increasing the speed of local response [25]. On the cloud side, converged information governance
is enabled by collecting data for second-round evaluation, processing and in-depth analysis. This
ensures that the data simultaneously meets the needs of security and privacy aspects, but also takes
advantage of the rapid iterative refreshing of the cloud services [26].

To address the problem of poor generalization ability of deep learning methods in realistic
environments, this paper proposes an image derain network combining model-driven and data-driven
sections (i.e., RCP combined U-Net network). As shown in Fig. 2, aiming to eliminate rain patterns, we
first convert the input image color domain from Red, Green, Blue (RGB) to YCbCr color space. In fact,
the Y channel is gray space, and the rest is color space. We assume by observation that the rain pattern
is achromatic(colorless). Like the dark channel prior, the rain pattern is mainly concentrated on the Y
channel after decomposition. We replace the Y component with the residual channel decomposition
and then recombine it with Cb and Cr components, and finally transform it back to RGB color space
to eliminate most of the rain patterns. This also brings the benefit of reducing the gap between the
synthetic rain dataset and the real-world dataset.
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Figure 1: Image derain in edge computing

Figure 2: The proposed structure of model

Although the resulting residual channel image has complete structural information, the brightness
of the image is reduced, and the clarity of the image deteriorates after processing. To better preserve the
structural information of the background and produce a clearer image, this study first compared only
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the residual channel features with the original image features pixel by pixel, but the analysis showed
that this method was not effective in achieving the derain effect because it destroys the originality
of the input image and does not achieve a more effective derain result. Therefore, we propose an
improved Feature-attention Fusion Module (FFM) that attempts to make more effective use of the
feature information of the background, which can feed the a priori decomposition channel together
with the original image into the feature attention module, recovering details that are reduced by the
RCP module.

In terms of geometry, the rain patterns are distinctly linear, and a single rainfall pattern generally
covers the image pixels in the longer direction. Using multiple convolution kernels for multi-scale
convolution leads to an increase in the computational effort of the model and consumes more resources
[27]. To solve this problem, a multi-stage network is chosen as the successor network in our paper.
Theoretically, it outperforms the multi-scale convolution approach, which may produce boundary
effects between patches [28].

3 Derain Based on Channel Decomposition
3.1 Residual Channel Prior Decomposition Module

This study transforms image derain into an image decomposition, where the rainfall-contaminated
image is decomposed into a clean background layer and a rain streak layer:

I = B +
n∑

i

Si (1)

where I is the observed input image, B represents the background image without the rain streaks, Si is
the rain streaks layer, and n is a total number of layers of the rain pattern layer.

According to the paper [29], we assume a camera exposure time of T. The time elapsed when a
raindrop passes through a pixel x is t. A color image with rain patterns is expressed as:

Ĩ (x) = tβrs (x) Rα + (T − t) Bπ (2)

where Ĩ (x) = (Ir, Ig, Ib)
T is the light brightness’s color component, βrs is a constant for the coefficient

of refraction, specular reflection and internal reflection from raindrops. R = (Rr, Rg, Rb)
T represents

the light intensity of the RGB channel and R = Rr + Rg + Rb. B = (Br, Bg, Bb)
T represents background

light intensity and B = Br + Bg + Bb. Define α = R/R and π = B/B the chromacities of R and B,
respectively. Eq. (2) The first term is a rain-streak and the second term is the background.

To obtain a residual channel without rain streaks, we need to eliminate the optical chroma from
the rain streak term, so we normalize it as follows:

I (x) = Ĩ (x)

α
= Irs (x) i + Ibg (x) (3)

where i is a three-dimensional unit column vector, Irs = tβrs(x)R and Ibg = (T − t) Bπ/α vector division
is calculated element by element. It is important to note that by normalizing the image, we remove not
only the chromaticity of the light, as well as the color effect of spectral sensitivities.

Based on Eq. (3), we can calculate the formula for a given input image I without rain patterns as
follows:

Ires (x) = IM (x) − Im (x) (4)

where IM (x) = max
{
Ir (x) , Ig (x) , Ib (x)

}
the maximum channel and Im (x) = min

{
Ir (x) , Ig (x) , Ib (x)

}

the minimum channel in Fig. 3, from the above formula, it can be derived Ires is the residual channel
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image of the input image I . As rain streaks appear optically mainly colorless, whose values in Eq. (3)
are canceled in Eq. (4).

Figure 3: Residual channel decomposition module

Moreover, according to Li et al. [29]. The previous residual channel can still work if color
constancy is not used. Because the predominantly gray atmospheric light is produced by cloudy skies
in most cases, the appearance of the rain pattern is already colorless. Based on this observation, the
residual channel prior can extract a more complete and accurate background and object structure.
Therefore, we introduce the residual channel prior to the image derain model in this paper.

Combined with Fig. 4 we can observe that when the rainfall is slight, using the RCP can get a
more precise rain-free background map, but in the face of severe image occlusion, this module still has
shortcomings.

(a) Rainy images (b) RCP of rainy images (c) Ground Truth

(d) Rainy images (e) RCP of rainy images (f) Ground Truth

Figure 4: Comparison between the RCP of rainy images and ground truth
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3.2 Feature-Attention Fusion Module, FFM
Although the use of RCP can eliminate most of the rain patterns, it also destroys the image

information. Responding to the partial information disappearance problem, and we use an improved
feature attention fusion module to recover the detailed information lost in residual decomposition by
comparing the original rain map with the image processed and using the similarity of the features after
convolution to fuse them.

As shown in Fig. 5, the input image Iin is convolved with the residual image Ires into a 3 ∗ 3
convolution kernel:

Fin = Conv (Iin) (5)

Fres = Conv (Ires) (6)

Figure 5: Feature-attention fusion module

In the next step, similarity mapping is obtained using element multiplication Fin ⊗ Fres to enhance
the background information in the rain image. Because the background of the RCP is similar to the
rain image, the location with significant difference in comparison with the input features is the rain
streaks, so the similarity mapping can further enhance the structure of the a priori features.

M = Sigmoid (Fin ⊗ Fres) (7)

Fs
in = M ⊗ Iin (8)

Fs
res = M ⊗ Ires (9)

where M denotes the similarity map, Fs
in and Fs

res denotes the features activated by the input channel
Fin and Fres, respectively.

Fout = Concat
(
Fin, Fs

in

) + Concat
(
Fres, Fs

res

)
(10)

where Fout is the fusion feature in Fig. 5.

We concat the activated feature map with the original feature map. Finally, we add the activated
feature map to the original feature map element by element to obtain the adjusted image. By exploiting
the colorless property of the rain pattern, the masked background is recovered while retaining the
background information after removing the rain pattern. More details are shown in Algorithm 1.
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Algorithm 1 Residual channel prior and feature-attention fusion
1: Input: Training set, validation set, parameters θ , learning Rate α, training steps/iterations S
2: repeat
3: Select a pair of images for the training set
4: for i = 1, 2, . . . , N do

//Step1. RCP module
5: Y , Cb, Cr = spilt (rgb2ycbcr (Input image)); //Input image decomposition after color

domain transformation, rgb2ycbcr is the color domain transformation function
6: Ires = Ymax − Ymin; //According to Eq. (4)
7: X(R, G, B) = ycbcr2rgb (Ires, Cb, Cr); //Concat three single channels into triple channel

//Step2. FFM module
8: X_quary, Prior_key = conv (Input image, X(R, G, B)); //Feature extraction from input

image and prior image
9: Map = self-attention (X_quary, Prior_key); //According to Eqs. (5)–(7)
10: Fout = attention fusion (Map, Input image, X(R, G, B))

//Step3. HINet
11: Output image = HINet (Fout)
12: end for
13: until the neural network model completes S iterations
14: Output: Drained image

3.3 Loss Function
For the loss function, we utilize the Peak Signal-to-Noise Ratio (PSNR) as a loss function measure:

Loss = −
2∑

i=1

PSNR ((Ri + Xi) , Y) (11)

Let Xi ∈ R
N×C×H×W signifies the subnetwork’s input i, where N is the batch size of datasets, C is

the number of channels, H and W represents the height and width of the image pixels, Ri ∈ R
N×C×H×W

denotes the final prediction of subnetwork i and Y ∈ R
N×C×H×W is the ground truth.

4 Experiments

In this paper, we use BasicSR [30] based on the PyTorch framework for experiments. The code
runs on a 3060 Nvidia graphics card with 12G memory, and to ensure the fairness of the experiments,
we employ the same network training settings as HINet [20] does. The nets were trained with Adam
optimizer, with initial learning rate at the same 2 × 10−4, using cosine annealing strategy learning rate
with a minimum learning rate of 1 × 10−7. The evaluation methods include peak signal to noise ratio
(PSNR) and structural similarity index (SSIM) of rain image processing results to the original image.
The PSNR measures the overall image similarity and focuses on assessing the degree of distortion
in image colors and smooth areas and is the most widely and commonly used objective metric for
evaluating image quality. SSIM can better reflect the subjective perception of human eyes, and the
SSIM value is equal to 1 when the content and structure of the two images are identical.

4.1 Synthetic Datasets
To validate the effectiveness of the proposed algorithm, we evaluate our method on several paired

images datasets for the rain removal task, containing 13711 paired training sets with/without rain, and
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we evaluate the results on Test100 [31], Rain100L [19], Rain100H [19], Test1200 [13], Test2800 [11].
The comparison algorithm are DerainNet [10], Semi-supervised model (SEMI) [32], Density-aware
image deraining method with multi-stream densely connected network (DID-MDN) [13], Multi-scale
progressive fusion network (MSPFN) [33], Recurrent squeeze-and-excitation context aggregation net
(RESCAN) [14], Multi-stage progressive image restoration net (MPRNet) [34] and HINet [20]. We
show the effectiveness of our network on different datasets in Table 1.

Table 1: Deraining comparisons on synthetic datasets. Relevant data cited from paper [20,21] best and
second-best scores are highlighted and underlined

Datasets Test100 Rain100L Rain100H Test1200 Test2800

Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DerainNet [10] 22.77 0.810 27.03 0.884 14.92 0.592 23.38 0.835 24.31 0.861
SEMI [32] 22.35 0.788 25.03 0.842 16.56 0.486 26.05 0.822 24.43 0.782
DID-MDN [13] 22.56 0.818 25.23 0.741 17.35 0.524 29.65 0.901 28.13 0.867
MSPFN [33] 27.50 0.876 32.40 0.933 28.66 0.860 32.39 0.916 32.82 0.930
RESCAN [14] 25.00 0.835 29.80 0.881 26.36 0.786 30.51 0.882 31.29 0.904
MPRNet [34] 30.27 0.897 36.40 0.965 30.41 0.890 32.91 0.916 33.64 0.938
HINet [20] 30.29 0.906 37.28 0.970 30.65 0.894 33.05 0.919 33.91 0.941

Ours 29.84 0.896 36.63 0.966 30.03 0.889 32.88 0.919 33.95 0.941

It shows that the proposed method has an average decrease of 0.37 dB compared to SOTA in
test sets. We believe this is due to the introduction of a priori domain knowledge, which makes
the subsequent neural networks study fewer rain patterns, and the rain patterns generated in these
synthetic datasets are a couple of fixed patterns, and thus partially underperform in similar scenes
whereas the Test2800 has performed beyond HINet under the same training rounds.

To verify the effectiveness of the proposed network on the simulated scene data in this paper, we
compare the trained obtained network effect with the current mainstream network for subjective visual
effect, as shown in Fig. 6.

The image resulting from the MSPFN-introduced multi-scale model (an algorithm with three
sizes of convolution kernel to handle different size rain patterns) still has a portion of rain patterns
remaining in larger pixels (e.g., sand image). MPRNet utilizes multi-stages (with different size of input
image as small, medium and large) instead of multi-scales to guarantee the same effect with an increase
in computational speed but there is a problem of over-smoothing the image, causing the loss of some
detail information. HINet brings half-instance block and cross-stage feature fusion (CSFF) achieve
the optimal result among the comparison algorithms, but there is a performance defect in the removal
of rain patterns in smaller pixels. In detail, the desert on the left in the first set of images and the head
of the bear on the right both have residual white rain patterns. Moreover, the combination of RCP and
FFM has less deviation from the ground truth sand detail on the middle side of the first set of images
and the bear’s abdomen in the second set.
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Input images HINet[20] MSPFN[33]

Ground Truth MPRNet[34] Ours

Input images HINet[20] MSPFN[33]

Ground Truth MPRNet[34] Ours

Figure 6: Image deraining results tested in the Rain100L datasets

4.2 Real-World Datasets
In this section, we added the comparison of the Natural Image Quality Evaluator (NIQE). In most

tasks, PSNR and SSIM metrics can be used to demonstrate whether the image reconstruction task
is more efficient. However, in super-resolution tasks, after the introduction of generative adversarial
networks in recent years, it was found that a high PSNR or SSIM does not guarantee a better
reconstruction quality, because in images with high PSNR or SSIM, the texture details of their images
do not consistently match the visual habits of the human eye. NIQE is a reference-free image quality
score that indicates the perceived image “naturalness”: the smaller the score, the better the perceived
quality.

To test the generalization capability of the proposed module, we used the publicly paired test
set by Wang et al. [35] (i.e., spatial attentive data, SPA-Data). It was created as a large-scale dataset
consisting of 170 genuine rainfall recordings, 84 of which were captured using mobile phones and 86
of which were obtained via Storyblocks or YouTube. The films feature regular urban sights, suburban
landscapes (such as streets and parks), and some outdoor locations (e.g., forests). Different acquisition
parameters (exposure time and ISO parameters) were used in recording the rainfall scenes to generate
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29,500 image pairs with/without rain. We use 1,000 pairs of testing datasets to evaluate performance. In
this test, we use weights trained from synthetic datasets, without fine-tuning, to test the generalization
ability of the trained network evaluated.

Based on the metrics in Table 2, it can be observed that the proposed module in this paper can
enhance the performance of rain removal networks in complex scenes or real-world rain images. We
conclude that addition of the RCP and FFM modules makes it possible to filter out most of the
rain patterns before the images are fed into the subsequent network (e.g., Figs. 4b and 4e), and the
proposed residual channel decomposition module can significantly enhance the regularization and
constrained solution space of the network, removing the distinction between synthetic images and
natural environment images, since it is challenging to encompass all real rainfall situations using
only synthetic datasets. We are enabling the network to have better generalization ability with the
same training dataset, which is a novel approach to enhance the generalization ability of rain removal
without increasing the currently known dataset.

Table 2: Real-world datasets of SPA-Data [35]. Directional arrows indicate the best results for this
indicator

PSNR↑ SSIM↑ NIQE↓
HINet [20] 33.8913 0.9502 8.1537
Ours 34.3217 0.9508 8.0974

4.3 Ablation Study
To demonstrate the effect of FFM on performance, we use the concat operation instead of

FFM. The results are shown in Table 3. The network module with FFM achieves a significant
performance improvement compared to the network without FFM, indicating that FFM is essential
for reconstructing more explicit rain-free images, making the network capable of obtaining more
helpful information.

Table 3: Table of results of ablation methods using Rain1200 test set

Fusion method Rain1200 [13]

Method FFM Concat PSNR↑ SSIM↑ NQIE↓
w/o FFM � 12.22 0.388 19.9568
w/o RCP × × 27.00 0.906 4.2409
Ours � 32.88 0.919 4.1386

5 Conclusion

With the rapid development of 5G network technology and sensor devices, the number of photos
they capture is exploding. but photos are frequently affected by rainfall. Mobile edge computing is a
way to optimize cloud computing systems by processing data at the network’s edge. To improve photo
quality and processing speed, this study introduced a method of single image derain in edge computing.
Specifically, we use the difference between the maximum and minimum values of the image Y channel
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to get the residual image with a priori feature information. Later, the fusion is performed by self-
attention comparison with the original feature image. The feature concat nodes are adapted to enhance
the image background information and effectively improve the network’s performance in a realistic
environment. The experimental results of combining the above module with HINet show that adding
this module increases the PSNR by 0.43 dB and decreases the NIQE by 0.06 in a natural environment
(i.e., SPA-Data) and the generalization ability of the network image deraining is enhanced. The fusion
experiments prove that the RCP and FFM modules are the most effective combination. In the future,
we will work on further improving the multi-stage network into an end-to-end network to achieve the
derain goal in real-time.

Acknowledgement: We are highly grateful to the Pytorch scientists, BasicSR and associated framework
support. We also thank the anonymous reviewers for their comments and suggestions that improved
this paper.

Funding Statement: This research is supported by the National Natural Science Foundation of China
under Grant no. 41975183, and Grant no. 41875184 and Supported by a grant from State Key
Laboratory of Resources and Environmental Information System.

Conflicts of Interest: The authors declare that they have no competing interests. The funders had no
role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of
the manuscript; or in the decision to publish the results.

References
[1] K. Chandra, A. S. Marcano, S. Mumtaz, R. V. Prasad and H. L. Christiansen, “Unveiling capacity gains

in ultradense networks: Using mm-wave NOMA,” IEEE Vehicular Technology Magazine, vol. 13, no. 2, pp.
75–83, 2018.

[2] X. Xue, S. Jin, F. An, H. Zhang, J. Fan et al., “Shortwave radiation calculation for forest plots
using airborne LiDAR data and computer graphics,” Plant Phenomics, pp. 1–21, 2022. https://doi.
org/10.34133/2022/9856739

[3] X. Lin, J. Wu, S. Mumtaz, S. Garg, J. Li et al., “Blockchain-based on-demand computing resource trading in
IoV-assisted smart city,” IEEE Transactions on Emerging Topics in Computing, vol. 9, no. 3, pp. 1373–1385,
2021.

[4] J. Li, Z. Zhou, J. Wu, J. Li, S. Mumtaz et al., “Decentralized on-demand energy supply for blockchain in
internet of things: A microgrids approach,” IEEE Transactions on Computational Social Systems, vol. 6,
no. 6, pp. 1395–1406, 2019.

[5] Y. Li, R. T. Tan, X. Guo, J. Lu and M. S. Brown, “Rain streak removal using layer priors,” in Proc.
IEEE(CVPR), Las Vegas, NV, USA, pp. 2736–2744, 2016. https://doi.org/10.1109/CVPR.2016.299

[6] X. Hu, C. W. Fu, L. Zhu and P. A. Heng, “Depth-attentional features for single-image rain removal,” in
Proc. IEEE/CVF , Long Beach, CA, USA, pp. 8014–8023, 2019. https://doi.org/10.1109/CVPR.2019.00821

[7] Y. Luo, X. Yong and J. Hui, “Removing rain from a single image via discriminative sparse coding,” in Proc.
IEEE, Boston, MA, USA, pp. 3397–3405, 2015. https://doi.org/10.1109/ICCV.2015.388

[8] L. Zhu, C. W. Fu, D. Lischinski and P. A. Heng, “Joint bi-layer optimization for single-image rain streak
removal,” in Proc. IEEE, Honolulu, HI, USA, pp. 2545–2553, 2017. https://doi.org/10.1109/ICCV.2017.276

[9] L. W. Kang, C. W. Lin and Y. H. Fu, “Automatic single-image-based rain streaks removal via image
decomposition,” IEEE Transactions on Image Processing, vol. 21, no. 4, pp. 1742–1755, 2011.

[10] X. Fu, J. Huang, X. Ding, Y. Liao and J. Paisley, “Clearing the skies: A deep network architecture for
single-image rain removal,” IEEE Transactions on Image Processing, vol. 26, no. 6, pp. 2944–2956, 2017.

https://doi.org/10.34133/2022/9856739
https://doi.org/10.34133/2022/9856739
https://doi.org/10.1109/CVPR.2016.299
https://doi.org/10.1109/CVPR.2019.00821
https://doi.org/10.1109/ICCV.2015.388
https://doi.org/10.1109/ICCV.2017.276


IASC, 2023, vol.37, no.2 1481

[11] X. Fu, J. Huang, D. Zeng, Y. Huang, X. Ding et al., “Removing rain from single images via a deep detail net-
work,” in Proc. IEEE, Honolulu, HI, USA, pp. 3855–3863, 2017. https://doi.org/10.1109/CVPR.2017.186

[12] C. Sun, C. Huang, H. Zhang, B. Chen, F. An et al., “Individual tree crown segmentation and crown width
extraction from a heightmap derived from aerial laser scanning data using a deep learning framework,”
Frontiers in Plant Science, vol. 13, pp. 1–23, 2022.

[13] H. Zhang and V. M. Patel, “Density-aware single image de-raining using a multi-stream dense network,”
in Proc. IEEE, Salt Lake City, UT, USA, pp. 695–704, 2018. https://doi.org/10.1109/CVPR.2018.00079

[14] X. Li, J. Wu, Z. Lin, H. Liu and H. Zha, “Recurrent squeeze-and-excitation context aggregation
net for single image deraining,” in Proc. ECCV , Munich, Germany, pp. 254–269, 2018. https://doi.
org/10.1007/978-3-030-01234-2_16

[15] D. Ren, W. Zuo, Q. Hu, P. Zhu and D. Meng, “Progressive image deraining networks: A better and simpler
baseline,” in Proc. IEEE/CVF , Long Beach, CA, USA, pp. 3937–3946, 2019. https://doi.org/10.1109/
CVPR.2019.00406

[16] H. Wang, Q. Xie, Q. Zhao and D. Meng, “A model-driven deep neural network for single image
rain removal,” in Proc. IEEE/CVF , Seattle, WA, USA, pp. 3103–3112, 2020. https://doi.org/10.1109/
CVPR42600.2020.00317

[17] Q. Guo, J. Sun, F. J. Xu, L. Ma, X. Xie et al., “EfficientDeRain: Learning pixel-wise dilation filtering for
high-efficiency single-image deraining,” in Proc. AAAI , Vancouver, Online, Canada, 35, pp. 1487–1495,
2021.

[18] Q. Guo, J. Sun, F. J. Xu, L. Ma, D. Lin et al., “Uncertainty-aware cascaded dilation filtering for high-
efficiency deraining,” arXiv preprint, pp. 1–14, arXiv: 2201.02366, 2022.

[19] W. Yang, R. T. Tan, J. Feng, J. Liu, Z. Guo et al., “Deep joint rain detection and removal from a
single image,” in Proc. IEEE(CVPR), Honolulu, HI, USA, pp. 1357–1366, 2017. https://doi.org/10.1109/
CVPR.2017.183

[20] L. Chen, X. Lu, J. Zhang, X. Chu and C. Chen, “HINet: Half instance normalization network for
image restoration,” in Proc. IEEE/CVF , Nashville, TN, USA, pp. 182–192, 2021. https://doi.org/10.1109/
CVPRW53098.2021.00027

[21] Z. Tu, H. Talebi, H. Zhang, F. Yang, P. Milanfar et al., “Maxim: Multi-axis MLP for image pro-
cessing,” in Proc. IEEE/CVF , New Orleans, LA, USA, pp. 5769–5780, 2022. https://doi.org/10.1109/
CVPR52688.2022.00568

[22] H. Wang, Q. Xie, Q. Zhao, Y. Liang and D. Meng, “RCDNet: An interpretable rain convolutional
dictionary network for single image deraining,” arXiv preprint, pp. 1–14, arXiv:2107.06808, 2021.

[23] X. Xu, Q. Jiang, P. Zhang, X. Cao, M. Khosravi et al., “Game theory for distributed IoV task offloading
with fuzzy neural network in edge computing,” IEEE Transactions on Fuzzy Systems, vol. 30, no. 11, pp.
4593–4604, 2022.

[24] X. Xu, H. Tian, X. Zhang, L. Qi, Q. He et al., “DisCOV: Distributed COVID-19 detection on X-ray images
with edge-cloud collaboration,” IEEE Transactions on Services Computing, vol. 15, no. 3, pp. 1206–1219,
2022.

[25] W. Gu, F. Gao, R. Li and J. Zhang, “Learning universal network representation via link prediction by graph
convolutional neural network,” Journal of Social Computing, vol. 2, no. 1, pp. 43–51, 2021.

[26] L. Qi, W. Lin, X. Zhang, W. Dou, X. Xu et al., “A correlation graph based approach for personalized and
compatible web APIs recommendation in mobile APP development,” IEEE Transactions on Knowledge and
Data Engineering, pp. 1, 2022. https://doi.org/10.1109/TKDE.2022.3168611

[27] Y. Liu, Z. Song, X. Xu, W. Rafique and X. Zhang, “Bidirectional GRU networks-based next POI category
prediction for healthcare,” International Journal of Intelligent Systems, vol. 37, no. 7, pp. 4020–4040, 2021.

[28] L. Yang, Y. Han, X. Chen, S. Song, J. Dai et al., “Resolution adaptive networks for efficient inference,” in
Proc. IEEE/CVF , Seattle, WA, USA, pp. 2366–2375, 2020. https://doi.org/10.1109/cvpr42600.2020.00244

[29] R. Li, R. T. Tan and L. F. Cheong, “Robust optical flow in rainy scenes,” in Proc. ECCV , Munich, Germany,
pp. 288–304, 2018. https://doi.org/10.1007/978-3-030-01267-0_18

https://doi.org/10.1109/CVPR.2017.186
https://doi.org/10.1109/CVPR.2018.00079
https://doi.org/10.1007/978-3-030-01234-2_16
https://doi.org/10.1007/978-3-030-01234-2_16
https://doi.org/10.1109/CVPR.2019.00406
https://doi.org/10.1109/CVPR.2019.00406
https://doi.org/10.1109/CVPR42600.2020.00317
https://doi.org/10.1109/CVPR42600.2020.00317
https://doi.org/10.1109/CVPR.2017.183
https://doi.org/10.1109/CVPR.2017.183
https://doi.org/10.1109/CVPRW53098.2021.00027
https://doi.org/10.1109/CVPRW53098.2021.00027
https://doi.org/10.1109/CVPR52688.2022.00568
https://doi.org/10.1109/CVPR52688.2022.00568
https://doi.org/10.1109/TKDE.2022.3168611
https://doi.org/10.1109/cvpr42600.2020.00244
https://doi.org/10.1007/978-3-030-01267-0_18


1482 IASC, 2023, vol.37, no.2

[30] X. Wang, K. Yu, K. Chan, C. Dong and C. C. Loy, “BasicSR: Open source image and video restoration
toolbox,” 2018. https://github.com/xinntao/BasicSR

[31] H. Zhang, V. Sindagi and V. M. Patel, “Image de-raining using a conditional generative adversarial
network,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 30, no. 11, pp. 3943–3956,
2019.

[32] W. Wei, D. Meng, Q. Zhao, Z. Xu and Y. Wu, “Semi-supervised transfer learning for image rain removal,” in
Proc. IEEE/CVF , Long Beach, CA, USA, pp. 3877–3886, 2019. https://doi.org/10.1109/CVPR.2019.00400

[33] K. Jiang, Z. Wang, P. Yi, C. Chen, B. Huang et al., “Multi-scale progressive fusion network for single
image deraining,” in Proc. IEEE/CVF , Seattle, WA, USA, pp. 8346–8355, 2020. https://doi.org/10.1109/
CVPR42600.2020.00837

[34] S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan et al., “Multi-stage progressive image
restoration,” in Proc. IEEE/CVF , Nashville, TN, USA, pp. 14821–14831, 2021. https://doi.org/10.1109/
CVPR46437.2021.01458

[35] T. Wang, X. Yang, K. Xu, S. Chen, Q. Zhang et al., “Spatial attentive single-image deraining with a high
quality real rain dataset,” in Proc. IEEE/CVF , Long Beach, CA, USA, pp. 12270–12279, 2019. https://doi.
org/10.1109/CVPR.2019.01255

https://github.com/xinntao/BasicSR
https://doi.org/10.1109/CVPR.2019.00400
https://doi.org/10.1109/CVPR42600.2020.00837
https://doi.org/10.1109/CVPR42600.2020.00837
https://doi.org/10.1109/CVPR46437.2021.01458
https://doi.org/10.1109/CVPR46437.2021.01458
https://doi.org/10.1109/CVPR.2019.01255
https://doi.org/10.1109/CVPR.2019.01255

	A Single Image Derain Method Based on Residue Channel Decomposition in Edge Computing
	1 Introduction
	2 Framework Design
	3 Derain Based on Channel Decomposition
	4 Experiments
	5 Conclusion
	References


