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Abstract: Reweighting adversarial examples during training plays an essential
role in improving the robustness of neural networks, which lies in the fact that
examples closer to the decision boundaries are much more vulnerable to being
attacked and should be given larger weights. The probability margin (PM)
method is a promising approach to continuously and path-independently mea-
suring such closeness between the example and decision boundary. However,
the performance of PM is limited due to the fact that PM fails to effectively
distinguish the examples having only one misclassified category and the ones
with multiple misclassified categories, where the latter is closer to multi-
classification decision boundaries and is supported to be more critical in our
observation. To tackle this problem, this paper proposed an improved PM
criterion, called confused-label-based PM (CL-PM), to measure the closeness
mentioned above and reweight adversarial examples during training. Specifi-
cally, a confused label (CL) is defined as the label whose prediction probability
is greater than that of the ground truth label given a specific adversarial
example. Instead of considering the discrepancy between the probability of the
true label and the probability of the most misclassified label as the PM method
does, we evaluate the closeness by accumulating the probability differences of
all the CLs and ground truth label. CL-PM shares a negative correlation with
data vulnerability: data with larger/smaller CL-PM is safer/riskier and should
have a smaller/larger weight. Experiments demonstrated that CL-PM is more
reliable in indicating the closeness regarding multiple misclassified categories,
and reweighting adversarial training based on CL-PM outperformed state-of-
the-art counterparts.

Keywords: Reweighting adversarial training; adversarial example; boundary
closeness; confused label

1 Introduction

Deep neural networks (DNNs) are powerful tools to solve real-world problems, such as image
classification [1–5], speech recognition [6–8], and natural language processing [9–11]. Although DNNs
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show favorable performance, they have been substantiated to be highly vulnerable to being fooled by
adversarial examples [12–15]. Here, adversarial examples are defined as the synthetic examples which
are intentionally crafted by adding slightly perturbed noises to the natural origin examples [16–19].
The adversarial example attacks pose profound threats to many critical applications, such as medical
diagnostics and self-driving cars [14,20,21].

Recently, many defense methods have been proposed to protect DNNs against adversarial
examples, such as input/feature denoising [22–24], defensive distillation [25–27], and adversarial
training (AT) [28–30]. Among them, AT is considered one of the most effective methods, which
incorporates adversarial examples during the model training process [31,32]. Although AT improves
the robustness of DNNs, it leads to a decline in prediction accuracy for natural data [33–35]. To address
this issue, many works have been developed to find a trade-off between robustness and accuracy for
improving the performance of AT. For instance, Zhang et al. [36] proposed a friendly adversarial
training method (FAT), which can improve accuracy and maintain robustness by searching for friendly
adversarial data to update the model. Wang et al. [37] proposed a once-for-all adversarial training
(OAT), where the trained model could be adjusted among standards and robust accuracies at testing
time. Zhang et al. [38] proposed a theoretically principled trade-off between robustness and accuracy
(TRADES) to improve projected gradient descent (PGD) training via decoupling the minimax training
objective into an accuracy term and a robustness regularization term. In addition to these methods,
instance reweighted adversarial training [39] is regarded as the most promising method to improve
the robustness and maintain the accuracy of DNNs. The main idea of instance reweighted adversarial
training lies in the fact that the examples closer to the decision boundaries are much more vulnerable
to being attacked and should be given larger weights. To characterize the closeness between the data
and decision boundaries, Zhang et al. [40] proposed the least PGD steps (LPS) method, where LPS
represents the shortest number of steps starting from natural data to make an adversarial variant of
this natural data cross the class decision boundary. However, the values taken by LPS are discrete
and affected by the adversarial examples [13,28]. Hence, Liu et al. [41] proposed the continuous and
path-independent probability margin (PM) criterion, where PM is defined as the difference between
the probability of the true label and the probability of the most misclassed catalog. Based on PM,
they proposed a general AT training framework termed probabilistic margins for instance reweighting
in adversarial training (MAIL-AT), which achieved state-of-the-art performance.

Although PM achieves favorable results in many applications, its performance is limited in the
situation that the predictions of the adversarial examples have multiple confused labels (CLs), where
a confused label (CL) is defined as the label whose prediction probability is higher than that of the
ground truth label given a specific adversarial example. The reason for this crux lies in the fact that
when adversarial examples yield multiple CLs, the PM method only considers the impact of the most
CL while neglecting the impact of the other CLs. Yet, according to our observation, the example
of having multiple CLs is closer to multi-classification decision boundaries and is supported to be
more critical. To clearly illustrate this phenomenon, we research the following questions and raise our
motivations:

(i) Whether there exist a number of adversarial examples having multiple CLs during the AT. If
yes, how much impact do such adversarial examples have on AT?
(ii) Whether the PM criterion is the capability to distinguish the adversarial examples with
multiple CLs and the ones with single CL. If not, how to improve this criterion?

For the first question, we train the ResNet-18 [1] model on CIFAR-10 using MAIL-AT. Starting
from the 76th epoch of training, we divide the misclassified adversarial examples into two subsets: 1) a
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subset of misclassified examples with single CLs, termed Ssig, and 2) a subset of misclassified examples
with multiple CLs, termed Smul. We explore different ways to retrain the same network and evaluate
its robustness against white-box PGD-20 attacks on the test dataset. Fig. 1A shows the component of
misclassified adversarial examples during AT. The blue bar represents the total number of misclassified
examples, the orange bar represents the number of Ssig, and the green bar represents the number of
Smul. We observe that there do exist numerous Smul in misclassified examples, and even the number of
Smul is conspicuously larger than that of Ssig. Figs. 1C and 1D separately show a sketch regarding the
output probability of a given misclassified adversarial examples from Ssig and Smul. Fig. 1B illustrates
the impact of Ssig and Smul on the final robustness of the model. The blue curve represents the robustness
of the model trained using both Ssig and Smul (as standard MAIL-AT does). The orange/green curve
indicates the robustness of the model trained using the examples excluding the Ssig/Smul. From Fig. 1B,
we can observe that if the example from Smul is not used for AT (the other examples are still used for
AT), the final robustness of the model will drop drastically compared with the standard MAIL-AT
(green curve). In contrast, the same operation using the examples excluding Ssig only slightly affects
the final robustness (orange curve). This phenomenon implies that the impact of the examples with
multiple CLs is more significant than the impact of the examples with single CL for the final robustness
of the model. Accordingly, it is reasonable to assign greater weights for the examples having multiple
CLs during AT.

Figure 1: (Continued)



1246 IASC, 2023, vol.37, no.2

Figure 1: (A) shows the component of misclassified adversarial examples starting from the 76th
epoch of AT. (B) shows the distinctive influence of misclassified examples with single CLs (Ssig)
vs. misclassified examples with multiple CLs (Smul) on the final robustness of MAIL-AT. We test
the robustness of different strategies on either a subset of examples: the blue curve represents the
robustness of the model trained using both Ssig and Smul (as standard MAIL-AT does); the orange/green
curve indicates the robustness of the model trained using the examples excluding the Ssig/Smul. (C)
and (D) separately show a sketch regarding the output probability of a given misclassified adversarial
examples from Ssig and Smul

For the second question, we draw a diagram to demonstrate the closeness between the example
and the multi-classification decision boundary in Fig. 2. The solid circles represent the category center
for a multi-classification task. The dotted pentagons represent the given examples: pentagon A stands
for the example having single CL, and pentagon B stands for the example having multiple CLs. Then
we use the PM method based on the adversarial variance to measure the closeness for A and B, where
pu (u = i, j, k)is the probability that a data point belongs to the u-th class. Support the true labels of
both A and B are class i. From the figure, we can find that the formalization closenesses of both A and
B measured by the PM method are −0.2. Compared to A (a single CL example), B (a multiple CLs
example) is much closer to the multi-classification decision boundary. That means the examples with
multiple CLs are more critical than those with single CL. Nevertheless, the PM method is unreliable in
differentiating these two types of examples since PM only considers the prediction probability of the
most confused label. Hence, it is reasonable to incorporate all the CLs to formulate the closeness value
for the misclassified examples. In our method (CL-PM), we evaluate the closeness by accumulating
the probability differences of the whole CLs and ground truth label. Specifically, the closeness values
derived by CL-PM for A and B are −0.2 and −0.3, which illustrates that our method is powerful to
distinguish the examples having single CL and the ones having multiple CLs.
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Figure 2: An illustration of PM and the proposed CL-PM, where pi, pj, and pk represent the probability
that a data point belongs to the i-th, j-th, and k-th class, respectively. The solid circles denote the center
of classes, and the dotted pentagons represent the misclassified adversarial examples: pentagons (A)
and (B) stand for the example having single CL and the one having multiple CLs, respectively. The
shaded area represents the other class. Support the true labels of (A) and (B) are i-th class, and the
prediction probabilities of the labels from the shaded area are lower than those of the true label. As
a special example, the closeness values regarding (A) and (B) calculated by the PM method are −0.2
(derived by pi − pj), while the closeness values regarding (A) and (B) calculated by the proposed CL-PM
are −0.2 and −0.3 (derived by (pi − pj) + ( pi − pk))

According to the previous analysis, this paper proposed an improved criterion (CL-PM) to
measure the closeness between the examples and the decision boundaries. Our method addresses the
problem that PM is unreliable in distinguishing closeness between examples with single CL and those
with multiple CLs. Specifically, we evaluate the closeness between the misclassified examples and the
multi-classification margin by accumulating the probability differences of the CLs and ground truth
label. Our main contributions are as follows:

� We investigate the distinctive influence of the misclassified examples with single CL and
those with multiple CLs for the final robustness of AT. We reveal that the manipulation of
misclassified examples with multiple CLs has more impact on the final robustness of AT.
Accordingly, the misclassified examples with multiple CLs should be given larger weights than
those with single CL.

� We proposed a new margin-aware criterion, CL-PM, to measure the closeness mentioned
above. Based on CL-PM, we further propose confused-label instance-reweighted adversarial
training (CLIRAT), which significantly enhances the performance of AT, especially when there
exist numerous adversarial examples having multiple CLs.

� Experiments demonstrated that CL-PM is more reliable in indicating the closeness regarding
multiple misclassified categories, and CL-PM-based reweighting AT methods outperformed
state-of-the-art counterparts.
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2 Related Work
2.1 Adversarial Attacks

Given a clean example x with class label y and a target DNN model f (x; θ) with weight θ , the goal
of an adversary is to find an adversarial example xadv that fools the network into making an incorrect
prediction (e.g., f (xadv; θ) �= y), while remaining in the ε-ball centered at x (e.g., ||xadv − x||∞ ≤ ε).

Fast Gradient Sign Method (FGSM) [17]. FGSM perturbs clean example x for one step by the
amount of ε along the gradient direction:

xadv = x + ε · sign(∇x�(f (x; θ), y)) (1)

Projected Gradient Descent (PGD) [28]. PGD perturbs standard example x for T steps with a
smaller step size. After each step of perturbation, PGD projects the adversarial example back onto the
ε-ball of x if it goes beyond the ε-ball:

xadv
t+1 =

∏
ε
(xadv

t + α · sign(∇x�(f (xadv
t ; θ), y))) (2)

where
∏

ε
(.) is the projection operation, and t is the number of iteration steps.

There are also other types of white-box attacks, including auto attack (AA) [42] and Carlini and
Wagner (CW) [43]. AA can be viewed as an ensemble of several advanced attacks.

2.2 Adversarial Defenses
TRADES [38]. TRADES optimizes an upper bound of adversarial risk that is a trade-off between

accuracy and robustness:

� (θ) = 1
n

n∑
i=1

{
CE (f (xi; θ) , yi) + β · max KL

(
f (xi; θ) ‖ f

(
xadv

i ; θ
))}

(3)

where β > 0 is the trade-off parameter, CE is the cross-entropy loss, and KL denotes the Kullback-
Leibler divergence.

MART [19]. Misclassification aware adversarial training (MART) incorporates an explicit differ-
entiation of misclassified examples as a regularizer of adversarial risk.

� (θ) = 1
n

n∑
i=1

{
BCE

(
f
(
xadv

i ; θ
)

, yi

) + λ · KL
(
f (xi; θ) ‖ f

(
xadv

i ; θ
)) · (

1 − fyi (xi; θ)
)}

(4)

where fyi(xi; θ) denotes the yi−th element of output vector f (xi; θ), BCE(f (xi; θ), yi) = − log(fyi(x
adv
i ; θ))−

log(1 − maxk �=yi fk(xadv
i ; θ)) and λ is an adjustable scaling parameter that balances the two parts of the

final loss.

3 The Proposed Method

In this section, we propose a new margin-aware criterion, called CL-PM, to measure the closeness
between the data and decision boundaries. Based on CL-PM, we further propose confused-label
instance-reweighted adversarial training (CLIRAT) to reweight adversarial examples during training
based on confused label (CL).
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3.1 Preliminary
For a K-classification problem, this deep classifier f (x; θ) predicts the label of an input data via

f (x; θ) = arg maxk pk(x; θ), with pk(x, θ) being the predicted probability (softmax on logits) for the
k-th class.

Inspired by the multi-classification margin in margin theory [44], PM is defined as the difference
between two estimated class-posterior probabilities, e.g., such a probability of the true label minus the
probability of the most CL given some natural data.

PM(x, y; θ) = py(x; θ) − maxj,j �=ypj(x; θ) (5)

Here, if PM is 0, the data point x is on the decision boundary between two classes; PM is positive,
the data point x is much closer to the true label; PM is negative, and the data point x is much
closer to the most confusing class. PM shares a negative correlation with data vulnerability: data with
larger/smaller PMs are safer/riskier and should have smaller/larger weights.

Weight Assignment: Liu et al. [41] adopted the sigmoid function for weight assignment, which can
be viewed as a softened sample selection operation of the form:

ωunn
i = sigmoid(−γ (PMi − β)) (6)

where β indicates how much data should have relatively large weights and γ ≥ 0 controls the
smoothness around β.

3.2 Proposed CL-PM
From the previous section, we have learned that PM focuses on the difference between the

probability of the true label and the probability of the most CL for given data. It cannot sufficiently
distinguish the vulnerability of misclassified examples with the same PM values. Therefore, we propose
a new margin-aware criterion called (CL-PM):

CL − PM (x, y; θ) =
⎧⎨
⎩

py(x; θ) − maxj,j �=y pj(x; θ), f (x; θ) = y∑
j=1

(
py (x; θ) − pj (x; θ)

)
, f (x; θ) �= y and py (x; θ) < pj (x; θ) (7)

where if the adversarial example is correctly classified, we use the probability of the true label minus the
probability of the most CL to measure the robustness of the data. Similarly, if the adversarial example
is misclassified, we measure the robustness of the data by accumulating the probability differences
between CLs and ground truth label. Here, CL-PM is positive, indicating that data point x is closer
to the true label, and CL-PM is negative, indicating that data point x will be closer to the confusing
class. In Fig. 2, CL-PM for measuring the robustness of misclassified adversarial examples with only a
CL is consistent with PM. However, it is slightly different in measuring the robustness of misclassified
adversarial examples with multiple CLs. The difference is mainly reflected in the influence of other
CLs on the true label.

3.3 Realization of CLIRAT
CL-PM is an improvement of the PM method, which also shares a negative correlation with the

vulnerability of data: data with larger/smaller CL-PM are safer/riskier and should have smaller/larger
weights. In Algorithm 1, CLIRAT reweights the loss of the adversarial data according to the CL-PM
values of data (xadv

i , yi) and then updates the model parameters by minimizing the sum of the reweighted
losses.
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Algorithm 1: CLIRAT: The Overall Algorithm
Input:
A network model with the parameters θ ; a training dataset S = {(xi, yi)}n

i=1; mini-batch of size m; the
number of batches M; hyperparametric: γ and β.
Output:
A robust model with parameters θ ∗.
1. for epoch = 1 to num_epoch do
2. for mini-batch = 1 to num_batch do
3. sample a mini-batch {(xi, yi)}m

i=1 from S
4. for i = 1 to m do
5. xadv

0 ← xi

6. for t = 1 to T do
7. xadv

t ← Proj
[
xadv

t−1 + αsign(∇θ�(xadv
t−1, yi; θ))

]
;

8. end
9. ωunn

i = sigmoid(γ (β − CL − PMi));
10. end
11. if epoch ≤ 75 then
12. ωi = 1;
13. end
14. ωi = M × ωunn

i /
∑

j

ωunn
j , ∀i ∈ [m]

15. θ ← θ − η∇θ

m∑
i=1

ωi�
(
xadv

i , yi; θ
)

;

16. end
17. end

4 Experiments

This section provides a comprehensive understanding of CLIRAT, including robustness and
ablation studies to various white-box attacks on benchmark datasets.

Experimental settings and implementation details. (A) Dataset: We perform experiments on the
CIFAR-10 [45] dataset, and the input images are normalized to [0, 1]. For generating the most
adversarial data for updating the model, we set the perturbation budget ε = 8/255, and the PGD steps
number K = 10 with step size α = 2/255. (B) Network Architectures: We mainly used ResNet-18 [1]
and Wide ResNet (WRN-32-10) [46] models as classifiers for the following experiments. (C) Training
Details: For the considered methods, networks were trained using mini-batch gradient descent with
momentum 0.9, weight decay 3.5 × 10−3 (for ResNet-18)/7 × 10−4 (for WRN-32-10), batch size 128,
and initial learning rate 0.01 (for ResNet-18)/0.1 (for WRN-32-10) which is divided by 10 at the 75th
and 90th epoch. (D) White-box Attacks: We evaluate the robustness of the model according to the
following attack methods, including PGD-20 [28], PGD-100 [28], CW [43], APGD CE attack (APGD)
[42], and auto-attack (AA) [42].

4.1 Robustness Evaluation and Analysis
In this part, we evaluate the robustness of CLIRAT against various white-box attacks. Here, we

adopted ResNet-18 as the backbone model and conducted experiments on the CIFAR-10 dataset.
CLIRAT is a general method that is combined with existing methods such as AT [28], MART [19],
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and TRADES [38]. Specifically, MART and TRADES can be modified to CLIR-MART and CLIR-
TRADES, respectively. In experiments, we set the slope and bias parameters to 10 and −0.5 in
CLIRAT and 2 and 0 in both CLIR-MART and CLIR-TRADES. The trade-off parameter β was
set to 6 in CLIR-MART and 5 in CLIR-TRADES.

Performance Evaluation. In Fig. 3, we conduct the standard AT, MAIL-AT, and CLIRAT using
ResNet-18 [1] on the CIFAR-10 dataset. We use the reweighted objective function after the 75th
epoch in the training process. In order to avoid the deep model is not fully learned in the initial
training phase, and the geometric information is not obtained enough, which maybe accumulate the
bias in erroneous weight assignment in the training. Therefore, until the 75th epoch, we fix ω to 1
regardless of the corresponding CL-PM value. In Fig. 3B, we can observe that the model trained by
the CLIRAT method has dramatically improved the test robustness compared to the model trained
by the MAIL-AT method. Figs. 3A and 3C also show that our improved CL-PM does not degrade
other performances of the original method (e.g., PM). Fig. 5 provides more experimental details
in terms of the performance evaluation. To further verify the effectiveness of the CL-PM method,
we compare the performance of the standard AT, TRADES, MART, MAILAT, MAIL-TRADES,
MAIL-MART, CLIRAT, CLIR-TRADES and CLIR-MART on the ResNet-18 and WRN-32-10
models respectively, and report the robust accuracies at the last epochs in Tables 1 and 2. In Table 1,
we can observe that CLIRAT has significantly improved its performance in PGD and APGD attacks,
and CLIR-MART and CLIR-TRADES also have slightly improved their robustness against PGD
attacks. However, compared with the MAIL method, the adversarial robustness of CLIRAT, CLIR-
MART, and CLIR-TRADES against CW and AA attacks is not significantly improved or slightly
decreased, which may be related to the overfitting [47,48] of the model. In addition, the overall
performance of the model trained with CLIR-TRADES/CLIR-MART is not much better than that
of the model trained with MAIL-TRADES/MAIL-MART. In Table 2, we can find that the overall
accuracy will also be improved when using the model with a large capacity. In a word, CLIRAT
performs well on PGD-based methods, while CLIR-TRADES and CLIR-MART generally perform
on CW and AA attacks. The experimental results also indicate that different optimization functions
and model network capacity have unique effects on the CL-PM method, which means that the model’s
performance may be further improved.

Figure 3: Comparisons of AT (red lines), MAIL-AT (green lines) and CLIRAT (blue lines) using
ResNet-18 on the CIFAR-10 dataset. (A) shows the comparison of the standard accuracy of natural
test data (NAT) of the model under three different training methods; Similarly, (B) shows the
comparison of test robustness of the model under PGD-20, PGD-100 and APGD attacks; (C) shows
the comparison of test robustness of the model under CW and AA attacks
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Table 1: Average accuracy (%) and standard deviation on CIFAR-10 dataset with ResNet-18. We
report the robust accuracies (%) at the last epochs

NAT PGD20 PGD100 CW APGD AA

AT 85.64 ± 0.25 52.08 ± 0.25 49.33 ± 0.19 51.94 ± 0.20 48.53 ± 0.19 46.87 ± 0.62
TRADES 84.37 ± 0.13 54.36 ± 0.20 52.68 ± 0.28 51.96 ± 0.61 52.07 ± 0.59 48.73 ± 0.49
MART 82.24 ± 0.29 55.40 ± 0.30 53.36 ± 0.50 51.35 ± 0.44 53.07 ± 1.01 47.50 ± 0.46
MAIL-AT 83.74 ± 0.43 58.56 ± 0.25 57.63 ± 0.20 50.72 ± 0.22 55.70 ± 0.43 46.47 ± 0.46
MAIL-
TRADES

82.35 ± 0.20 55.05 ± 0.11 53.71 ± 0.11 52.08 ± 0.15 53.27 ± 0.52 49.43 ± 0.65

MAIL-
MART

83.45 ± 0.26 55.10 ± 0.29 53.08 ± 0.34 51.06 ± 0.13 52.43 ± 1.47 46.47 ± 0.90

CLIRAT 83.60 ± 0.26 60.31 ± 0.16 59.33 ± 0.17 50.66 ± 0.20 58.83 ± 1.02 45.50 ± 0.90
CLIR-
TRADES

82.08 ± 0.17 55.08 ± 0.27 53.87 ± 0.34 52.10 ± 0.17 53.77 ± 0.66 49.17 ± 0.50

CLIR-
MART

83.45 ± 0.11 55.30 ± 0.53 53.45 ± 0.37 51.15 ± 0.26 52.13 ± 1.10 46.50 ± 0.70

Table 2: Average accuracy (%) and standard deviation on CIFAR-10 dataset with WRN-32-10. We
report the robust accuracies (%) at the last epochs

NAT PGD20 PGD100 CW APGD AA

AT 87.86 ± 0.01 52.07 ± 0.07 49.10 ± 0.10 52.76 ± 0.20 48.35 ± 0.75 47.75 ± 0.65
TRADES 87.06 ± 0.31 55.25 ± 0.04 52.63 ± 0.06 54.97 ± 0.03 52.75 ± 0.55 51.25 ± 0.05
MART 85.67 ± 0.15 56.47 ± 0.12 53.43 ± 0.14 51.92 ± 0.16 54.10 ± 0.60 50.55 ± 0.65
MAIL-AT 86.22 ± 0.12 61.38 ± 0.17 60.47 ± 0.11 54.14 ± 0.05 60.40 ± 0.01 50.20 ± 0.50
MAIL-
TRADES

85.91 ± 0.10 56.39 ± 0.14 54.61 ± 0.35 55.01 ± 0.10 52.95 ± 0.65 51.00 ± 0.50

MAIL-
MART

85.91 ± 0.10 56.39 ± 0.14 53.88 ± 0.01 53.39 ± 0.11 53.65 ± 0.55 49.45 ± 1.05

CLIRAT 86.36 ± 0.14 63.67 ± 0.11 62.00 ± 0.01 54.03 ± 0.12 62.45 ± 0.55 50.04 ± 0.10
CLIR-
TRADES

85.47 ± 0.10 56.39 ± 0.09 54.53 ± 0.11 54.86 ± 0.15 53.50 ± 0.70 51.35 ± 0.15

CLIR-
MART

85.97 ± 0.32 56.02 ± 0.06 53.24 ± 0.32 53.25 ± 0.08 52.90 ± 0.01 48.30 ± 0.80

4.2 Ablation Studies on CL-PM
In this part, we delve into CL-PM to investigate every component. We train ResNet-18 using

CLIRAT with an L∞ threat model with ε = 8/255 for 120 epochs following the same setting in Section
4.1. The training attack is PGD-10 (step size 2/255), and the test attacks are the white-box attacks
mentioned in Section 4.1 above.
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Analysis of hyperparameters γ and β. Here we mainly study the effects of γ and β on the
performance of CLIRAT. In the weight assignment function, β indicates how much data should
have a relatively large weight, and γ ≥ 0 controls the smoothness around β. In the experiment, the
hyperparameters γ and β of CLIRAT are 10 and −0.5, respectively. We always kept one of the
hyperparameters unchanged during testing. Fig. 4 shows the results using different γ ∈ [7,13], β ∈
[−0.2, −0.7]. We can observe that properly adjusting the values of γ and β can increase the robustness
of the model to PGD attacks, but the test robustness of NAT and AA, and CW attacks will tend to
decrease. Therefore, the proper selection of hyperparameters during the experiment can improve the
model’s overall performance.

Figure 4: Experiment of ablation of CIFAR-10 using CLIRAT

Figure 5: (Continued)
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Figure 5: Comparisons of AT (red lines), MAIL-AT (green lines) and CLIRAT (blue lines) using
ResNet-18 on the CIFAR-10 dataset

5 Conclusion

This paper proposes a new margin-aware criterion CL-PM to fill the gap that the PM method
cannot distinguish the adversarial examples with multiple CLs and single CLs. Based on CL-PM, we
proposed confused-label instance-reweighted adversarial training, which significantly enhances the
robustness of AT without declining the prediction accuracy for the natural examples. Note that in our
experiments, we observe that different loss functions have different impacts on the robustness of the
model. Our future work mainly focuses on designing more powerful loss to improve the performance
of instance-reweighted adversarial learning further.
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