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Abstract: Trusted Execution Environment (TEE) is an important part of
the security architecture of modern mobile devices, but its secure interaction
process brings extra computing burden to mobile devices. This paper takes
open portable trusted execution environment (OP-TEE) as the research object
and deploys it to Raspberry Pi 3B, designs and implements a benchmark
for OP-TEE, and analyzes its program characteristics. Furthermore, the
application execution time, energy consumption and energy-delay product
(EDP) are taken as the optimization objectives, and the central processing
unit (CPU) frequency scheduling strategy of mobile devices is dynamically
adjusted according to the characteristics of different applications through
the combined model. The experimental result shows that compared with the
default strategy, the scheduling method proposed in this paper saves 21.18%
on average with the Line Regression-Decision Tree scheduling model with
the shortest delay as the optimization objective. The Decision Tree-Support
Vector Regression (SVR) scheduling model, which takes the lowest energy
consumption as the optimization goal, saves 22% energy on average. The
Decision Tree-K-Nearest Neighbor (KNN) scheduling model with the lowest
EDP as the optimization objective optimizes about 33.9% on average.

Keywords: Trusted execution environment; energy efficiency optimization;
CPU scheduling governor; machine learning

1 Introduction

With the popularization of mobile devices and the development of network technology, the
security of mobile devices has become a hot topic. ARM TrustZone technology [1,2] separates System
on Chip (SOC) hardware and software resources into a TEE for running key System resources
[3] and a Rich Execution Environment (REE) [4] for running other system resources through the
combination of hardware and software. When a process executes, REE and TEE have separate physical
address spaces. REE only has access to its own corresponding space, while TEE has access to the
physical address spaces of both environments [5,6]. Among them, the Application running in REE
is called Client Application (CA), and the Application running in TEE is called Trusted Application
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(TA) [7]. The purpose of TEE is to provide a trusted, isolated environment in which sensitive data
and assets can be stored and trusted code executed to protect these sensitive assets and TA from
software attacks generated within the REE. TEE has been widely used in DRM, mobile financial
services, security authentication, enterprise and cloud service providers. So far, there have been many
different implementation forms of trusted execution environment in the industry, such as chip-based
implementation forms (Intel SGX [8], Qualcomm’s QSEE [9]). Based on the TrustZone technology
(Trustonic Kinibi TEE [10], Open Enclaves [11], Android Trusty TEE [12]), as well as the open source
trusted execution environment, etc.

OP-TEE is an open source TEE solution developed and maintained by Linaro [13]. The solution
complies with the Global Platform TEE standard and supports HiKey and common ARMv7 and
ARMv8 platforms, making it the first choice for research on TEE. In OP-TEE, a CA and a TA interact
with each other through the Universally Unique Identifier (UUID), as shown in Fig. 1, Where, inside
the red dotted line are TEE interfaces:

Figure 1: The interaction process between CA and TA

(1) CA calls the TEEC_InitializeContext() to initialize the trusted execution environment config-
uration, and opens the op-tee driver file to get the operation handle.

(2) CA calls the TEEC_OpenSession() to establish a communication channel with a specific TA,
and uses UUID to specify TA.

(3) TA process and session are created in the trusted end, and session results are created back.
(4) CA calls TEEC_InvokeCommand() to pass the execution command to the TA process, asking

it to perform the appropriate sensitive operation. A concrete operation is encapsulated into
a structure, including the operation type, shared memory, session parameters, etc. The TA
process executes the command and returns the result to the CA.
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(5) After a successful CA call, if the TA does not need to be called again, the session needs
to be closed and the TA process needs to be terminated. Ends the initial trusted execution
environment configuration, ending communication between client applications and trusted
applications after all shared memory resources have been freed.

Anway et al. [14] measured the interaction time of each interface of the trusted program in OP-
TEE of Raspberry Pi 3B through experiments, as shown in Table 1.

Table 1: The interaction time of each interface

API name Latency in us

TEEC_InitializeContext() 200
TEEC_OpenSession() 17000
TA_InvokeCommand() 250
TEEC_CloseSession() 1200
TEEC_FinalizeContext() 100

As can be seen from the table analysis, the interaction process with the trusted application needs at
least 18000us, which is very necessary for the optimization study of the additional overhead generated
by the secure interaction of trusted computing for the mobile devices with limited energy consumption.
In this paper, a benchmark is firstly designed and implemented for OP-TEE considering that the widely
used performance benchmarks is only suitable for rich execution environments. Then the machine
learning models are used to optimize energy efficiency in combination with the CPU frequency
scheduling governors. Specifically, taking the execution time, energy consumption and energy-delay
product (EDP) of the program as the optimization objectives, the optimal CPU frequency scheduling
strategy was respectively predicted based on the optimization objectives and program characteristics.
The experimental results show that compared with the default powersave governor, the proposed
scheduling methods in this paper save 34.14% time, 31.12% energy and 33.97% EDP on average. The
scheduling strategies supported by the experimental platform Raspberry Pi 3B in this paper are shown
in Table 2.

Table 2: CPU scaling governors on Raspberry Pi 3B

Governor Description

Performance Set CPU to use the maximum clock rate.
Ondemand Timely sampling and calculating the CPU load, switching to the maximum clock

frequency when the load is greater than the threshold, otherwise switching to the
minimum clock frequency.

Powersave Set CPU to use the minimum clock rate.
Conservative Timely sampling and CPU load calculation, frequency switching is more gentle

than ondemand.
Schedutil The kernel scheduler is used to receive CPU utilization information as the basis

for dynamically regulating CPU frequency.
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In this paper, under different CPU frequency scheduling governors, the calculation amount of
the computation-intensive application instance was changed to measure the execution time, energy
consumption and EDP of the program. The results are shown in Tables 3–5 where the left-most column
represents the CPU frequency scheduling governors and the other columns represent the calculations
of computing the first 10, 100, 1000, 10000, 100000 primes. Through comparative analysis, we find that:
(1) the optimal CPU scheduling governor for the same application is not fixed according to different
indexes; (2) With the increase of task computation, the optimal CPU scheduling governor changes.

Table 3: The time of changing the range of task calculation in different governors (unit:ms)

Governor 10 100 1000 10000 100000

Performance 262.85 294.96 579.92 1706.14 11904.05
Ondemand 263.11 316.91 598.54 1913.61 12044.66
Powersave 286.08 317.75 642.51 2528.59 18234.85
Conservative 275.32 310.98 616.39 1870.51 11933.78
Schedutil 268.06 315.18 608.84 2032.96 12005.45

Table 4: The energy of changing the range of task calculation in different governors (unit:j)

Governor 10 100 1000 10000 100000

Performance 0.455 0.529 1.008 2.998 22.102
Ondemand 0.449 0.520 1.007 3.263 22.276
Powersave 0.431 0.491 0.981 3.904 29.034
Conservative 0.447 0.510 1.044 3.191 22.233
Schedutil 0.430 0.524 1.026 3.409 22.245

Table 5: The EDP of changing the range of task calculation in different governors

Governor 10 100 1000 10000 100000

Performance 0.120 0.156 0.585 5.115 263.102
Ondemand 0.116 0.165 0.603 6.246 268.312
Powersave 0.123 0.156 0.630 9.872 529.426
Conservative 0.123 0.158 0.644 5.969 265.325
Schedutil 0.115 0.165 0.625 6.931 267.065

2 Related Work

TEE is an important part of the security architecture of modern mobile devices, but its secure
interaction process brings extra computing burden to mobile devices. Amacher et al. used simulation
software and hardware tools to evaluate the performance of three different CPU frequency scheduling
strategies (ondemand, performance and powersave) for ARM TrustZone [15]. Liu et al. proposed a
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program analysis and transformation techniques for the large time cost caused by TEE’s complex
program transformation [16]. Mukherjee et al. proposed an approach which integrated multiple
trusted execution parts to minimize I/O traffic and reduce the number of switches between REE and
TEE, thus reducing TEE execution overhead and increasing predictability by [14]. Yang proposed
to configure trusted execution environment parameters, interrupt processing and shared memory
allocation to optimize the performance of TrustZone applications. However, it is not universal
due to that this method has great changes to the underlying hardware devices and has different
implementation methods for different hardware devices [17]. Bailleu et al. designed and implemented
a performance measuring tool, Tee-perf, to identify and optimize the application programs in TEE
[18]. It used the flame graph to check the occupied time of each instruction during program execution
and optimized the instruction with the largest occupied time. However, since the instruction with the
largest time cost is changing, Tee-perf is not universally applicable.

Recently, machine learning method is widely used in the energy efficiency optimization of mobile
devices. Ren et al. used machine learning method to predict the optimal CPU configuration and adjust
the CPU frequency based on Web content and network status to reduce energy consumption for the
mobile devices [19,20]. Yuan et al. used neural networks to dynamically schedule the CPU resources
for the mobile Web interaction [21]. Aiming at the energy efficiency of mobile streaming media,
Zhao et al. collected user experience and used machine learning method to configure the optimal
CPU frequency and video bit rate based on the state of mobile devices and video task complexity, thus
improving the user experience and reducing the energy consumption [22]. Chen et al. used a machine
learning model to predict the optimal image coding rate based on the complexity of multi-artifact
reduction (MAR) image and mobile device network status for mobile augmented reality applications,
thus reducing MAR response delay and improving device energy efficiency [23]. Fan et al. used the
machine learning method to predict the optimal Graphics Processing Unit (GPU) kernel and CPU
frequency configuration for the input OpenCL kernel [24].

3 Our Approach

This paper designs and implements Benchmark according to OP-TEE, and uses performance
analysis tools to analyze program features to build data sets, selects lightweight model for optimal
governor prediction, and finally realizes governor scheduling. The experimental process is shown in
Fig. 2.

Figure 2: Overview of our approach

Combining the advantages of lightweight model and high accuracy model, a high energy efficiency
frequency scheduling strategy based on trusted environment is proposed for different indicators. The
strategy aims to reduce reasoning time and energy consumption as much as possible while ensuring
accuracy. By deploying a lightweight and low overhead composite model on the mobile side to provide
low latency response. The model flow is shown in the Fig. 3.
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(1) Mobile terminal calls trusted applications.
(2) Extract typical features representing program type and complexity, input into the regression

model.
(3) The output program of the regression model predicts the results of the corresponding opti-

mization indexes, and outputs the optimal Governor according to the predicted results.
(4) The mobile terminal adjusts the CPU frequency according to the output results.

Figure 3: Efficient frequency scheduling policy process based on OP-TEE

In this section, the benchmark designed for OP-TEE is introduced, respectively, and the charac-
teristics of the benchmark test program are collected by Perf [25] for feature screening. The classical
regression algorithm is used to predict the experimental optimization indexes, and the performance of
different models is compared.

3.1 The Optimization Goals
In this paper, the program execution time, energy consumption and energy-delay product (EDP)

were taken as targets for optimization [26]. EDP refers to the product of energy and time consumed
to complete a computing task, an evaluation index adopted when considering both high performance
and low power consumption.

3.2 Benchmark
Since the mainstream benchmark Unixbench [27], Sysbench [28] is only applicable to REE, TEE

has not yet been implemented. This paper designed and implemented a benchmark for TEE based
on Unixbench and Sysbench, which was divided into CPU computation-intensive applications and
I/O intensive applications. CPU computation-intensive applications are characterized by the need
to make full use of CPU resources for calculation and logical judgment. I/O intensive applications
are characterized by the majority of program execution in which the CPU is waiting for I/O (hard
disk/memory) read/write operations. Our benchmark includes the basic operations of embedded
applications, which can fully reflect the execution characteristics of practical applications, as shown in
Table 6.

Table 6: Benchmark applications

Item Description Goal

Prime Computes all prime numbers in a
specified range of natural numbers.

Measure CPU integer
performance.

String Count the number of characters and
invert the string with the length of
2048 bytes, etc.

Measure CPU character
manipulation performance.

(Continued)
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Table 6: Continued
Item Description Goal

Hanoi 20 disks of increasing size are
transferred through 3 towers.

Measure calling stack
performance.

Process communication Two processes are piped and
processed a specified number of
times by integer decrement.

Measure the efficiency of data
exchange between processes.

Mutex All threads are simulated to run
concurrently at the same time, and
shared variables are protected by
mutex. The operation of shared
variables is realized in TA. Set the
number of concurrent threads to be
tested to 1000, and randomly assign
mutexes to each thread.

Measure OP-TEE’s
performance in allocating
mutex resources under high
thread concurrency.

File Write, read, and delete files of
specified size.

Measure the performance of
file operations.

3.3 Features Selection
Perf was used to measure the features of 31 measurement program types in the experiment. Fig. 4

shows the results of Pearson correlation coefficient.
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Figure 4: Pearson correlation coefficient heat map between ten features

After Pearson correlation coefficient was calculated with the optimization target, 10 independent
features were screened and retained as model features, as shown in Table 7.
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Table 7: Model features

Feature Description

cpu-clock CPU clock frequency.
sched:sched_stat_runtime CPU scheduler event that quantifies scheduler delay. The program

is in running time.
timer:hrtimer_expire_entry Kernel high precision timer expiration time.
irq:irq_handler_entry Number of times the interrupt handler processed the request.
irq:softirq_entry Number of soft interruption calls.
branch-instructions Branch instruction number.
cache-reference Cache reference size.
bus-cycles The bus cycle.
cpu-cycles Number of processor cycles consumed.
kmem:kmalloc Number of kernel memory allocations.

4 Experiment
4.1 Platform

Hardware platform. This paper uses Raspberry Pi 3B embedded platform, which is equipped with
Broadcom BCM2837 system on chip (1GB RAM, quad-core ARM Cortex A53 running at 1.2 GHz).

Measurement tools. The test was conducted by connecting the POWER-ZKM001 device to the
USB Power supply and the Raspberry Pi device and using the POWER-Z desktop software to control
and measure and record the energy consumption data of the application execution.

Machine learning models. Considering the resource constraints of the hardware platform, the
regression model selected should consider two factors: low reasoning time and high accuracy. In this
paper, six classic regression algorithms were selected, including Line Regression, KN), Decision Tree,
Gradient Boosting, SVR and Random Forest.

4.2 Single Model
4.2.1 Time Optimization Model

Fig. 5 shows the prediction accuracy of program execution time under the six regression models
where the black bar indicates accuracy and corresponds to the left y-axis. The gray bar indicates
inference time and corresponds to the right y-axis. As can be seen from the figure, Random Forest
and KNN have the highest accuracy, which is 93.627% and 91.774%, respectively.

4.2.2 Energy Optimization Model

Fig. 6 shows the prediction accuracy of the six models for program energy consumption. As can
be seen from the figure, KNN and SVR have the highest accuracy, which is 91.376% and 91.886%,
respectively.

4.2.3 EDP Optimization Model

Fig. 7 shows the accuracy of six models in predicting EDP index. According to the figure, Decision
Tree and KNN have the highest accuracy, which is 92.259% and 90.62%, respectively.
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Figure 5: Comparison of time optimization models
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Figure 6: Comparison of energy optimization models
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Figure 7: Comparison of EDP optimization models
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4.3 Combined Model
In order to further improve the prediction accuracy of the single model used in this article, this

article combines multiple models and uses a single fully connected layer to fuse the results of a single
model to obtain a combined model. After considering the weakness of the mobile platform’s weak
computing power, this article uses two basic models to combine, and the modeling process is shown
in Fig. 8, Among them, input X of the combined model is model 1, model 2, . . . , model n output. In
addition, w1, w2, . . . , wn represent the weight of the models, and w1 + w2 + . . . + wn = 1.

Figure 8: Combined model modeling process

Aiming at time, energy consumption and EDP, this paper uses the combined model for modeling
with high accuracy and low inference time as the objectives respectively, and evaluates the optimization
effect of the combined model.

4.3.1 Low Delay Combined Model

a) High accuracy: According to the comparison of the prediction accuracy in Fig. 5, the two
models with the highest accuracy, Random Forest and KNN. The prediction accuracy of the
combined model is shown in Fig. 9. The accuracy is 97.267%, and the reasoning time is about
103.13 ms, which can optimize the average execution time of the program by 34.138%.

b) Low inference time: Through the steps shown in Fig. 7, the model prediction performance after
combining the two models (Line Regression: 31.25 ms, Decision Tree: 15.63 ms) with the least
inference time in Fig. 2 is shown in Fig. 10, and the model accuracy rate is about 91.699%, The
inference time is about 46.875 ms. Compared with Fig. 6 high-accuracy combined model, the
model reasoning time can be saved by 76.923%. Compared with the test set data, the program
execution time can be optimized by 21.181% on average.
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Figure 9: Time combination model for high accuracy
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Figure 10: Time combination model for low inference time

4.3.2 Low Energy Consumption Combined Model

a) High accuracy: It can be seen from the prediction accuracy of the model in Fig. 5 that KNN
and SVR have the highest prediction accuracy. The prediction accuracy and inference time of
the combined model are shown in Fig. 11. The accuracy of the model is about 95.087%, and
the inference time is about 62.5 ms. Compared with the test data, the energy consumption of
the program can be optimized by 31.116% on average.

b) Low inference time: By comparing the inference time of the models in Fig. 5, the two models
with the lowest inference time are Decision Tree and SVR, both of which are 31.25 ms. As
shown in Fig. 12, the accuracy of energy consumption prediction of the combined model and
the inference time of the model is about 92.589%, and the inference time is about 46.875 ms. By
comparing the inference time of the model, it can be seen that the inference time of this model
is 25% less than that of the KNN+SVR in Fig. 10. Compared with the test set, the combined
model can optimize the program energy consumption by 22.003% on average.
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Figure 11: Energy combination model for high accuracy
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Figure 12: Energy combination model for low inference time

4.3.3 Low EDP Combined Model

a) High accuracy: The comparison of EDP prediction accuracy results of each single model in
the Fig. 6 shows that the Decision Tree and KNN models have the highest accuracy. After the
combination, the prediction performance of the combined model is shown in Fig. 13, and the
accuracy of the combined model is about 96.377%. By comparing the prediction results of the
combined model with the results of the test set, the model can optimize the program EDP by
33.973% on average.

b) Low inference time: By comparing the inference time of various models in Fig. 6, it can be seen
that the inference time of KNN and Decision Tree models is the lowest, both 15.625 ms, while
the inference time of the combined model is 46.86 ms, as shown in Fig. 12.

Since machine learning methods have a low CPU and memory overhead and have a higher
prediction accuracy, the machine learning methods achieve good performance in energy efficiency
optimization based on program characteristics for TEE. And for our constructed small-scale bench-
mark, our proposed machine learning methods perform better than the system default CPU frequency
scheduling strategy.
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Figure 13: Combined models for EDP

5 Conclusion

In this paper, Raspberry Pi 3B hardware platform is used to study the application performance in
the op-tee environment. By changing the computation amount of tasks under different CPU frequency
scheduling strategies, it is found that the optimal scheduling mode is not fixed for time, energy
consumption and EDP. Therefore, the machine learning model can be used to dynamically change
the CPU frequency scheduling strategy according to the application characteristics to reduce program
energy consumption.

In this paper, regression models are used to combine the models with high accuracy and low
reasoning time as the combination goals respectively, and the parallel combination mode is used to
combine the models. Experimental verification results show that the proposed scheduling method
has better energy efficiency than the default scheduling strategy. Among them, the shortest delay
scheduling model with high accuracy as the combined target Random Forest-KNN can save 34.14%
of the time on average. The combination of Line Regression-Decision Tree with low inference time as
the target can save 21.18% on average; The combination of KNN-SVR with high accuracy can save
31.12% on average, and the combination of Decision Tree-SVR with low reasoning time can save 22%
on average. Decision Tree-KNN, the lowest EDP prediction model, combined with the advantages
of high accuracy and low reasoning time, can be optimized by 33.97% on average. In addition, the
combined model proposed in this paper is of low time consuming and universal applicability.
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