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Abstract: Traffic flow prediction plays an important role in intelligent transporta-
tion systems and is of great significance in the applications of traffic control and
urban planning. Due to the complexity of road traffic flow data, traffic flow pre-
diction has been one of the challenging tasks to fully exploit the spatiotemporal
characteristics of roads to improve prediction accuracy. In this study, a combined
flow direction level traffic flow prediction graph convolutional network (GCN)
and long short-term memory (LSTM) model based on spatiotemporal characteris-
tics is proposed. First, a GCN model is employed to capture the topological struc-
ture of the data graph and extract the spatial features of road networks.
Additionally, due to the capability to handle long-term dependencies, the long-
term memory is used to predict the time series of traffic flow and extract the time
features. The proposed model is evaluated using real-world data, which are
obtained from the intersection of Liuquan Road and Zhongrun Avenue in the Zibo
High-Tech Zone of China. The results show that the developed combined GCN-
LSTM flow direction level traffic flow prediction model can perform better than
the single models of the LSTM model and GCN model, and the combined ARI-
MA-LSTM model in traffic flow has a strong spatiotemporal correlation.

Keywords: Flow direction level; traffic flow forecasting; spatiotemporal
characteristics; graph convolutional network; short- and long-termmemory network

1 Introduction

Currently, as a global “urban disease,” road traffic congestion produces heavy economic losses and
social costs, including time wastage, driving stress, and issues with driver mental health. It also leads to
long-term environmental damage [1,2], which is the main contributor to the degradation of ambient air
quality in urban areas. Additionally, one significant negative impact of a traffic jam is the safety cost; that
is, a traffic jam increases the risk of a car crash [3].

For the situations of limited supply capacity for transportation infrastructure, the rapid growth of motor
vehicle ownership, the unchanged road network structure, and the decreased proportion of resident green
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travel, the most effective and feasible way to increase road capacity in urban areas is to improve the traffic
management and control at intersections. To accomplish this goal, the real-time traffic states need to be
predicted accurately to make efficient use of road information to alleviate traffic congestion [4,5].

2 Literature Review

Short-time traffic prediction is a key component of an intelligent transportation system and is one of the
important means to improve traffic control. With the development of intelligent transportation systems,
advanced road sensors have been put to use to obtain rich real-time traffic information [6], and the means
of obtaining road traffic data sources are becoming more diverse. Consequently, traffic data have been
collected more precisely and timely. Real-time and accurate traffic flow prediction can provide continuous
information and dynamic path guidance for improving traffic control strategies and optimizing signal
timing schemes. Traffic flow data are characterized by spatiotemporal correlation, limitations, and duality.
Thus, traffic flow prediction is moderately challenging. In recent years, transportation researchers have
been paying particularly close attention to continuously optimizing traffic flow prediction models as well
as frequently improving model robustness and accuracy. There are three main types of existing traffic
prediction methods: statistical method-based models, traditional machine-learning models, and deep-
learning models [7]. The main statistical methods include the Kalman filter [8], autoregressive integrated
moving average (ARIMA) [9,10], and local linear regression (LLR) [11]. One basic assumption of these
models is that future traffic flow data have similar characteristics to historical data. These models are
mostly simple, computationally efficient, and suitable for roads with stable traffic conditions. However,
these models are less suitable for roads with unstable traffic flow. The main representatives of traditional
machine-learning models include the random forest algorithm [12,13], support vector regression (SVR)
[14], and Bayesian networks [15]. The prime representatives of deep-learning models include the k-
nearest neighbor (KNN) [16], convolutional neural network (CNN) [17], and long short-term memory
(LSTM) [18]. Traditional machine-learning models and deep-learning models can be regarded as data-
driven methods. These models have strong nonlinear mapping capabilities and can update a network
based on real-time data. Thus, these models are desirable for roads with complex traffic conditions and
markedly improve the prediction performance. However, the limitation of the models is that complex
training and a large amount of data are required. Additionally, the prediction accuracy is always below
the needs of traffic signal timing.

In recent years, based on the traditional single prediction model, combined prediction models have been
developed using two or more single models [19,20]. This type of model can capture the characteristics of
traffic flow more comprehensively, and the prediction accuracy has been improved to a certain extent
compared to the traditional model. The existing combined prediction models can be roughly divided into
two categories. One category involves predictions using different combined models at the same time,
combined with specific mathematical operation methods such as weight distribution, to obtain the final
prediction value. For example, Lu et al. [21] proposed one combined prediction model of ARIMA-LSTM
and used the dynamic weighting method to link the two models to achieve high prediction accuracy. Xu
et al. [22] proposed a hybrid model to predict short-term traffic flow by combining the autoregressive
fractional integral moving average (ARFIMA) model with the nonlinear autoregressive (NAR) neural
network model. The ARFIMA model was used to predict the linear component of traffic flow, and the
NAR neural network model was applied to predict the nonlinear residual component. Finally, the
weighted value was used as the predicted flow in the hybrid model.

Another type of combined model is the convergence prediction among different models. Du et al. [23]
developed a short-term traffic flow prediction model based on a wavelet neural network with an improved
whale optimization algorithm (IWOA-WNN). This model improved the prediction accuracy and response
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speed of a wavelet neural network. Liu et al. [24] proposed a convolutional neural network model based on
wavelet reconstruction (WT-2DCNN). The internal characteristics of traffic flow were obtained through
multiple pooling layers and convolution layers in the model, followed by the applications of these
characteristics to traffic flow prediction. The results showed that the combined model appeared to be
more accurate and had better training effectiveness than the recurrent neural network (RNN) model.

Furthermore, recognizing the space-time characteristics of traffic flow could widely increase the
prediction accuracy of the models. Cui et al. [25] proposed a Graph Wavelet Gated Recurrent (GWGR)
neural network that used a graph wavelet to extract spatial features and used a gated recurrent structure to
explore the temporal characteristics of sequence data. The results showed that the developed model could
achieve high prediction performance and training efficiency. Liu et al. [26] combined the spatiotemporal
characteristics of traffic flow with the crash components to construct a G-CNN model to predict the traffic
flow in a road traffic environment with vehicle collisions. Lee et al. [27] incorporated three location
relationships for the distance, direction, and position into a deep neural network. To identify the spatial
properties of road networks to achieve the prediction of traffic speed, Ta et al. [28] proposed an adaptive
spatiotemporal graph neural network, the Ada-STNet, in which the optimal graph structure was first
derived with the guidance of node attributes, and then the complex spatiotemporal properties were
captured in the convolutional structure.

In summary, compared to the single prediction models, the combined models have a higher prediction
accuracy. However, these models are insufficient to explore the temporal-spatial correlation of traffic flow, so
their prediction accuracy can be further improved, to better accommodate the needs of traffic signal timing. In
the determination of the temporal and spatial correlation of traffic flow, there are three main challenges.

1) The dynamic characteristics of road traffic reflect the fact that historical data have different effects on
future data in different periods. Thus, it is highly difficult to capture dynamic temporal correlation.

2) The road networks generally appear to be non-Euclidean structures with irregular characteristics.
Hence, it is extremely difficult to acquire the spatial correlation between traffic flows in adjacent road
sections.

3) The current research on intersection traffic flow prediction is mainly focused on the overall flow of the
intersection approach and rarely involves the refined prediction for different flow directions of the
intersection. However, the refined and dynamic debugging of the timing scheme at signalized
intersections urgently requires the flow direction level data at intersections as a basis.

Based on this, this study proposes a graph convolutional network (GCN)-LSTM flow direction level
traffic flow prediction model based on spatiotemporal characteristics. The traffic flow at the lane level is
forecast by using the license plate recognition data, and the research objective of the traffic flow is refined
from the whole approach road to each direction of the approach road. First, the spatial correlations of
adjacent sections of urban roads are analyzed using a graph convolution neural network. Then, combined
with the time correlation of the traffic flow, the flow direction level spatiotemporal features of the traffic
flow at urban road intersections are predicted.

3 Research Methods

3.1 LSTM Model

An LSTM neural network [29] is proposed to solve the deficiencies of normal neural networks being
sensitive to short-term data and prone to gradient explosion and gradient disappearance. Thus, LSTM is
appropriate for learning and modeling traffic flow data with long-term dependency. The LSTM model can
maintain useful information from the previous moments for long-term memory for the time series
prediction of traffic flow. The model mainly includes three gating structures for information flow control,
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the input gate, forget gate, and output gate, and memory storage unit. The structure of the LSTM unit is
shown in Fig. 1.

The forgetting gate ft can control long-term information data. The input values of the forgetting gate are
the outputs of the traffic flow sequence data ht�1 and the real-time traffic flow data xt at the previous moment.
The inputs need to be processed by the weight matrix of the forget gateWf and the bias term of the forgetting
gate bf and to be controlled by a r function (sigmoid function). The r function (the sigmoid function)
controls the movement of the information obtained at the previous moment, and the degree of
information retention is determined by a value in the range of [0,1]. The process of the forgetting gate
can be expressed by

ft ¼ r Wf � ht�1; xt½ � þ bf
� �

: (1)

The input gate it determines the information update of the traffic flow sequence data ht�1 and traffic flow
data xt in the LSTM unit ct. The information processing process of the input door can be obtained as
follows:

it ¼ r Wi � ht�1; xt½ � þ bið Þ; (2)

~ct ¼ tanh Wc � ht�1; xt½ � þ bcð Þ; (3)

ct ¼ ft � ct�1 þ it � ~ct: (4)

whereWi represents the weight matrices of the input gate, bi and bc are the corresponding deviation vectors,
~ct is the unit status update value at time t, Wc represents the weight matrices of the input unit, it is the input
gate, ct�1 is the unit status value at time t � 1, and ct is the unit status value at time t.

The output gate ot can directly determine the output information ht in the current state of the LSTM
neural network ct. The information processing process of the output gate can be expressed by the
following formula:

ot ¼ r Wo � ht�1; xt½ � þ boð Þ; (5)

ht ¼ ot � tanh ctð Þ; (6)

where Wo is the weight matrix of the output gate, and bo is the corresponding deviation vector.

3.2 GCN Model

The spatial relationship of the road network has a non-European graphic structure, which can be
abstracted as a directed graph structure. Every intersection or road section can be regarded as a node. A
graph convolutional network (GCN) is suitable for extracting the data features of the non-Euclidean
structure. Therefore, a GCN can be employed to capture the spatial characteristics of traffic flow data

Figure 1: Illustration of the structure of the LSTM unit [21]
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when predicting traffic flow [30]. The GCN model consists of three parts: the input layer, the hidden layer,
and the output layer. First, the traffic network topology graph is entered through the input layer of the GCN
model, and the data are transmitted to the convolution layer in the hidden layer. Then the graph convolution
operator sequentially traverses all nodes in the topology graph for convolution operations, and the global
features of the topology graph are obtained with multi-layer convolution operations. The structure of the
GCN neural network model is shown in Fig. 2.

The convolution operations in the GCN model are mainly divided into two categories: spatial graph
convolution and frequency graph convolution. Spatial graph convolution is a convolution operation that
is defined directly based on the spatial adjacency matrix, including two processes of passing information
and updating the state. The spatial graph convolution framework can be obtained:

hlþ1
v ¼ Ulþ1 hv;

X
Mlþ1 hlv; h

l
u; xuv

� �� �
; (7)

where u and v represent nodes, hlv represents the graph convolution characteristics of node v at layer l, hlu
represents the graph convolution characteristics of node u at layer l, xuv represents the node
characteristics, hlþ1

v represents the graph convolution feature information of node v at layer lþ1, and Mlþ1

and Ulþ1 are aggregate functions.

Frequency domain convolution is the convolution operation using the Fourier transform of the graph.

The Laplacian matrix L ¼ Dv � A can be expressed as L ¼ In � D
� 1

2
v AD

� 1
2

v after normalization. The
Laplacian matrix L is a positive semi-definite real symmetric matrix, and the feature can be decomposed
into L ¼ UΛUT . Similar to the convolution operation in Euclidean space, the convolution operation can
be expressed as x � g ¼ U UTx � UTgð Þ ¼ U UTg � UTxð Þ. Taking UTg as the trainable graph
convolution kernel gh, the graph convolution operation can be simplified as follows:

x � g ¼ UghU
Tx; (8)

where x represents the input signal, g is the convolution kernel, gh is the trainable convolution kernel, In is the
identity matrix, A is the adjacency matrix,Dv is the node degree matrix, Λ is the diagonal matrix composed of
the corresponding eigenvalues, U is the feature vector, � is the Hadamard product, � represents the
convolution operation, and UTx is the graph Fourier transform.

. . .

. . .

. . .

Input data

Convolutional 
layer 1

Convolutional 
layer k

Global features

Figure 2: Graph convolution network structure [31]
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To speed up the calculation of the eigenvalues and eigenvectors of the Laplace matrix and reduce the
calculation cost, the order Chebyshev network is used to approximate the convolution kernel of spatial
map convolution. Instead of the convolution kernel, the Chebyshev polynomial can be obtained:

gh Λð Þ ¼
Xk�1

k¼0

hkTk ~Λ
� �

; (9)

where ~Λ is the normalized eigenvalue diagonal matrix, Tk ~Λ
� �

is the k-order Chebyshev polynomial of ~Λ, hk is
the corresponding coefficient vector, which is the parameter updated iteratively in the model training,
~Λ ¼ 2Λ=kmax � In, kmax represents the maximum characteristic value, and the input value of the
Chebyshev polynomial is standardized to be between �1; 1½ �. At this time, the plot volume operation can
be expressed as follows:

x � gh ¼ U
XK
i¼1

hiTk ~Λ
� � !

UTx ¼
XK
i¼1

hiTk U ~ΛUT
� �

x ¼
XK
i¼1

hiTk ~L
� �

x; (10)

where Tk ~L
� � ¼ 2~LTk�1 ~L

� �� Tk�2 ~L
� �

, T0 ~L
� � ¼ 1, T1 ~L

� � ¼ ~L, and ~L ¼ 2L=kmax � In.

Therefore, when k ¼ 1 and the maximum eigenvalue kmax ¼ 2, ~L ¼ L� In, and the graph convolution
calculation can be expressed as follows:

x � gh � h0x� h1 L� Inð Þx ¼ h0x� h1D
� 1

2AD� 1
2x; (11)

where ~L is the normalized eigenvalue Laplace matrix; h0 and h1 are the learning parameters of the graph. To
avoid overfitting, assuming that h ¼ h0 ¼ �h1, the graph convolution calculation can be given as follows:

x � gh � h In þ D� 1
2AD� 1

2

� �
x: (12)

At this point, the first-order Chebyshev network is renormalized to avoid problems such as gradient

explosion and numerical instability, so ~D� 1
2~A~D� 1

2 ¼ In þ D� 1
2AD� 1

2, ~A ¼ AþIn, ~Dii ¼
P
j

~Aij. Then the

graph convolution of the first-order Chebyshev network can be obtained as follows:

hlþ1 ¼ f hl; A
� � ¼ r ~D

� 1
2~A~D

� 1
2hlW l

� �
; (13)

where ~D represents the angle matrix, ~A represents the adjacency matrix with a self-ring, ~Dii represents the
element on the diagonal of the matrix, ~Aij represents the element of the adjacency matrix, hlþ1 represents
the graph convolution feature of layer l þ 1, hl represents the graph convolution feature of layer l, Wl

represents the weight matrix of layer l, and r represents a sigmoid activation function.

3.3 Problem Description

In traffic flow prediction, it is necessary to transform the topological structure of an urban road network
into a spatiotemporal traffic map and then predict the traffic flow data in multiple time intervals (T) in the
future through the prediction model function. Taking the intersection as the node in the road network
diagram and the road section as the edge in the road network diagram, the traffic diagram
G ¼ f V ; E; W ; tð Þ is constructed. The traffic flow prediction problem can be expressed as follows:

X t�Tþ1; � � � ; X t; G
� 	 �!f �ð Þ

X tþ1; � � � ; X tþT
� 	

; (14)
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where V represents the collection of intersections, E represents the collection of sections, W represents the
connectivity between nodes at time t, that is, the weight matrix of the edges, and X represents the traffic flow
prediction data at the corresponding time.

Assuming that there are N nodes in the traffic graph G, the directed graph of the traffic network can be
represented by the adjacency matrix A:

A ¼
A11 � � � AN1

..

. . .
. ..

.

A1N � � � ANN

2
64

3
75; (15)

Aij ¼ 0 Vij =2 E
1 Vij 2 E



; (16)

where Aij represents the element of the adjacency matrix, and Vij represents the connecting section from
intersection i to intersection j. Additionally, when Aij ¼ 0, Vij reflects the fact that intersection i and
intersection j are not directly connected. When Aij ¼ 1, Vij indicates that there is a direct connection
between intersection i and intersection j.

4 GCN-LSTM Flow Direction Level Traffic Flow Prediction Model Construction

In the process of building the model, the historical traffic flow data need to be put into the model, and the
GCN network is used to extract the spatial characteristics among the data. Then the LSTM neural network is
used to extract the time series characteristics of the data. Next, the retained information, discarded
information, and updated information for the data in the prediction model are determined by the LSTM
neural network. Finally, based on the historical information, the traffic flow parameters are predicted to
determine the output information. The algorithm structure of the GCN-LSTM flow direction level traffic
flow prediction model based on spatiotemporal characteristics is shown in Fig. 3.

To show the relationship between the GCN model and the LSTM model in detail, the connection
between the GCN spatial structure convolution layer and the LSTM time series prediction layer is
demonstrated in Fig. 4. The connection sequence is as follows. First, the traffic flow sequence data ht�1

and the unit information state ct�1 at time t�2 are produced by the LSTM unit structure, and then the
sequence data ht�1 and the traffic flow data xt at time t form the new sequence data ht�1; xt½ �. Using
ht�1; xt½ �, the data for h0t�1 are obtained through the first convolution structure of the GCN model, and the
data for h00t�1 are received through the second convolution structure. After this, the sequence data for h00t�1

Figure 3: GCN-LSTM flow direction level traffic flow prediction model structure
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and the unit information state ct�1 enter the next LSTM unit structure, and the output data at time t�1 are
obtained through the input gate, forgetting gate, and output gate of the LSTM unit structure. The specific
output data are the updated sequence data ht and information state ct that are stored at time t�1 of the
LSTM model, as well as the traffic prediction data x0t. After completing the above steps, the prediction of
the next time series starts running until the prediction time interval ends.

In the case of constructing the dynamic traffic association diagram G, it is assumed that the section
inflow between intersections is equal to the section outflow. Considering the dependence between the
weight of nodes and the flow of the intersections, the weight is expressed by the correlation degree
between nodes. The higher the correlation degree is, the greater the weight value is. In the specific
modeling process, the correlation degree between intersections is classified into the static correlation
degree and the dynamic correlation degree. The dynamic correlation degree refers to the proportion of the
flow direction of the traffic flow at the two intersections. The static correlation degree refers to the
relationship regarding the distance between the intersections, road parameters, and other indicators.

The dynamic correlation degree ~pij of graph G in t; t þ 1½ � time is the proportion of the traffic flow qij
from intersection i to intersection j relative to the total flow of intersection i, that is, the flow diversion
probability from intersection i to intersection j. For the weight calculation of the first-order adjacency
matrix, qij includes the sum of the traffic flow of going straight, turning left, and turning right from
intersection i to intersection j, and at any t; t þ 1½ � time,

P
~pi ¼ 1. Then the intersection dynamic

correlation degree is obtained with

~pij ¼
Ptþ1

t qijPtþ1
t Qi

¼
Ptþ1

t qlij þ qsij þ qrij

� �
Ptþ1

t Qi

: (17)

In the formula, qlij, q
s
ij, and q

r
ij represent the traffic flow from intersection i to intersection j by turning left,

going straight, and turning right, respectively; Qi represents the total flow of intersection i.

To simplify the model structure and improve the operation efficiency, the static correlation degree
between intersections is expressed by the intersection spacing, and its impact on the model performance
is explored. In addition, the geometric parameters of different sections in the same road are similar, so the
influence of the road parameter is removed in the subsequent modeling. Based on the above assumptions,
the static correlation degree considering intersection spacing and correction parameters is given as
follows:

Figure 4: Connection diagram between spatial structure convolution layer and time series prediction layer
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spij ¼ dij þ r1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
qij � qij
� �2r

; (18)

where dij represents the distance from intersection i to intersection j, and r1 represents the coefficient of the
correction distance.

Combining the static correlation degree, the dynamic correlation degree, and the traffic flow data at the
corresponding time, the weight matrix of the traffic map can be obtained. The corresponding elements of the
matrix are multiplied to obtain the graph convolution operator GCNt of layer l in the GCN-LSTM combined
neural network model. The specific expression is

GCNl
t ¼ Wl

t � sp� ~p
� � � xt; (19)

where Wt represents the weight matrix, � represents the multiplication of the corresponding elements of the
matrix, and xt represents the traffic parameter data at time t.

At this point, the GCN-LSTM combined neural network model has been built. Using this model to
predict traffic flow, the forgetting gate, input gate, output gate, and input unit state of the model at time t
can be calculated with the following formula:

ft ¼ r Wf � GCNt þ Uf ht�1; xt½ � þ bf
� �

it ¼ r Wi � GCNt þ Ui ht�1; xt½ � þ bið Þ
~ct ¼ tanh Wc � GCNt þ Uc ht�1; xt½ � þ bcð Þ
ot ¼ r Wo � GCNt þ Uo ht�1; xt½ � þ boð Þ
ct ¼ ft � ct�1 þ it � ~ct
ht ¼ ot � tanh ctð Þ

8>>>>>><
>>>>>>:

; (20)

where Uf , Ui, Uo, and Uc are the weight matrices of the previously hidden layer.

In the case of illustrating the modeling process clearly, the framework of the proposed GCN-LSTM flow
direction level traffic flow prediction model is created, as shown in Fig. 5.

5 Experiment and Analysis

5.1 Dataset

In this study, the north approach of the intersection of Liuquan Road and Zhongrun Avenue is selected as
the experimental site in the Zibo High-Tech Zone of China. A road network topology is provided around the
target intersection. The positions of the sensors and the traffic flow in the relevant direction are shown in
Fig. 6. The topology diagram is provided to show the spatiotemporal dependence pattern of the network
traffic. Data collection is conducted with a time interval of two hours, during the morning peak (6:30–
8:30), evening peak (16:30–18:30), and off-peak (13:00–15:00) periods, in 66 working days in April,
May, and June 2022. Taking the morning peak as an example, the data are aggregated at intervals of 5,
10, 15, and 20 min, and 1584 data groups, 792 data groups, 528 data groups, and 396 data groups are
obtained, respectively. The traffic flow prediction models are established successively based on GCN-
LSTM, GCN, LSTM, and ARIMA-LSTM. The prediction performance of each model is analyzed, based
on various time intervals in different periods. Additionally, the prediction ability of the traffic flow
prediction model is verified according to the data in different periods. To improve the training effect of
the model, make the gradient drop rapidly, and accelerate the convergence of the model, the data values
are mapped to [0,1] using min� max standardization processing, as shown in the following equation:
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y0 ¼ y� minðyÞ
maxðyÞ � minðyÞ ; (21)

where y0 represents a scalar value, y represents the original data, maxðyÞ represents the maximum value of the
original data, and minðyÞ is the minimum value of the original data.

5.2 Parameter Setting

To quantitatively compare the prediction performances of the proposed model and the other models, the
root mean square error (RMSE), mean absolute error (MAE), and accuracy (ACC) are used as indicators to
evaluate the prediction performance [32,33].

Begin

Parameter initialization

 GCN-LSTM flow direction level 
traffic prediction model

Model parameter 
settings

Whether the number of 
iterations reaches the 

maximum?

Parameter 
optimization

Num_Iteration+1

End of training?

Num_Epoch+1

Data 
preprocessing

Training set

Test set

Model testing

Result output

Error 
calculation

End

N

Y

N

Y

Figure 5: Framework of the proposed GCN-LSTM flow direction level traffic flow prediction model
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(1) RMSE

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
t¼1

ŷt�ytð Þ2
vuut : (22)

(2) MAE

MAE ¼ 1

N

XN
t¼1

ŷt � ytj j: (23)

(3) ACC

ACC ¼ 1� 1

N

XN
t¼1

ŷt � yt
yt

����
����

 !
	 100%: (24)

In Eqs. (22)–(24), N is the number of data samples, yt is the measured data value at time t, and ŷt is the
predicted value.

Considering the influence of the signal timing scheme on the traffic flow combination, the prediction
performances of the GCN-LSTM combined model, the ARIMA-LSTM combined model, the GCN
model, and the LSTM single model are compared for different periods. Additionally, the flow direction
level traffic flow is predicted based on the optimum period. Finally, the maximum number of iterations is
1000, and the learning rate is 0.01. The flow data are divided into a training set and a testing set with a
ratio of 10:1. By slightly increasing the number of hidden layers and the number of hidden layer neurons,

Figure 6: Road network topology
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the errors can be effectively reduced, and the accuracy can be improved. However, it should be noted that too
many layers lead to more complex networks. Comparisons of the prediction results for the GCN-LSTM
combined model for different hidden layers and a different number of neurons are shown in Tables 1 and 2.

The results show that the prediction accuracy reaches the highest value when the number of hidden
layers of the model is three. At this time, when the number of neurons is five, the corresponding
prediction effect is the best. For the order k of the Chebyshev polynomial, the larger the value of k is, the
wider the captured spatial structure is. However, at the same time, the increase in the value of k also
increases the complexity of model learning and reduces the performance of the model. Through the
comparative experiments for different orders, when the order is equal to three, the model has the best
performance.

Table 1: Comparison of prediction results of different layers

Number RMSE MAE ACC

1 8.369 6.479 78.48%

2 7.765 6.418 87.26%

3 7.034 5.235 90.31%

4 7.174 5.322 90.05%

5 7.237 7.622 90.14%

6 8.262 8.591 80.39%

7 8.138 7.545 81.65%

8 9.432 7.863 76.47%

9 10.627 8.736 70.18%

10 10.596 8.971 70.25%

Table 2: Comparison of prediction results of different neuron numbers

Number RMSE MAE ACC

1 7.757 5.835 70.56%

2 7.557 5.639 81.32%

3 7.529 5.835 83.64%

4 7.221 5.436 87.28%

5 7.034 5.235 90.31%

6 7.165 5.272 88.53%

7 7.365 5.364 89.49%

8 7.365 5.482 86.25%

9 7.484 5.640 85.36%

10 7.625 5.521 86.92%
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5.3 Analysis of Experimental Results

The prediction performance of each prediction model at different time intervals is shown in Table 3. It
can be observed in Table 3 that the four traffic flow prediction models have smaller error at the 5 min time
interval than the others. Compared to the existing models, the developed GCN-LSTM combined prediction
model integrates the temporal and spatial characteristics to achieve higher predictive accuracy. Because
residents are more likely to travel in the peak period and the traffic volume in the off-peak period appears
to be more dispersed and fluctuated, the GCN-LSTM combined prediction model performs better in the
peak period than in the off-peak period. The model produces better results in the late peak period than in
the early peak period since the period is larger at the late peak than at the early peak.

Table 3: Comparison of performance indicators for different traffic flow prediction models

Time Model Evaluating
indicator

North entrance of Liuquan Road Zhongrun Avenue intersection

Morning peak Evening peak Flat peak

Straight
ahead

Left-
turn

Straight
ahead

Left-
turn

Straight
ahead

Left-
turn

5 min GCN-
LSTM

RMSE 7.758 7.584 6.962 7.033 8.571 8.762

MAE 5.317 5.221 4.748 5.120 6.086 6.628

ACC 90.43% 90.28% 91.54% 90.84% 83.32% 81.28%

ARIMA-
LSTM

RMSE 8.213 8.027 7.521 7.235 8.432 8.384

MAE 5.832 5.829 5.394 5.518 5.943 5.763

ACC 89.32% 88.22% 89.42% 89.23% 84.23% 86.39%

GCN RMSE 9.393 8.439 9.185 8.851 9.675 9.428

MAE 7.545 7.402 7.332 7.528 7.998 7.788

ACC 79.15% 80.82% 83.28% 85.32% 77.09% 78.43%

LSTM RMSE 8.502 8.323 8.249 8.372 9.167 9.038

MAE 6.537 6.445 6.391 6.254 7.023 7.278

ACC 85.29% 85.39% 86.45% 87.18% 81.24% 82.44%

10 min GCN-
LSTM

RMSE 8.769 8.994 8.559 8.623 9.115 9.234

MAE 7.028 7.231 6.847 6.827 7.831 7.549

ACC 86.24% 86.32% 88.35% 87.85% 80.13% 78.49%

ARIMA-
LSTM

RMSE 8.743 8.823 8.711 8.792 9.239 9.324

MAE 7.367 7.529 6.932 7.041 8.124 7.932

ACC 85.63% 81.48% 85.36% 86.15% 78.22% 82.01%

GCN RMSE 11.268 11.498 10.915 10.734 11.348 11.623

MAE 9.884 9.732 9.552 9.472 10.527 10.628

ACC 74.68% 78.29% 79.76% 79.72% 72.58% 73.10%

LSTM RMSE 10.158 10.348 9.837 9.734 10.772 10.635

MAE 8.482 8.285 8.212 8.103 9.131 8.783
(Continued)
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When the periods of the early peak and late peak are the same, the fluctuation of the traffic flow is
slightly smaller in the late peak than that in the early peak. Taking the evening peak as an example, the
ARIMA-LSTM combined prediction model is compared with the second best one, which is the GCN-
LSTM combined prediction model at the time interval of 5 min. The RMSE of straight travel is reduced
by 7.43%, the MAE is reduced by 11.98%, and the ACC is increased by 2.37%. The left-turn RMSE is
decreased by 2.79%, the MAE is decreased by 7.21%, and the ACC is increased by 1.80%.

Table 3 (continued)

Time Model Evaluating
indicator

North entrance of Liuquan Road Zhongrun Avenue intersection

Morning peak Evening peak Flat peak

Straight
ahead

Left-
turn

Straight
ahead

Left-
turn

Straight
ahead

Left-
turn

ACC 81.93% 79.37% 80.99% 81.28% 76.87% 77.24%

15 min GCN-
LSTM

RMSE 10.298 10.427 9.673 9.424 12.625 11.942

MAE 8.519 8.631 8.065 7.826 10.33 9.367

ACC 80.87% 78.32% 81.98% 82.25% 73.92% 74.48%

ARIMA-
LSTM

RMSE 12.178 11.572 10.238 10.835 13.472 12.749

MAE 9.753 9.173 8.728 8.912 11.378 11.037

ACC 73.32% 77.21% 80.21% 79.36% 70.28% 72.47%

GCN RMSE 13.123 12.829 12.625 12.342 14.365 13.643

MAE 11.646 10.987 11.336 10.367 12.283 11.276

ACC 71.79% 72.33% 74.92% 75.34% 68.71% 69.43%

LSTM RMSE 12.864 12.534 11.992 11.276 13.632 12.987

MAE 11.034 11.423 10.651 10.374 11.516 10.963

ACC 72.27% 74.46% 76.34% 77.32% 70.19% 71.84%

20 min GCN-
LSTM

RMSE 13.365 13.729 11.471 12.351 15.784 17.234

MAE 11.529 12.028 10.325 11.219 13.938 14.568

ACC 72.43% 71.35% 77.52% 75.38% 67.33% 62.47%

ARIMA-
LSTM

RMSE 14.326 14.287 13.374 14.273 16.245 16.439

MAE 12.486 11.573 11.374 12.385 15.365 14.927

ACC 70.87% 69.44% 72.87% 71.62% 65.73% 64.19%

GCN RMSE 16.968 17.725 15.882 15.345 21.241 19.348

MAE 13.672 13.525 13.268 13.385 18.596 17.375

ACC 64.18% 63.28% 66.29% 65.34% 57.96% 59.34%

LSTM RMSE 15.362 14.874 13.582 15.385 19.635 18.346

MAE 12.568 11.387 11.875 13.478 17.237 15.549

ACC 67.46% 68.12% 70.62% 67.37% 60.18% 63.28%
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The north entrance of the intersection of Liuquan Road and Zhongrun Avenue on the last working day of
June is chosen for the verification of the traffic flow. The flows are divided into going straight and turning left
according to their directions and are aggregated at the interval of 5 minute. Additionally, the GCN-LSTM
model is used to verify the prediction effect of the flow level for each direction. Next, five minutes is
selected as the prediction time interval, and the GCN-LSTM prediction model is used to predict the flow
direction of the through and left-turn traffic flows. The prediction results for the through and left-turn
flow directions are shown in Figs. 7 and 8, respectively. The figures show the comparisons between the
predicted values and the real values of the traffic flow in different directions in the morning peak and the
evening peak, as well as the fluctuations of the prediction error.

Figure 7: Traffic flow prediction of morning peak

Figure 8: Traffic flow prediction of evening peak
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It can be seen in Figs. 7 and 8 that the predicted values of the GCN-LSTM model for traffic flow are
consistent with the actual values in general, and the predicted values are much closer to the actual values
during the morning peak and evening peak hours.

6 Conclusions

To identify the spatiotemporal characteristics of road traffic flow, the GCN-LSTM flow direction level
traffic flow prediction model based on spatiotemporal characteristics is proposed to capture the
spatiotemporal characteristics in this study. Through the model verification, the developed GCN-LSTM
combined flow direction level traffic flow prediction model performs better in predicting traffic flow than
the GCN, the LSTM single prediction model, and the ARIMA-LSTM combined prediction model. In the
proposed model, the high-dimensional time characteristics of traffic flow data are obtained through the
LSTM network. The adjacent matrix of the GCN model is integrated to describe the relationship between
the nodes of the road network. The spatial distribution characteristics of different periods of traffic data
are obtained by mining the space-time correlation of traffic flow in different directions. In this study, the
proposed model can be applied to predict the flow direction level traffic flow at intersections and to
obtain more accurate traffic volume information.

In the next step, the flow direction level predictions can be applied to the field of information control to
forecast the traffic flow in different directions at each entrance of an intersection. The parameters obtained in
this study can help traffic engineers to design the intersection signal timing, to improve the fitting degree
between the signal timing parameters and the traffic operation conditions, and to further improve road
traffic efficiency and safety. This provides method support for the refined, intelligent, and dynamic
management and control of signalized intersections.

Flow direction level traffic flow prediction also faces a series of challenges. For example, hardware
support with full coverage of license plate recognition data in the flow direction level is required. The
implementation effect of the prediction method is reduced by the low flow detection accuracy of the
signal management and control platform.
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