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Abstract: Mining more discriminative temporal features to enrich temporal
context representation is considered the key to fine-grained action recog-
nition. Previous action recognition methods utilize a fixed spatiotemporal
window to learn local video representation. However, these methods failed
to capture complex motion patterns due to their limited receptive field.
To solve the above problems, this paper proposes a lightweight Temporal
Pyramid Excitation (TPE) module to capture the short, medium, and long-
term temporal context. In this method, Temporal Pyramid (TP) module
can effectively expand the temporal receptive field of the network by using
the multi-temporal kernel decomposition without significantly increasing the
computational cost. In addition, the Multi Excitation module can emphasize
temporal importance to enhance the temporal feature representation learning.
TPE can be integrated into ResNet50, and building a compact video learning
framework-TPENet. Extensive validation experiments on several challenging
benchmark (Something-Something V1, Something-Something V2, UCF-101,
and HMDB51) datasets demonstrate that our method achieves a preferable
balance between computation and accuracy.

Keywords: Fine-grained action recognition; temporal pyramid excitation
module; temporal receptive; multi-excitation module

1 Introduction

The goal of action recognition is to analyze and represent the motion information of the human,
to distinguish the behavior contained in the videos. Action recognition has received extensive attention
from academia and industry due to its applications in intelligent monitoring, motion analysis,
human-computer interaction, and so on. However, since video data often shows a strong complexity
in the temporal dimension, building a general and efficient temporal module to learn compact
spatiotemporal feature representations from videos remains a challenging topic.

Previous approaches [1-4] generally use the fixed temporal kernel to learn the local temporal con-
text, then stack a large number of temporal convolutions to gradually increase the temporal receptive
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field of the network. However, these methods have the following problems: first, it is difficult for a
single temporal kernel to learn complex motion representations when the amplitude of motion change
is different. Secondly, the stacked method is computationally inefficient, and some discriminative
temporal information may be greatly weakened in the transmission process of distant inter-frame
information in the network. Transformer-based spatiotemporal models have made breakthroughs in
vision tasks [5-9], which capture the long-term dependencies of all tokens on spatiotemporal positions
via the self-attention mechanism. However, the redundant matrix multiplication introduces a lot of
computational overhead, over parameterization often makes it computationally expensive and hard
to train. In addition, some approaches[10,1 1] exploit complex multi-branch structures to extract multi-
level temporal context in videos, but they still introduce unnecessary computation burden since both
spatial convolution and temporal convolution are performed over all the feature channels. Recently,
Duta et al. [12] proposed utilizing efficient pyramid convolution to enrich the spatial representation.
Unfortunately, this method has rarely been discussed and implemented in video understanding.

To solve the above problems, we propose a Temporal Pyramid Excitation Network (TPENet)
to effectively capture multi-level temporal context, which can achieve a good trade-off between
computation and accuracy. The proposed TPENet consists of two cascaded components: Temporal
Pyramid (TP) and Multi Excitation (ME) modules. To improve the efficiency of spatiotemporal
representation learning, the proposed TP module splits the input channels in parallel and performs
channel-wise temporal convolutions with different kernel sizes on each group to learn temporal
semantics at different levels. The TPE module equipped with temporal pyramid convolution can
expand the temporal receptive field and achieve short, medium, and long-term temporal context
aggregation. On the other hand, the TP module ensures channel interaction sufficiency by channel
shuffling, and without introducing extra computational cost. In addition, we proposed a Multi
Excitation module to further improve the generalization performance of the network. Firstly, the
CE module enables the model to perceive discriminative temporal information from refined feature
excitations by integrating local temporal context into channel descriptors, thus further improving
the temporal reasoning ability of the network. Then, the Channel-wise Temporal Excitation module
learns the temporal importance weight on global spatial features. Finally, the Spatial-wise Temporal
Excitation module learns the temporal relations of each pixel to represent the motion difference
of different pixels. Our method can be flexibly integrated into 2D Convolutional Neural Networks
(CNNs) in a plug-and-play fashion and trained in an end-to-end manner, thus significantly improving
the baseline spatiotemporal representation in a plug-and-play fashion.

2 Related Work

2D CNNs-based. These methods learn spatiotemporal representations by embedding temporal
modules into the backbone network. Some works [13,14] focus on adding temporal modules on
the top layer of the network to complete the later temporal fusion, which captures the temporal
relations between the frame-level feature maps. These methods tend to focus on coarse or long-term
temporal structures, but cannot represents finer temporal relations in the local window. Other works
are generally based on the sparse temporal sampling of Temporal Segment Networks (TSN) [15], and
complete the temporal interaction through global embedding. For example, Lin et al. [16] proposed
a temporal shift module, which moves some channels along the temporal axis to implicitly represent
local temporal relations. To extract the motion information, Jiang et al. [1 7] proposed spatiotemporal
and motion encoding, which extracted spatiotemporal and local motion features by using channel-
wise spatiotemporal blocks and channel-wise motion blocks, respectively. Kwon et al. [18] proposed a
motion squeeze block to establish the relation between adjacent frames and transform this relationship
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into motion features for subsequent prediction. Liu et al. [19] proposed a Temporal Enhancement-and-
Interaction module to learn motion and channel-wise temporal representations. For efficient action
recognition, some work proposed some efficient spatiotemporal encoding methods such as multi-view
learning [20] and channel temporization operator [21], but it is hard to learn global temporal context.
To capture the long-term temporal context, some works use multi-path convolutions [22] or global
temporal attention [23] to learn complex video representations. However, the additional computational
cost introduced by these methods is still not negligible.

3D CNNs-based. These methods perform spatiotemporal representation learning by extending
2D filters to the temporal dimension. Wang et al. proposed to decompose the spatiotemporal module
into an appearance branch for spatial modeling and a relation branch for temporal modeling and
to explicitly model the temporal relation by adopting the multiplicative interaction between pixels
and filter responses across multiple frames. The vanilla 3D filter introduces mass computational cost,
which leads to the overfitting of the network. Some work [24,25] reduces parameters by decomposing
3D kernel factors into the 2D kernel in space and 1D kernel in time. Other work [26,27] utilizes
grouped convolution or depth-separable convolution to design compact 3D descriptors. Furthermore,
Zhou et al. [28] proposed to integrate 3D convolution modules into 2D CNNs to reduce the complexity
of spatiotemporal fusion. Zolfaghari et al. [29] proposed to use 2D CNNs at the bottom layer of the
network to capture static spatial semantic information, and 3D CNNs at the top layer to process
complex motion patterns between frames. However, 3D CNNs are difficult to capture long-range
temporal dependencies due to their limited receptive fields. To tackle this challenge, we adopt a
temporal pyramid excitation module to learn short, medium, and long-term temporal context. Besides,
we propose our TPENet, achieving powerful performance for action recognition.

3 Temporal Pyramid Excitation Network
3.1 Temporal Pyramid Excitation Module

As discussed in the introduction, the previous methods are hard to learn complex motion repre-
sentation with a fixed temporal kernel. To tackle such a problem, we propose an efficient Temporal
Pyramid Excitation (TPE) module, by splitting the input features along the channel dimension and
utilizing channel-wise temporal convolutions with different kernel sizes to expand the temporal
receptive field.

Especially, given an input feature map, TPE sequentially performs a Temporal Pyramid (TP)
module and a Multi Excitation (ME) module as illustrated in Fig. 1, to perform temporal modeling
and enhance the TP module, respectively. The overall process can be summarized as:

Y=2WVX)®X (D

where ® denotes element-wise addition. ¥ and Z denote the TP module and ME module, respectively.
TP module captures short, medium, and long-term temporal context information from the input
feature maps through efficient temporal pyramid convolution. ME module aggregates temporal
features of different levels by parallel multi-path excitation to emphasize the discriminative temporal
information, thus improving the generalization ability of the model.

TP module. The vanilla spatiotemporal pyramid convolution significantly increases the compu-
tational costs of the video architecture since both spatial convolution and temporal convolution are
performed over all the feature channels, thus we use channel splitting and reduce channel interactions
to alleviate computing bottleneck. The proposed TP module is shown in Fig. 2.



2106 TASC, 2023, vol.37, no.2

— CE ——
W
Split —7 ES
— (9 T CIE —(pH—
——9 '
—> STE ——
TP module

input tensor ME module output tensor

@ : clement-wise addition

Figure 1: Temporal pyramid excitation module
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Figure 2: Temporal pyramid module

First, the input tensor X is split into S groups according to the channel dimension, namely
[Xo, X, - -+, Xs_4], and each group has the same number of channels, where X; € R7<(€/SxHxW

Then, we employ temporal convolutions with different kernel sizes on the input feature map to
perform efficient temporal modeling. Specifically, we first reshape input tensors X; to X, € R#">¢/sx7,
and use 1D channel-wise temporal convolution with different kernel sizes to generate temporal
representation F;, € R#"*/*<T on multi-levels. This step can be explained as shown in Eq. (2).

Fl=le(Xl) l:0:15’S_1 (2)
where, f. denotes 1D channel-wise temporal convolution with kernel size K;, K; = 2i — 1.

Subsequently, we concatenate F; according to the channel dimensions to aggregate the temporal
contexts and reshape the output feature map F to R™“*#*" This step can be shown in Eq. (3). In this
way, it is beneficial for the network to learn multiple levels of temporal information from videos, thus
improving the spatiotemporal representation ability for complex motion patterns.

F= [FO, Fl: to aFS—l] (3)
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Finally, to overcome the impact of group convolution, we adopt the channel shuffle operation to
ensure channel-interaction sufficiency.

In general, the proposed method differs from ordinary pyramid convolution in two aspects. (1)
The original intention of our method is to improve the temporal receptive field rather than the spatial
receptive field, (2) Our method improves the efficiency of temporal modeling by coordinating channel
grouping and channel-wise convolution.

ME module. To effectively aggregate the multi-level temporal representation, we proposed the
Multi Excitation (ME) module to explicitly model temporal importance weights. In general, ME
contains three parallel paths, which can be further subdivided into Channel Excitation (CE), Channel-
wise Temporal Excitation (CTE), and Spatial-wise Temporal Excitation (STE). The proposed three
excitation modules are used to model the channel-temporal, temporal-only, and spatial-temporal
relations, these joint modeling approaches can facilitate the network to extract complementary
temporal features.

Channel Excitation (CE). To capture short-term temporal dynamics effectively, we propose a novel
LTE module. LTE aims to learn local temporal relations by integrating temporal context information
into channel descriptors so that the network can better focus on “what” and “when” for a given input
image.

From Fig. 3, we first utilize global average pooling to aggregate the spatial information, thus
obtaining a spatial global descriptor F, € R™“™! "which can be represented as:

F, = GAP (F) = Z Z F (i,)) 4)
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Figure 3: Multi-excitation module

Then, the global descriptor F. is fed into a 1 x 1 convolution to squeeze the number of channels
to C/y (y = 16). This step can be written as:

F'=W, xF )
where W, € R“>¢ and F* € R™*“7*"*!_We then reshape the size of F* to R“"*"*! to enable temporal

modeling. A 1D channel-wise temporal convolution with kernel size 3 is utilized to integrate local
temporal information into channel descriptors.

FF=KxF (6)
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where K € R*¢ is parameterized by the kernel size and input channel, and Fr € R F* is
then reshaped to F, € R™*“7"*! "which is then unsqueezed by using a 1 x 1 convolutional and fed
to a Sigmoid activation. In this way, the channel attention mask M, can be obtained, which can be
formulated as:

M, =68 (W,«F) (7N

where M, € R™“/7<!*1 after the sigmoid function, each value of the tuple M, is normalized to the
interval [0,1] to measure the importance of each channel.

Finally, the output feature Y is obtained by performing channel-wise multiplication of the channel
attention mask M, and the input feature F. The original features are recalibrated in the channel
dimension by weighting the normalized weights to each channel. This process can be expressed as:

Yo =F®M., ®)

Channel-wise Temporal Excitation (CTE). To further capture efficient temporal information, we
proposed a channel-wise temporal excitation module. In Fig. 3, we first use global spatial pooling to
aggregate the spatial information, this step can refer to Eq. (4). Differing from CT-Net, we only use a
channel-wise 3 x 1 x 1 convolution to obtain the temporal attention mask since channel reduction will
lose the feature. Finally, we use the sigmoid function and the element-wise multiplication ® broadcasts

the temporal attention along the channel dimension, the whole process is shown in Eqgs. (9) and (10).
M = Sigmoid (Conv (S — GAP (F))) 9)

YCTE =F® MCTE (10)

Spatial-Wise Temporal Excitation (STE). Previous temporal attention generally learns a local
temporal attention mask on global spatial information, which complete disregard for spatiotemporal
interactions can hurt performance since the motion directions of each foreground pixel are inconsis-
tent. Using global spatial pooling to aggregate spatial information will make it difficult to learn the
connection between spatial context and temporal context. Thus, we propose a spatial-wise temporal
excitation as a complement to the CTE module that aims to learn the motion relations between pixels
by explicitly modeling the element-wise temporal information. In Fig. 3, We first utilize 1D average
pooling to average the channel responses to obtain the channel descriptors F' € R™""¥ Then,
we reshape and permute the shape of the channel descriptor from R”>#<" to R”"*T and adopt
1D channel-wise temporal convolution to further learn the spatial-wise temporal importance weights
Mg, this step can be formulated as:

Fl/.l F1/,2 FI/,T Win Wia Wis
Fé,l Fz/‘z T le,r War Wi Wi

Mz = . . A . . . (1 1)
F]/V,l Fz/v,z T Fz/v,g Wni Wy2 Wi

YSTE =F® MSTE (12)

where * denote 1D channel-wise convolution. STE compresses local temporal information into
channel descriptors to capture the temporal dependencies between pixels.

~

As shown in Fig. 3, we use simple element-wise addition to aggregate the output responses under
different paths, which can be formulated as:

Y = YCE + YCTE + YSTE (13)
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Discuss. TP module is designed similarly to the Timeception block. The differences are reflected
in three parts: (1) TP module is inspired by the spatial pyramid convolution instead of the Inception
block (Timeception). (2) For different groups of channels, the TP module utilizes different temporal
convolutions instead of uniform temporal blocks to extract temporal context. (3) TP module reduces
the computational cost by decomposing spatial/temporal and channel interactions, so it is significantly
more efficient than the Timeception block.

3.2 Temporal Pyramid Excitation Network
The proposed Temporal Pyramid Excitation module can capture short, medium, and long-term

temporal context information from videos, which is beneficial for the network to learn complex motion
patterns.

In this section, we mainly explore the deployment of the TPE module in ResNet50. First,
the TPE-block was established by embedding the TPE module into the basic bottleneck block
of ResNet50. Then, we use TPE-block to replace all the basic residual units in the Conv_2 to
Conv_5 of ResNet50, thus establishing an efficient spatiotemporal learning architecture, dubbed
Temporal Pyramid Excitation Network (TPENet), which is illustrated in Fig. 4. Finally, all frame-level
predictions are aggregated by temporal average pooling at the top of the network to obtain a video-level
prediction score. Notably, the proposed TPE module only considers temporal information, the entire
spatiotemporal modeling can be performed by utilizing the spatial modeling ability of 2D CNN.
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Figure 4: The overall architecture of the proposed TPENet

4 Experiment
4.1 Datasets and Evaluation Metrics

Since the goal of TPENet is to improve the inference ability of the network for long-term temporal
structures and complex motion patterns, this paper evaluates the proposed method on Sth-Sth V1 [30],
and other two small-scale datasets, UCF-101 [31] and HMDB-51 [32]. Among them, the Sth-Sth V1
dataset focuses on the fine-grained actions of human interaction with daily objects, including only the
details of hand actions, and is used to emphasize the importance of temporal reasoning. This dataset
contains 174 class actions with 108,499 video clips, including 86,017 training videos, 11,522 validation
videos, and 10,960 test videos. Moreover, transfer learning experiments on UCF-101 and HMDB-51,
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which are much smaller than Kinetics and Sth-Sth, are carried out to verify the transfer capability of
our solution.

We report top-1 and top-5 accuracy (%) on Sth-Sth V1 datasets. For UCF-101 and HMDB-51, we
follow the original evaluation scheme using mean class accuracy. Also, we report the computational
cost (in FLOPs) as well as the number of model parameters to depict model complexity.

4.2 Implementation Details

Training. We implement the proposed TPENet on Pytorch, and train the network via the mini-
batch SGD, with an initial learning rate of 0.01, momentum is 0.9, and weight decay is 0.0005. We
trained TPENet on four Nvidia RTX2080Ti, and sparsely sample 8 frames and 16 frames of 224 x
224 RGB images from the videos, the total batch size is set to 64 and 32 respectively. On the Sth-Sth
V1 dataset, the network is trained for a total of 50 epochs. We use a cosine learning rate schedule,
and the first 5 epochs are used for gradual warm-up to reduce the impact of mini-batch on model
training. For UCF-101 and HMDB-51, we followed the common practice to fine-tune from Kinetics
pre-trained weights and start training with a learning rate of 0.002 for 25 epochs. The learning rate
decays 10 times every 10 epochs. Furthermore, we use a Dropout layer with a ratio of 0.5 after the
global average pooling to alleviate over-fitting. Random scaling, multi-scale cropping, and flipping
are used as data augmentation during training.

Test. If not specified, we use an efficient reasoning protocol to ensure reasoning speed. Firstly,
1 clip with T frames is sampled from a video. Then, each frame is resized to 256 x 256. Finally, the
region of the center cropping is limited to 224 x 224 for action prediction.

4.3 Ablation Study

Deployment position. We first explore the impacts of different deployment locations by deploying
TPE modules before the 1st convolution, before the 2nd convolution, before the 3rd convolution,
and after the 3rd convolution in ResNet50, respectively. Fig. 5 shows different deployment positions,
which are TPENet-a, TPENet-b, TPENet-c, and TPENet-d from left to right. The top-1 accuracy and
FLOPs of different deployment positions are shown in Fig. 6.

li

17

li

li

TPE module 1x1, Conv 2D 1x1, Conv 2D 1x1, Conv 2D
1x1, Conv 2D TPE module 3x%3, Conv 2D 3x3, Conv 2D
3x3, Conv 2D 3x3, Conv 2D TPE module 1x1, Conv 2D
1x1, Conv 2D 1x1, Conv 2D 1x1, Conv 2D TPE module
(a) TPENet-a (b) TPENet-b (c) TPENet-c (d) TPENet-d

Figure 5: Deployment position of the TPE module in ResNet50
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Figure 6: Accuracy and model complexity for different locations

From Fig. 6, the results show that top-1 is in inverse ratio to the number of parameters. Specially,
TPENet-a and TPENet-d have more parameters and lower performance since these deployment
locations have a large number of channels, a surge in the number of parameters may lead to network
degradation. On the other hand, TPENet-b and TPENet-c have a similar amount of parameters, but
the former performs significantly better (47.6% vs. 47.0%) TPENet-b has a higher spatial resolution,
and STE can achieve better performance.

The number of groups. We also demonstrate the impact of different groups in the TPE module.
With #G = 1, and K, = 1, the limited temporal receptive field makes it difficult to capture long-range
temporal context. As observed in Table 1, with #G increasing, the receptive field of the model expands.
Specially, with #G = 2, our method outperforms the TSM baseline (46.8% vs. 45.6%). The above
results show that multi-level temporal modeling is more conducive to fine-grained action reasoning.
Furthermore, these lightweight designs achieve large performance improvements without introducing
significant computational costs.

Table 1: Study on groups of TPE module. #G: The number of groups

Method #G Top-1 Top-5 FLOPs

TSM - 45.2 73.7 32.90G
1 45.0 73.2 32.92G
TPE 2 46.8 75.6 32.94G
4 47.6 76.1 32.97G

Study on the effectiveness of the TPE module. Here, we demonstrate the impact of different sub-
module by gradually adding different components. In Table 2, our TP-Module can significantly boost
its baseline (20.1% vs. 47.6%) and only introduce 0.05G FLOPs. Meanwhile, compared with the SE-
Module, our ME achieves a more competitive performance, which shows that the multi-path temporal
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excitation can facilitate the model to perceive a more discriminative temporal context, thus further
releasing the temporal reasoning ability of the proposed network.

Table 2: Study on the effectiveness of the TPE module

Method Top-1 Top-5 Params FLOPs
Baseline 20.1 47.4 24.30 32.90
+TP-Module 47.6 76.1 24.34 32.95
+TP-Module+SE 484 717.5 24.50 32.97
+TP-Module+ME  49.4 78.3 24.54 33.10

4.4 Comparison with Other Methods

In Table 3, we compare the proposed method with the existing method to demonstrate its
effectiveness. Each section of the table belongs to 2D CNNs-based methods, 3D CNNs-based methods,
and the proposed method.

Table 3: Performance and complexity of our method on Sth-Sth V1 compared other methods

Method Backbone Frame FLOPs Params Top-1 Top-5
TSN BNInception 8 16G 10.7M 195 -
TRN Two-Stream  BNlInception 8 16G x N/A  183M 420 -
ABM 16 53G - 475 -
TSM 16 65G x 1 243M 473 77.1
STM ResNet50 8 33.3G 24.0M 475 -
TEINet 8 33G 304M 474 -
SmallBigNet ' 8 52G - 47.0 77.1
NL I3D + GCN ' 3D ResNet50 32 x 2clips 303G x 2 622M  46.1 76.8
ECOgyLite BNlIncep + 3D Res18 92 267G 150M 46.4 -
CorrNet-26 I} R(2+1)D-26 32 78G - 474 -
TPENet (Ours) ResNet50 8 33.12G 2437M 494 783
16 66.24G 2437M 50.5  80.1

As observed in Table 3, the TSN baseline failed to achieve good performance on the Sth-Sth V1
due to lack temporal modeling. Our method is obviously superior to the medium and later fusion
methods, such as Temporal Relational Networks (TRN), Approximated Bilinear Modules (ABM),
and Efficient convolutional networks, which indicates that a single-level of temporal modeling is
not enough to represent complex temporal relations. Our TPENet also performs better than the
2D CNNs methods using the same backbone, our methods can significantly enhance the temporal
representations by performing multi-temporal aggregation. Furthermore, our method has a more
compact topology and significantly outperforms the 3D CNNs-based methods in performance, even
better than complex models, such as non-local and graph convolution.
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We also evaluate the performance of our method on UCF-101 and HMDB-51 to demonstrate
the generalization ability of TPENet on smaller datasets. We fine-tune our TPENet with 16 frames
as inputs on these two datasets using model pre-trained on Kinetics-400 and report the mean class
accuracy over three splits. From Table 4, compared 3D CNNs-based and 2D CNNs-based methods,
our method obtains comparable or better performance, which further demonstrates the effectiveness
of TPENet on action reasoning.

Table 4: Comparison with other methods on UCF-101 and HMDB-51 datasets

Method Backbone UCF-101 HMDB-51
ECO BNIncep. + 3D Resl8  94.8 72.4
ARTNet 3D ResNet18 94.3 70.9

13D [2] Inception V1 95.6 74.8
R(2+1)D Inception V1 96.8 74.5

TSN BNInception 91.1 -

TSM ResNet50 93.5 73.5

STM ResNet50 96.2 72.2
TEINet ResNet50 96.7 72.1
TPENet (Ours) ResNet50 96.8 75.5

To further explain the effectiveness of TPENet in temporal reasoning, we evaluate its inference
ability for complex motion patterns by comparing the keyframe selection results of TPENet and
TRN[12].

Specifically, firstly, the test video is divided into 8 segments by the sparse temporal sampling
strategy. Then, a frame is randomly sampled from each segment to generate some candidate tuples.
Finally, the generated candidate tuple is fed into the network for prediction, and the tuple with the
highest test accuracy is selected as the keyframe of the video. The keyframe selection results of the
two methods are shown in Fig. 7. Notably, we only show the prediction results of the intermediate
keyframes in Fig. 7, since the remaining keyframes selected by the two methods are consistent. In
addition, the red text in the figure represents the wrong prediction, the green text represents the correct
prediction, and the red box represents the keyframe selected by the two algorithms with the largest gap.

In Fig. 7, TPENet was able to pinpoint the instantaneous critical moment at the edge that was
crucial for correct prediction. With the hand gradually moving away from the object, the object can
still stand upright on the table and evolves to the next frame, the object starts falling off the table.
In addition, the fifth row shows a sample where the prediction fails. The reason for the prediction
failure is that the bottle in the picture is right in front of the laptop. From the time the bottle is in
front of the laptop until the bottle falls off the table, the model predicts the action as “pretending to
put something behind something”. Although there is some ambiguity in this action, thus the failure
frequency is much lower.
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Figure 7: The action prediction samples of TPENet and TRN
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5 Conclusion

Aiming at the limited temporal receptive field in existing methods, a novel temporal pyramid
excitation module is proposed in this paper. This module extracts multi-scale temporal context
information from video through temporal pyramid convolution, which is beneficial for capturing
complex temporal relations and long-term temporal structures. Meanwhile, to overcome the group
convolution effect, the Shuffle operation and channel excitation module are adopted in this paper.
This combination ensures the interaction between different groups of channels by performing Shuffle
and recalibration on the channels of multi-scale temporal features, which is conducive to improving
the generalization performance of the model. Extensive ablation experiments and comparative exper-
imental results show that multi-level temporal modeling can improve the performance of fine-grained
action recognition compared to modeling approaches with fixed temporal kernels. In addition, the
proposed method improves the parallelism and computational efficiency of the model by implementing
channel grouping, thus significantly improving the inference speed of the model. In the subsequent
visualization research, it can be seen that TPENet can accurately locate the critical moment that plays
a decisive role in recognition of actions, which further reflects the advantages of the proposed method
in temporal reasoning.
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