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Abstract: The goal of steganalysis is to detect whether the cover carries the secret
information which is embedded by steganographic algorithms. The traditional ste-
ganalysis detector is trained on the stego images created by a certain type of ste-
ganographic algorithm, whose detection performance drops rapidly when it is
applied to detect another type of steganographic algorithm. This phenomenon is
called as steganographic algorithm mismatch in steganalysis. To resolve this pro-
blem, we propose a deep learning driven feature-based approach. An advanced
steganalysis neural network is used to extract steganographic features, different
pairs of training images embedded with steganographic algorithms can obtain
diverse features of each algorithm. Then a multi-classifier implemented as
lightgbm is used to predict the matching algorithm. Experimental results on four
types of JPEG steganographic algorithms prove that the proposed method can
improve the detection accuracy in the scenario of steganographic algorithm
mismatch.

Keywords: Image steganalysis; algorithm mismatch; convolutional neural
network; JPEG images

1 Introduction

Steganography is a technique to hide secret information in public carriers (text, image, audio, video etc)
for specific purposes [1–6], and this secret information is difficult to be identified with human eyes and
technical means. Digital images [7–9], especially JPEG (Joint Photographic Experts Group) images, are
one of the most widely spread media on the internet. The corresponding JPEG steganographic algorithms
are developing rapidly, from traditional embedding algorithms such as Outguess [10], MB [11] and
nsF5 [12] to the adaptive algorithms based on syndrome-tellis codes (STC) [13] technique, such as J-
UNIWARD [14], UED [15] and UERD [16], which make steganalysis more difficult.

As the opposite of steganography, the goal of steganalysis is to detect whether the cover carries secret
information. With the rapid development of machine learning (including deep learning) [17–21], steganalysis
models began to be constructed using these tools. Kodovský et al. proposed the ensemble classifier
implemented as random forests to build a steganalyzer with improved detection accuracy [22], Zeng et al.
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proposed a hybrid deep learning framework for large-scale JPEG steganalysis [23], and it was the first time
that quantization and truncation were applied to deep learning based steganalysis. More recently, Boroumand
et al. proposed SRNet [24], which can automatically compute noise residuals without using high-pass filters
and obtain superior performance. However, in the real environment, we do not know which steganographic
algorithm is used for embedding in advance. Without this important prior knowledge, we will face the
problem of steganographic algorithm mismatch, and it is difficult to train and obtain the corresponding
effective steganalysis model.

To solve or alleviate the algorithm mismatch problem, Pevný et al. summarized some approaches for the
construction of universal steganalysis [25], the one-against-all classifier was trained on the image set which
contains the stego images created by a variety of known (existing) steganographic algorithms, the one-class
classifier used anomaly detection to identify stego images and the approach of multi-classifier was trained by
a group of binary classifiers. For example, to construct a support vector machine (SVM) classifier for
recognizing which steganographic algorithm was used [26–28], Pevný et al. used different handcrafted
features such as calibrated DCT (Discrete Cosine Transform) features [29] and Markov features [30].
However, with the growth of feature dimensions, SVM is no longer the most appropriate choice. At the
same time, deep neural network shows the excellent capabilities of feature extraction, and this end-to-end
method does not need handcrafted features anymore.

Based on transfer learning, Kong et al. designed an iterative multi-order feature alignment (IMFA)
algorithm to reduce the maximum mean discrepancy of feature distributions between training and testing
sets [31]. Feng et al. presented a contribution-based feature transfer (CFT) algorithm to learn two
transformations to transfer learning set features by evaluating both the sample feature and dimensional
feature [32]. In this paper, we propose a different approach to relieve the impacts of steganographic
algorithm mismatch. We first use the deep convolutional neural network as a feature extractor to obtain
more representative steganographic features from different dimensions, then train a multi-classifier for
different steganographic features, and finally use the steganalysis model based on the matched
steganographic algorithm to detect the suspicious images. We conduct experiments on several classical
JPEG steganographic algorithms which contain both traditional and adaptive algorithms. The
experimental results show that the proposed method significantly improves the detection accuracy of
steganalysis in the case of steganographic algorithm mismatch.

Section 2 describes the details of the proposed method. Section 3 presents the experimental
configuration and results, and Section 4 concludes this paper.

2 Proposed Approach

In this section, we introduce our proposed approach in detail. First, we construct a steganographic library
consisting of different types of stego and cover images, then we use convolutional neural networks trained by
different pairs of training images to extract diverse features automatically. Based on the feature library, we
train a multi-classifier for different steganographic algorithms. Finally, we estimate the most suspicious
steganography method used in the testing images and detect the testing images by the matched
steganalysis model. Fig. 1 shows the framework of the proposed blind steganalysis method.

2.1 Feature Extraction

Here, the symbol N stands for the number of steganographic algorithms in this paper, S denotes the kind

of steganography algorithms indexed by n 2 f0; 1; � � � ;Ng, and S0 means the cover class.
N þ 1
2

� �

different feature extractors are trained by each pair of classes in S as Fig. 2 shown. For example, S0
training set can be trained with Si; i 2 f1; 2; � � � ;Ng. Different groups of feature extractors are used to
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extract the features from the training set and testing set. We use the feature extractors trained by the same
class of steganographic algorithms. The features brought by these N feature extractors are used to
represent a training image which means that we have N times data enhancement in terms of quantity.

Figure 1: The framework of the proposed deep learning driven feature-based steganalysis method

Figure 2: Different pairs of stego images to train classifiers
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As for the testing set, all
N þ 1
2

� �
feature extractors are employed because we do not know which

steganographic algorithm is used. For each image, we can obtain
N þ 1
2

� �
sets of different features. By

using the multi-classifier, we can obtain prediction results with the same number of feature groups.

2.2 Feature Combination

Due to its excellent detection ability, we use SRNet [24] as our feature extractor and the structure of
feature extractor is shown in Fig. 3. We intercept the feature map of the twelfth layer of SRNet as
steganography features. To obtain more diverse image feature representations, we use different reduction
strategies, including max, min and mean as shown in Fig. 4. Combining these sub-features can produce
new features such as max_mean, min_mean, max_min and max_min_mean. The combination is done by
directly concatenating different types of features. We conduct experiments presented in Section 3 to
choose the optimal sub-feature combination.

2.3 Feature Matching

We train a multi-classifier fed by N stego image sets and one cover image set. In this paper, we choose
lightgbm [33] as our multi-classifier because of its excellent learning and generalization capability. For each

testing image, we have
N þ 1
2

� �
different feature extractors to obtain 512-dimensional feature respectively.

Based on these features, we obtain
N þ 1
2

� �
prediction results by the multi-classifier. Then, we adopt the

strategy of max-wins which means the max number of votes is the final prediction result. It is worth noting

Figure 3: The structure of feature extractor

Figure 4: Different reduction strategies of feature map
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that if we obtain the same number of the max votes, we make a random choice. The whole matching process
is described in Fig. 5, where the table T records the number of votes for each steganographic algorithm, and
Algo records the best matched steganographic algorithm used in those test images. The ratio of matching can
be described as follows:

Ratioi ¼ TiPN
i¼1 Ti

(1)

where Ti represents the number of votes for the steganographic algorithm, N represents the total number of
steganographic algorithms. The corresponding algorithm with the highest Ratio score is the best matched
steganographic algorithm.

Finally, we use the model of the best matched steganographic algorithm to detect test images. We can
achieve a relatively high accuracy as without algorithm mismatching if the matching result is correct.

3 Experiment

3.1 Experimental Setup

In the experiments, the Graphics card we use is RTX2080 TI with 11 G memory. The raw dataset is
BOSSbase 1.01 [34], which has a total of 10000 grayscale images. These images are divided into three
parts, 60% as a training set and the rest are equally used as a validation set and a testing set, respectively.

The images are first resized from their original size 512 × 512 to 256 × 256, then are compressed with
JPEG quality factors (QF) 75 and 95. The embedding rates are set from 0.1 to 0.4 bits per non-zero AC DCT
coefficient (bpnzac). For each combination of embedding rate and quality factor, we use four types of
steganographic algorithms in the frequency domain, J-UNIWARD [14], UED [15], UERD [16] and
nsF5 [12], and the steganographic algorithm feature library is composed of five types of steganographic
algorithm features (including cover). Totally, there are 6000 × 5 × 4 × 2 = 240000 groups of stego features.

All feature extractors are built via curriculum training [35]. We first train the network for 0.4 bpnzac as it
is the easiest task for extractors, and these parameters are seeded for the network for 0.3 bpnzac, and the rest

Figure 5: Algorithm to obtain the best matched steganographic algorithm
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can be inferred in the same manner. The feature extractors are trained for 200 k iterations with an initial
learning rate of 0.001 and another 50 k iterations with the learning rate are cut to one-tenth of the original.

There are some special features in the training, the network for J-UNIWARD with JPEG quality factor
95 at 0.4 bpnzac is seeded by the network trained for J-UNIWARDwith JPEG quality factor 75 at 0.4 bpnzac.
When we train the network of two types of stego images, we experience convergence problems, so we
initialize the network with the parameters trained by stego and cover images as usual.

3.2 Optimal Classifier

In the experiments, we choose some traditional classifiers. We take the testing set with QF 95 and
embedding rate 0.1 bpnzac as an example to compare their effects. The matching ratios of experiments
are shown in Table 1. The higher the value, the stronger the confidence of being successfully matched.
Red numbers indicate that the corresponding algorithm predictions are not accurate. Support vector
machine, lightgbm and neural network are denoted as SVM, LGB and NN, respectively. We use the
default parameters of SVM and LGB in this experiment. As for NN, we design a three-layer fully
connected network with activation function of ReLU [36], a loss function of cross entropy and an
optimizer of RMSprop [37]. Among these classifiers, lightgbm can match the steganography algorithm
most correctly and achieve a highest confidence level, so we use lightgbm as our multi-classifier.

3.3 Optimal Sub-Feature Combination

To obtain more diverse representations of image features, we conduct experiments to compare the
matching performance of steganographic algorithm by using different combinations of sub-features. We
also take the testing set with QF 95 and embedding rate 0.1 bpnzac as an example. Figs. 6–9 show the
matching results of different steganographic algorithms. The results show that all the combinations of
sub-features achieve excellent performance except the combination of min_max. Considering the time
consumption, we prefer to choose the single sub-feature. Among the three single sub-features, we use
sub-feature mean in the following experiments because it has the most powerful capability of matching
steganographic algorithm.

3.4 Steganography Matching Results

In this section, we conduct the experiments to verify the effectiveness of the steganographic algorithm
matching method. In detail, for each of the four steganographic algorithms, J-UNIWARD, UED, UERD and
nsF5, we use all 2000 pairs of images with cover images coming from the aforementioned testing set. The
experiments of different QFs and embedding rates are conducted separately. Algorithm J-UNIWARD is
denoted as JUNI. Tables 2 and 3 show the matching results of the four JPEG steganographic algorithms
when QF = 75 and QF = 95, respectively.

Table 1: Matching ratios of different classifiers for QF 95 and bpnzac 0.1

Test algorithm Classifier

SVM LGB NN

UED 0.2883 0.3343 0.3244

JUNI 0.5175 0.3480 0.3938

UERD 0.2032 0.3010 0.2931

nsF5 0.3444 0.4478 0.3964
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For both Tables of 2 and 3, the first column ER represents the embedding rate of images, the second
column TA represents the steganographic algorithm used on test images, the third to sixth columns
represent the matching ratios of four categories (UED, JUNI, UERD and nsF5 respectively), and the last
column Result is the final prediction result. We take the first row as an example, for the steganographic
algorithm of UED, our approach predicts it as UED, JUNI, UERD and nsF5 with probabilities of 0.5074,
0.2083, 0.1228 and 0.1615, respectively. The bold number is the highest probability in each row and we

Figure 6: Matching ratio of each sub-feature combination for UERD

Figure 7: Matching ratio of each sub-feature combination for JUNI
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choose the corresponding steganographic algorithm as the matched algorithm. As we can see, four test
algorithms are all matched successfully, which means we can handle the algorithm mismatch problem
effectively by using the network trained by the matching steganographic algorithm.

Figure 8: Matching ratio of each sub-feature combination for nsF5

Figure 9: Matching ratio of each sub-feature combination for UED
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Table 2: Matching result for QF 75

ER TA UED JUNI UERD nsF5 Result

0.1 UED 0.5074 0.2083 0.1228 0.1615 UED

JUNI 0.1115 0.4718 0.1943 0.2223 JUNI

UERD 0.1336 0.2971 0.3594 0.2099 UERD

nsF5 0.0930 0.2839 0.1434 0.4797 nsF5

0.2 UED 0.6120 0.1961 0.0925 0.0994 UED

JUNI 0.0635 0.6486 0.1633 0.1245 JUNI

UERD 0.0869 0.2702 0.5181 0.1248 UERD

nsF5 0.0510 0.2395 0.0827 0.6267 nsF5

0.3 UED 0.7245 0.1629 0.0635 0.0491 UED

JUNI 0.0370 0.8018 0.1192 0.0421 JUNI

UERD 0.0693 0.2253 0.6546 0.0509 UERD

nsF5 0.0403 0.1668 0.0520 0.7409 nsF5

0.4 UED 0.8127 0.1039 0.0526 0.0308 UED

JUNI 0.0296 0.8517 0.1032 0.0155 JUNI

UERD 0.0443 0.1630 0.7731 0.0196 UERD

nsF5 0.0315 0.1000 0.0283 0.8403 nsF5

Table 3: Matching result for QF 95

ER TA UED JUNI UERD nsF5 Result

0.1 UED 0.3343 0.2538 0.2295 0.1824 UED

JUNI 0.2168 0.3480 0.2229 0.2123 JUNI

UERD 0.2333 0.2790 0.3010 0.1866 UERD

nsF5 0.1588 0.2236 0.1698 0.4478 nsF5

0.2 UED 0.4392 0.2787 0.2098 0.0723 UED

JUNI 0.2180 0.4758 0.2254 0.0808 JUNI

UERD 0.2338 0.2969 0.3961 0.0732 UERD

nsF5 0.1186 0.2152 0.1207 0.5455 nsF5

0.3 UED 0.5098 0.2858 0.1812 0.0232 UED

JUNI 0.1447 0.6268 0.2074 0.0210 JUNI

UERD 0.1787 0.3012 0.4996 0.0204 UERD

nsF5 0.0598 0.2104 0.0826 0.6472 nsF5

0.4 UED 0.5901 0.2664 0.1274 0.0161 UED

JUNI 0.1151 0.7233 0.1507 0.0109 JUNI

UERD 0.1482 0.2749 0.5641 0.0128 UERD

nsF5 0.0456 0.1990 0.0544 0.7010 nsF5
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3.5 Blind Steganalysis Results

In this section, we use our proposed method to evaluate the detection accuracy of steganalysis in the case
of algorithm mismatch. We compare our work with state-of-the-art works, including the subspace learning-
based method [38] and SRNet with algorithm mismatch. The detection performance is measured as
follows:

PE ¼ min
PFA

1

2
ðPFA þ PMDÞ (2)

Tables 4 and 5 present the detection results with QFs 75 and 95 of 0.1 bpnzac, respectively. As we can
see in both tables, our method has a significant improvement over the detection of SRNet with algorithm
mismatch, the performances of different steganographic algorithms are improved by more than 15% with
QF 75 and approximately 10% with QF 95 averagely. Compared with the method proposed by [38], our
method also achieves better performance in the majority of cases. We also conduct experiments on other
conditions. Table 6 presents the detection results with embedding rates ranging from 0.2 to 0.4, the first
column ER represents the embedding rate of images, the third column TA represents the steganographic
algorithm used on test images, the fourth column shows the detections results of SRNet and the fifth
columns shows the results of our proposed method. Our method also has better performance than SRNet
under different embedding rates and quality factors.

The core of our method is to extract multi-dimensional steganographic features so that the multi-
classifier can match the steganographic algorithm of the testing set. The reason why matching can be
successful is that for each steganographic algorithm, we have the features extracted by the feature
extractor obtained through training by pairs, which can help multi-classifier to distinguish different
steganographic algorithms. When the feature extractor does not extract any useful features, the multi-
classifier can only produce random prediction, and the probability of each steganography algorithm is 1

N.
When the feature extractor itself has a certain discrimination ability, it can extract useful steganographic
features, the multi-classifier will also increase the selection probability of the matching algorithm in the N
groups of features participating in the training, and using a voting ensemble can make it easier to obtain
the correct results. When the steganography algorithm is relatively difficult to detect, the confidence of
matching will also decline. For example, the matching value of quality factor 75 is always greater than
quality factor 95.

Table 5: The detection errors of different steganalysis system with the embedding rate 0.1 bpnzac and QF 95

JUNI nsF5 UED UERD

SRNet [24] 48.07% 47.41% 43.13% 42.24%

Method proposed in [38] 40.40% 42.85% 40.50% NaN

Our method 43.53% 31.05% 34.97% 32.45%

Table 4: The detection errors of different steganalysis system with the embedding rate 0.1 bpnzac and QF 75

JUNI nsF5 UED UERD

SRNet [24] 43.91% 44.65% 29.74% 37.37%

Method proposed in [38] 43.80% 42.00% 42.25% NaN

Our method 33.60% 31.28% 14.47% 19.73%
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4 Conclusions and Future Work

In this paper, we propose a deep learning driven feature-based multi-classifier model to solve the
steganalysis problem in the case of algorithm mismatch. Representative steganographic features extracted
by neural networks are designed to train a multi-classifier for finding the most matched steganographic
algorithm, then the model trained by this steganographic algorithm is used to detect the test images.
Experimental results show that the proposed method outperforms state-of-the-art works significantly.

However, this method still has some problems, for example, the process of feature extracting takes a long
time because deep neural networks need to be trained, and it can only handle steganographic algorithms that
are already known. Therefore, designing a lightweight network to extract the features without the loss of
accuracy is one of our future works. In addition, implementing incremental learning to deal with new
steganographic algorithms is also under consideration.

Table 6: The detection errors of different steganalysis system

ER QF TA SRNet [24] Our method

0.2 75 UED 16.12% 8.12%

JUNI 34.55% 23.40%

UERD 24.72% 11.59%

nsF5 32.32% 17.02%

95 UED 31.81% 24.18%

JUNI 43.15% 37.73%

UERD 33.29% 24.18%

nsF5 36.04% 16.60%

0.3 75 UED 10.76% 4.50%

JUNI 31.91% 14.80%

UERD 20.81% 6.52%

nsF5 23.75% 7.37%

95 UED 26.59% 16.35%

JUNI 40.25% 30.47%

UERD 28.06% 16.45%

nsF5 27.50% 6.45%

0.4 75 UED 8.70% 2.28%

JUNI 28.53% 9.25%

UERD 19.13% 3.68%

nsF5 14.38% 2.88%

95 UED 23.34% 9.35%

JUNI 36.14% 20.95%

UERD 24.85% 11.32%

nsF5 17.21% 1.63%
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