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Abstract: In the deep learning approach for identifying plant diseases, the high
complexity of the network model, the large number of parameters, and great
computational effort make it challenging to deploy the model on terminal
devices with limited computational resources. In this study, a lightweight
method for plant diseases identification that is an improved version of the
ShuffleNetV2 model is proposed. In the proposed model, the depthwise
convolution in the basic module of ShuffleNetV2 is replaced with mixed
depthwise convolution to capture crop pest images with different resolutions;
the efficient channel attention module is added into the ShuffleNetV2 model
network structure to enhance the channel features; and the ReLU activation
function is replaced with the ReLU6 activation function to prevent the gen-
eration of large gradients. Experiments are conducted on the public dataset
PlantVillage. The results show that the proposed model achieves an accuracy
of 99.43%, which is an improvement of 0.6 percentage points compared to
the ShuffleNetV2 model. Compared to lightweight network models, such as
MobileNetV2, MobileNetV3, EfficientNet, and EfficientNetV2, and classical
convolutional neural network models, such as ResNet34, ResNet50, and
ResNet101, the proposed model has fewer parameters and higher recognition
accuracy, which provides guidance for deploying crop pest identification
methods on resource-constrained devices, including mobile terminals.

Keywords: Plant disease identification; mixed depthwise convolution;
lightweight; ShuffleNetV2; attention mechanism

1 Introduction

In agricultural production, plant diseases are a leading cause of crop yield reduction. In actual
production, the identification of plant diseases mainly depends on the farmers’ long-term experience.
For large agricultural lands with a variety of crops, the identification of plant diseases is time
consuming and laborious. Moreover, the identification of plant diseases is time sensitive, has a small
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detection range, and is not reliable. The use of computer vision to analyze images of crop leaves to
identify plant diseases has good application prospects in the agricultural production field. Numerous
scholars have attempted to use deep learning methods to identify crop pests and diseases, assist in the
prevention and diagnosis of plant diseases, and promote the rapid development of agriculture [1–3].

Krishnamoorthy et al. [4] used the InceptionResNetV2 model along with a migration learning
approach to identify diseases in rice leaf images and obtained a remarkable accuracy of 95.67%.
Tiwari et al. [5] performed migration learning using a pre-trained model (e.g., VGG19) for the early and
late blight of potato to extract relevant features from the datasets. Their perceptual logistic regression,
with the help of multiple classifiers, performed exceptionally well in terms of classification accuracy,
significantly outperforming other classifiers and yielding 97.8% accuracy. Wen et al. [6] proposed
a large-scale multi-class pest recognition network model. They introduced a convolutional block
attention model in the baseline network model and mixed the cross-feature channel domain with the
feature space domain to realize model extraction and represent key features in both channel and space
dimensions; the key features are used to enhance the extraction and representation of differentiated
features in the network. Additionally, they introduced the cross-layer non-local module among the
multiple feature extraction layers to improve the model’s fusion of multi-scale features. The Top1
recognition accuracy was 88.62% and 74.67% on 61 types of disease datasets and 102 types of pest
datasets, respectively.

The above studies employed classical convolutional neural networks (CNNs) to improve the crop
pest and disease identification accuracy. The accuracy of classical CNN models, such as AlexNet [7],
VGG [8], ResNet [9], and GoogleNet [10], is being constantly improved, and their network depth is
increasing and becoming more profound [11]. Moreover, the number of parameters is increasing, which
is consequently increasing the computation. Bao et al. [12] designed a lightweight CNN model called
SimpleNet to identify wheat diseases, such as erysipelas, and achieved 94.1% recognition accuracy.
Hong et al. [13] improved the lightweight CNN ShuffleNetV2 0.5x, which can effectively identify the
disease types of many crop leaves. However, the recognition accuracy of lightweight CNNs is generally
lower than that of large network models [14]. Consequently, improving the model’s recognition
accuracy while keeping it lightweight is a pressing issue during the design of a lightweight CNN.

Based on the above problems, this study improves on ShuffleNetV2, aiming to improve the
recognition accuracy of the model while keeping it lightweight. The key contributions of this study
are as follows:

� The depthwise convolution in the basic module of ShuffleNetV2 is replaced with mixed
depthwise convolution (MixDWConv) to capture crop pest images at different resolutions.

� The efficient channel attention (ECA) module is added to the ShuffleNetV2 model network
structure to enhance the channel features.

� The ReLU6 activation function is introduced to prevent the generation of large gradients.

The proposed lightweight CNN is highly suitable for deploying the model on embedded resource-
constrained devices, such as mobile terminals, which assists in realizing the accurate identification of
plant diseases in real time. Additionally, it has robust engineering utility and high research value.

The remainder of this paper is structured as follows. Section 2 presents the literature review and the
baseline model. Section 3 describes the proposed model. Section 4 discusses the experimental results
and ablation study. Finally, Section 5 presents the conclusions.
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2 Related Work

Mohanty et al. [15] were the first to use deep learning methods for crop disease recognition, based
on two classical CNN models, AlexNet and GoogleNet, for migration learning. They demonstrated
that deep learning methods exhibit high performance and usability in crop disease recognition,
providing a direction for subsequent research. Too et al. [16] performed migration learning using
various classical CNN models. However, the network models in the above studies are deep and complex
and cannot be effectively employed for agricultural production practices on low-performing edge
mobile terminal devices with limited computational resources.

Sun et al. [17] proposed various improved AlexNet models using batch normalization, null
convolution, and global pooling, which reduced the model parameters and improved the recognition
accuracy. Su et al. [18] proposed a model for grapevine leaf disease recognition based on a migration
learning model training approach; the accuracy of their model is 10 percentage points higher than
that of models based on ordinary training, and their model can be deployed to mobile terminals.
Xu et al. [19] proposed a ResNet50 CNN image recognition method based on an improved Adam
optimizer and achieved a classification accuracy of 97.33% for real scenes. Liu et al. [20] proposed
an improvement to the classical lightweight CNN SqueezeNet and significantly reduced the memory
requirements of the model parameters and the model computation, and their proposed model
rapidly converged. Jia et al. [21] proposed a method for plant leaf disease identification based on
lightweight CNNs. Their improved network exhibited high disease identification accuracy (99.427%)
while occupying a small memory space. Li et al. [22] proposed a lightweight crop disease recognition
method based on ShuffleNet V2. For their method, the number of model parameters was about 2.95
× 105 and the average disease recognition accuracy was 99.24%. Guo et al. [23] proposed a multi-
sensory field recognition model based on AlexNet for mobile platforms, setting convolution kernels
of different sizes for the first layer of AlexNet models and extracting multiple features to characterize
the dynamic changes of diseases in a comprehensive manner. Liu et al. [24] proposed two lightweight
crop disease recognition methods based on MobileNet and Inception V3, which were selected based
on the recognition accuracy, computational speed, and model size, and they were implemented for leaf
detection on mobile phones.

2.1 ShuffleNetV2 Model Structure
The ShuffleNetV1 network is a high-performance lightweight CNN that was proposed by the

Megvii Technology team in 2017. The essential metrics for the neural network architecture design
have not only computational complexity [25] but also factors such as memory access and platform
characteristics. The number of parameters in ShuffleNetV1 can be reduced using grouped convolution,
but the number of groups is too large to increase the memory access. Based on the ShuffleNetV1
model, Ma et al. [26] proposed four lightweight guidelines: (1) the memory access is minimized when
the input and output channels of the convolutional layers are the same; (2) grouped convolution
with abundant groups increases the memory access; (3) fragmentation operations are not friendly
to parallel acceleration; and (4) the memory and time consumption stemming from the element-by-
element operations cannot be ignored. Based on the guidelines, the basic module of ShuffleNetV1 was
improved and the ShuffleNetV2 network was constructed, as shown in Table 1.

The ShuffleNetV2 network includes the Conv1 layer, Max Pool layer, Stage2 layer, Stage3 layer,
Stage4 layer, Conv5 layer, Global Pool layer, and FC layer. The Stage2, Stage3, and Stage4 layers
comprise stacked basic modules. The Stage2 and Stage4 layers are stacked with four basic modules,
and the Stage3 layer is stacked with eight basic modules. The first basic module in each stage has a



528 IASC, 2023, vol.37, no.1

stride size of 2, which is mainly used for downsampling, and the other basic modules have a stride size
of 1.

Table 1: ShuffleNetV2 model structure

Layer Output Size Kernel size Stride Repeat Output channels

Image 224 × 224 3
Conv1 112 × 112 3 × 3 2 1 24
Max pool 56 × 56 3 × 3 2 24
Stage2 28 × 28 2 1 116

28 × 28 1 3
Stage3 14 × 14 2 1 232

14 × 14 1 7
Stage4 7 × 7 2 1 464

7 × 7 1 3
Conv5 7 × 7 1 × 1 1 1 1024
Global pool 1 × 1 7 × 7
FC 1000

2.2 ShuffleNetV2 Basic Module
Fig. 1a displays the basic module of ShuffleNetV2, where the input features are equally divided

into two branches after the channel split operation. The left branch does not perform any constant
operation mapping. The right branch undergoes 1 × 1 ordinary convolution, 3 × 3 depthwise separable
convolution (DWConv), and 1 × 1 ordinary convolution to yield the right branch output. The left
and right branches have equal number of input and output channels. They are merged by the Concat
operation, and then, the channel shuffle operation is performed to ensure that the feature information
of the left and right branches is fully fused. Fig. 1b shows the downsampling module of ShuffleNetV2.
The feature maps are input into the two branches. The left branch undergoes 3 × 3 depthwise separable
convolution with stride size two and 1 × 1 standard convolution. The right branch undergoes the same
operations as those in (a) but the stride size of the depthwise separable convolution is 2. The left and
right branches are merged using the Concat operation, and then, the channel shuffle operation is
performed to fuse the information of the different channels.

2.2.1 Depthwise Separable Convolution (DWConv)

Depthwise separable convolution [27] is performed once for the depthwise and pointwise convo-
lutions. The structure and process are shown in Fig. 2. The depthwise convolution processes each layer
of the input information with the same number of convolution kernels. Additionally, it processes the
spatial information for the aspect direction without considering the cross-channel information. The
pointwise convolution performs 1 × 1 convolution on the depthwise convolution output and is only
concerned with the cross-channel information.
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(a) Basic module  (b) Downsampling module
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Figure 1: ShuffleNetV2 basic module
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Figure 2: Depthwise separable convolution

The multiplication of the standard convolution is computed as

(Dk · Dk · M) · (N · DF · DF) (1)

where Dk is the size of the convolution kernel, M is the number of input feature channels, N is the
number of output feature channels, and DF is the size of the output feature map.

The number of parameters for the standard convolution is

Dk · Dk · M · N (2)

The multiplication of the depthwise separable convolution is computed as

(Dk · Dk) · (M · DF · DF) + M · (N · DF · DF) (3)



530 IASC, 2023, vol.37, no.1

The number of parameters for the depthwise separable convolution is

Dk · Dk · M + 1 · 1 · M · N (4)

The ratio of the multiplication of the depthwise separable convolution to the standard
convolution is
(Dk · Dk) · (M · DF · DF) + M · (N · DF · DF)

(Dk · Dk · M) · (N · DF · DF)
= 1

N
+ 1

Dk
2 (5)

The ratio of the number of parameters of the depthwise separable convolution to the standard
convolution is
Dk · Dk · M + M · N

Dk · Dk · M · N
= 1

N
+ 1

Dk
2 (6)

N is the number of channels in the output; thus, it is negligible. Dk is the size of the convolution
kernel, which is typically set as 3. The depthwise separable convolution is 1/9 times larger than
the standard convolution in terms of both computation and number of parameters. Compared to
the traditional convolution operation, the depthwise separable convolution reduces the number of
parameters and improves the model training speed.

2.2.2 Channel Shuffle

The channel shuffle operation not only facilitates the information exchange among different
channels but also reduces the computational effort of the model [28]. As shown in Fig. 3, group
convolution restricts the information exchange across groups, which could lead to the group infor-
mation closure phenomenon. The channel shuffle operation divides the input feature map into several
groups according to the channels, divides each group into subgroups, and randomly selects subgroups
from each group to form a new feature map so that information can be exchanged across groups. The
information flow between the channel groups is improved, thus ensuring correlation between the input
and output channels.

Channels

Channel Shuffle

Group Convolution

Input layer

Figure 3: Channel shuffle
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3 Method

Based on the characteristics of plant diseases, ShuffleNetV2 is selected as the backbone network in
this study. Depthwise convolution only uses a single convolution kernel to extract image features, which
is not suitable for image recognition in different resolutions, and thus, MixDWConv is used instead
of depthwise convolution in the ShuffleNetV2 basic module. To strengthen the channel features, the
ECA module is introduced in the ShuffleNetV2 network structure. The ReLU activation function
easily yields large gradients in the network training process. Therefore, the ReLU activation function
is replaced by the ReLU6 activation function.

The lightweight model ShuffleNetV2 is improved to overcome the problems of the large number
of parameters and the high model complexity of the classical CNN. As shown in Fig. 4, the input is a
3 × 224 × 224 image. The image first undergoes an ordinary convolution with a convolutional kernel
size of 3 and stride size of 2 for feature extraction of the detail part of the image. Max Pool represents
a convolutional kernel size of 3 and a stride size of 2 for the output of the upper layer to perform the
maximum pooling operation for realizing the feature dimensionality reduction. ShuffleNetV2 unit1
indicates that the output of the upper layer is repeated once with the downsampling module and three
times with the basic module. ECA block denotes that the output of the upper layer is processed by
the ECA module to strengthen the channel features. ShuffleNetV2 unit2 indicates that the output
of the upper layer is repeated once with the downsampling module and seven times with the basic
module. Then, the output of ShuffleNetV2 unit2 is processed by the ECA module. ShuffleNetV2 unit3
performs the same operation as ShuffleNetV2 unit1. The output of ShuffleNetV2 unit3 is processed
by the ECA module. The output of the ECA module is subjected to one convolutional kernel size for
ordinary convolutional up-dimensioning. The final output is obtained after passing through global
average pooling (GAP) and fully connected layers.

In the basic and downsampling modules, the proposed model uses MixDWConv instead of the
depthwise convolution of the ShuffleNetV2 model. Furthermore, the ReLU6 activation function is
used instead of the ReLU activation function. The MixDWConv, ECA module, and ReLU6 activation
function are further elaborated below.

3.1 Mixed Depthwise Convolution
When designing CNNs, one of the most critical and easily overlooked points regarding depthwise

convolution is the size of the convolutional kernel. Although traditional depthwise convolution
generally employs a convolutional kernel size of 3, recent studies [29,30] have suggested that the model’s
accuracy could be improved by employing larger convolutional kernels, such as 5 × 5 and 7 × 7.

Based on MobileNets, Tan et al. [31] systematically investigated the effect of the convolutional
kernel size. In Fig. 5, the convolution kernel sizes represented by the dots, from left to right, are
3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11, and 13 × 13, and the size of the dots represents the model size.
As shown in Fig. 5, the larger the convolution kernel, the greater the number of parameters, which
increases the model size. The accuracy of the convolution kernel size substantially improves from the
3 × 3 to 7 × 7 models, and the accuracy significantly decreases when the convolution kernel is 9 × 9,
which indicates that the accuracy is low for large convolution kernel sizes, exhibiting the limitation of
a single convolution kernel. For a model to achieve high accuracy and efficiency, large convolutional
kernels are required to capture high-resolution patterns and small convolutional kernels are required
to capture low-resolution patterns. Therefore, Tan et al. [31] proposed MixDWConv that is a mixture
of convolution kernels of different sizes in one convolution operation, which enables the capture of
different images at different resolutions.
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Figure 4: Structure of the improved ShuffleNetV2 network

Figure 5: Relationship between accuracy and convolution kernel size

As stated in Section 2.3, while the 3 × 3 depthwise convolution is used in the ShuffleNetV2 basic
module, the proposed model employs MixDWConv. As shown in Fig. 4, MixDWConv is considered
as a simple implantation instead of the ordinary depthwise convolution. Fig. 6 displays the structure
of MixDWConv. The ordinary depthwise convolution uses convolution kernels of the same size for
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all the channels. In contrast, MixDWConv divides all channels into groups and applies convolution
kernels of different sizes to different groups. MixDWConv can easily obtain different patterns from
the input image, allowing the model to achieve high accuracy.

(a) Depthwise Convolution  (b) Mixed Depthwise Convolution

Input Tensor

Output Tensor

channels

9×93×3 7×75×5

Input Tensor

Output Tensor

channels

K×K

Figure 6: Structure of MixDWConv

The MixDWConv operation involves several variables.

� Number of groups g: The number of groups determines how many convolutional kernels of
different sizes need to be used for the input tensor. In literature [29], the best results have been
achieved with g = 4. Similarly, in our experiments, ShuffleNetV2 affords the best results when
g = 4. Subsequent selection of the number of groups in MixDWConv is verified in Section 4.5.

� Size of convolutional kernels in each group: The size of the convolutional kernels can be
arbitrary in theory, but without restriction, the size of convolutional kernels in two groups may
be the same, which is equivalent to merging into one group. Therefore, different convolution
kernel sizes need to be set for each group. The restricted convolution kernel size is set as 3 × 3
and is monotonically increased by 2 for each group, i.e., the size of the convolution kernel for
the ith group is 2i + 1. For example, in this experiment, g = 4 and the convolution kernel size is
{3 × 3, 5 × 5, 7 × 7, 9 × 9}. For an arbitrary number of groupings, the convolution kernel size
is already determined, which simplifies the design process.

� Number of channels in each group: The equal division method is used, i.e., the number of
channels is divided into four equal groups, and the number of channels in each group is
the same.

3.2 ECA Block
The channel attention mechanism can effectively improve the performance of CNNs. Most

attention mechanisms can improve the network accuracy, but they increase the computational burden.
Wang et al. [32] proposed the ECA module, which is a channel attention module. In contrast to other
channel attention mechanisms, the ECA module can improve the performance of CNNs without
increasing the computational burden. Fig. 7 shows the structure of the ECA module. First, the input
dimension is a feature map with dimension of H × W × C. The input feature map is compressed with
spatial features, and the feature map of 1 × 1 × C is obtained using GAP. The compressed feature
map is learned with channel features, and the importance between different channels is learned using
1 × 1 convolution. The output dimension is 1 × 1 × C. Finally, the feature map of channel attention
1 × 1 × C and the original input feature map H×W×C are multiplied channel-by-channel to yield the
feature map with channel attention. The ECA module is introduced in the proposed model to enhance
the channel features and improve the network’s performance without increasing the number of model
parameters.
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3.3 Activation Function ReLU6
The primary role of the activation function is to provide the network with the ability of nonlinear

modeling to address the deficiency of the model representation capability, which has a crucial role
in neural networks [33]. The ReLU activation function is simple to compute and allows the sparse
representation of the network, but it is fragile in the network training process. As shown in Eq. (8),
the ReLU activation function sets all the negative values to 0 and leaves the other values unchanged,
which causes the network to considerably vary in the range of weights during the training process and
be prone to the phenomenon of “neural necrosis” [34], which consequently decreases the quantization
accuracy. Compared to the ReLU activation function, ReLU6 can prevent the generation of large
gradients. Therefore, the ReLU6 activation function is used in the improved ShuffleNetV2 basic
module proposed herein. The chain rule formula is as follows.
∂loss
∂w

= ∂loss
∂y

∗ ∂y
∂B

∗ ∂B
∂w

= ∂loss
∂y

∗ ∂y
∂B

∗ A (7)

Here,
∂y
∂B

denotes the gradient of ReLU or ReLU6, and the relationship between A and B is linear.

When using ReLU as the activation function, as shown in Fig. 8a, B is too large and A is likely to

be too large, which results in an extremely large gradient
∂loss
∂w

and leads to a large difference in the

weights. In ReLU6, as shown in Fig. 8b, the positive interval is partitioned; when B > 6,
∂y
∂B

will be 0,

i.e., when A is too large, B will be greater than 6, thus making
∂loss
∂w

= ∂y
∂B

= 0, which prevents the

generation of large gradients.

ReLU =
{

x, (x ≥ 0)

0, (x < 0)
(8)
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ReLU6 =
⎧⎨
⎩

0, (x ≤ 0)

x, (0 < x < 6)

6, (x ≥ 6)

(9)

Figure 8: Comparison of ReLU and ReLU6 activation functions

4 Experiments
4.1 Experimental Environment

The experiment was performed using an Intel (R) Core (TM) i7-8700 CPU processor with the
Windows 10 operating system, Pytorch 1.7.1 deep learning framework, and PyCharm development
platform. During the training process, to ensure scientific and reliable results, in all experiments, the
stochastic gradient descent optimizer is used for parameter updation, the loss function is the cross-
entropy function, the number of iterations is 30, and the batch size is 64.

4.2 Datasets and Pre-processing
The experiments are performed on the publicly available dataset PlantVillage [35] to identify 25

types of plant diseases in five crops. Some of the images are shown in Fig. 9.

By collating the data, the problems of uneven sample distribution and low contrast are identified
in the crop pest and disease leaf images. Therefore, Python is used to enhance the sample data with
random horizontal/vertical flip and exposure operations. The enhancement effect is shown in Fig. 10.
The final distribution of the various types of sample data after processing is shown in Table 2. The
training and test sets comprise 37,572 and 10,334 images, respectively.
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Figure 9: Diseased leaves of apple, corn, grape, tomato, and potato
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Figure 10: Example of the enhancement effect

Table 2: Distribution of data

Data category Original data/sheet Training set/sheet Test set/sheet

Apple health 329 1495 404
Apple scab 378 1512 437
Apple black rot 373 1491 418
Apple rust 385 1510 416
Corn health 406 1501 402
Corn gray spot 411 1505 408
Corn rust 417 1502 409
Corn leaf blight 394 1506 394
Grape health 339 1508 402
Grapes black rot 413 1500 436
Grape black measles 431 1507 424
Grape leaf blight 431 1506 415
Tomato health 319 1503 406
Tomato spot blight 426 1517 401
Tomato two spotted
spider mite

336 1506 405

Tomato late blight 382 1528 401
Tomato leaf mold 381 1502 380
Tomato bacterial spot 355 1500 425
Tomato target spot 281 1514 487
Tomato early blight 400 1500 400
Tomato mosaic virus 389 1495 444
Tomato yellow leaf 379 1500 400
Potato health 386 1464 420
Potato early blight 400 1500 400
Potato late blight 400 1500 400
Total 9541 37572 10334
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4.3 Results
Comparison of the accuracy and loss of the proposed model with the ShuffleNetV2 model shows

that the proposed model converges faster than the ShuffleNetV2 model (Fig. 11). Since the diseased
leaves are photographed against a simple background, an accuracy of more than 75% is afforded at
the first epoch, and the results improve by the 10th epoch of training. In the next training stage, the
test accuracy further improves and the training loss further reduces. After 30 iterations, the accuracy
of the proposed model is higher than that of the ShuffleNetV2 model and the loss of the proposed
model is less than that of the ShuffleNetV2 model, which verifies the effectiveness of the proposed
model.

(a) Accuracy comparison           

(b) Loss comparison 

A
cc

ur
ac

y/
%

Epoch

Lo
ss

Epoch

Figure 11: Comparison of the ShuffleNetV2 model and the proposed model

Table 3 presents the experimental results of different models. Under the same conditions, the
proposed model is compared with the lightweight networks ShuffleNetV2 1.0x, ShuffleNetV2 1.5x,
ShuffleNetV2 2.0x, MobileNetV2, MobileNetV3, Efficient Net, and EfficientNetV2 as well as
the classical CNNs ResNet34, ResNet50, and ResNet101, further validating the effectiveness of
the proposed model for crop pest and disease identification. Compared to ShuffleNetV2 1.0x, the
accuracy of the proposed model is 0.6 percentage points higher and the model size is 0.29 MB
greater as the MixDWConv increases the number of parameters and memory accesses by a small
amount compared to the standard convolution. The proposed model exhibits better performance than
ShuffleNetV2 1.5x and ShuffleNetV2 2.0x in terms of both accuracy and model size. The accuracy
of the proposed model is higher than that of the lightweight networks MobileNetV2, MobileNetV3,
EfficientNet, and EfficientNetV2 by 0.33, 0.31, 0.72, and 0.11 percentage points, respectively. The
proposed model outperforms these four lightweight networks in terms of three metrics: model size,
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number of parameters, and memory access. The accuracy of the proposed model is higher than
that of the classical CNNs ResNet34, ResNet50, and ResNet101 by 0.87, 1.51, and 0.67 percentage
points, respectively, and it outperforms these three classical CNNs in terms of model size, number of
parameters, and memory access. This shows that the proposed model exhibits the best performance in
terms of recognition accuracy and model performance. Furthermore, it exhibits superior performance
in identifying plant diseases and is suitable for deployment on resource-constrained mobile terminal
devices.

Table 3: Comparison of experimental results for different models

Models Accuracy/% Model Size/MB Number of
participants

Memory
accesses/MB

ShuffleNetV2 1.0x 98.83 4.94 1279229 20.84
ShuffleNetV2 1.5x 98.88 9.64 2504249 29.32
ShuffleNetV2 2.0x 98.78 20.71 5396221 39.50
MobileNetV2 99.10 8.66 2236682 74.25
MobileNetV3 99.12 5.93 1543481 16.19
Efficient Net 98.71 15.57 11194137 79.40
EfficientNetV2 99.32 77.71 20209513 144.97
ResNet34 98.56 81.31 21297497 37.61
ResNet50 97.92 90.82 23559257 109.68
ResNet101 98.76 162.73 42551383 161.75
Ours 99.43 5.23 1331428 20.88

The proposed model is compared with models proposed in previous studies [21–24] that use the
same PlantVillage open source dataset. The comparison results are shown in Table 4.

Table 4: Performance comparison of different classification methods

Method Basic model Accuracy/% Model size/MB

[21] VGG 99.42 6.47
[22] ShuffleNetV2 99.24 –
[23] AlexNet 92.7 29.9
[24] MobileNet 95.02 17.1
[24] Inception V3 95.62 87.5
Ours ShuffleNetV2 99.43 5.23

4.4 Ablation Study
To investigate whether the introduction of the attention module is effective for identifying plant

diseases, a comparative experiment is conducted. The original model of ShuffleNetV2 is compared
with the ShuffleNetV2 model comprising the channel attention mechanism Squeeze-and-Excitation
Networks (SE), the mixed attention module CBAM, and the ECA module. Table 5 shows that
compared to the ShuffleNetV2 model, the models with SE, CBAM, and ECA modules exhibit
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improved recognition accuracy by 0.03, 0.07, and 0.18 percentage points, respectively. This denotes
that the introduction of attention mechanisms is helpful for identifying plant diseases. Simultaneously,
the experimental results show that both SE and CBAM modules increase the number of parameters
and the memory access of the model, but the ECA module improves the recognition accuracy, while
maintaining the light weight of the model.

Table 5: Experimental results of the ShuffleNetV2 model with different attention modules

Models Accuracy/% Model size/MB Number of participants Memory
accesses/MB

ShuffleNetV2 1.0x 98.83 4.94 1279229 20.84
ShuffleNetV2 + SE 98.86 6.05 1596146 21.08
ShuffleNetV2 +
CBAM

98.90 5.32 1347123 20.89

ShuffleNetV2 + ECA 99.01 4.94 1279229 20.84

To verify the effectiveness of various optimization methods in the proposed model, various
optimization methods are compared with the ShuffleNetV2 1.0x model. The detailed experimental
results are shown in Table 6. The incorporation of the MixDWConv, ECA module, and ReLU6
activation function on top of the ShuffleNetV2 model has a positive impact on accuracy. The addition
of MixDWConv has the most significant impact on accuracy, but it also increases the model size
by 0.29 MB. The addition of the ECA module and ReLU6 activation function not only affects the
number of parameters of the model but also increases the recognition accuracy of the model. This
demonstrates that the fusion of the ECA module and ReLU6 activation function does not adversely
affect the ShuffleNetV2 network and is beneficial for improving the recognition accuracy of the model.

Table 6: Comparison of the experimental results of model-optimized ablation

Models Accuracy/% Model size/MB Number of participants Memory
accesses/MB

ShuffleNetV2 1.0x 98.83 4.94 1279229 20.84
ShuffleNetV2 +
MixDWConv

99.23 5.23 1331428 20.88

ShuffleNetV2 + ECA 99.01 4.94 1279229 20.84
ShuffleNetV2 +
ReLU6

99.08 4.94 1279229 20.84

ShuffleNetV2 +
MixDWConv + ECA
+ ReLU6

99.43 5.23 1331428 20.88

The final improved ShuffleNetV2 model incorporates MixDWConv, the ECA mechanism, and
the ReLU6 activation function to achieve an optimal result. A 0.6 percentage point improvement
in accuracy is achieved compared to ShuffleNetV2 1.0x, while sacrificing a small number of model
parameters.
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4.5 Verification of the Choice of Group Numbers for Mixed Depthwise Convolution
In this study, a lightweight model that is the modified version of ShuffleNetV2 is proposed. It

uses MixDWConv in the basic module of ShuffleNetV2, i.e., all channels are divided into groups and
different sizes of convolution kernels are applied to different groups. In the proposed model, g = 4 for
MixDWConv. This subsection shows how different group sizes in MixDWConv influence the model
performance.

Fig. 12 displays the effect of different g values in MixDWConv on the model performance. If
g = 1, MixDWConv is equivalent to the ordinary depthwise convolution; thus, g is restricted from 1.
As shown in Fig. 12a, the accuracy increases with the number of groups and reaches the highest value
when g = 4. When g = 5, the accuracy significantly decreases. Fig. 12b displays the model loss for
different g values in MixDWConv. When g = 4, the model loss is the smallest and the model exhibits
the best performance. Fig. 12c shows that the model size slightly increases with the g value. Considering
the three factors of model accuracy, loss, and model size, the g value with the best combined effect is
selected, i.e., g = 4.
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Figure 12: Effect of different numbers of groups on the model performance

5 Conclusion

To solve the problems of high complexity and large number of parameters in existing models for
crop pest recognition, an improved ShuffleNetV2 crop pest recognition model was proposed. The
depthwise convolution is replaced by MixDWConv, and several parameters are added to significantly
improve the recognition accuracy of the model. The proposed model incorporates the ECA module
to improve the model recognition accuracy without increasing the number of model parameters. The
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ReLU6 activation function is employed to prevent the generation of large gradients. The recognition
accuracy of the proposed model on the PlantVillage public dataset is 99.43%, which makes it
convenient to deploy on end devices with limited computing resources for subsequent research. Future
studies will investigate methods to significantly reduce the number of parameters while maintaining the
crop pest and disease recognition accuracy and comprehensively improving the model performance.
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