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Abstract: Learning the Markov blanket (MB) of a given variable has received
increasing attention in recent years because the MB of a variable predicts
its local causal relationship with other variables. Online MB Learning can
learn MB for a given variable on the fly. However, in some application
scenarios, such as image analysis and spam filtering, features may arrive by
groups. Existing online MB learning algorithms evaluate features individually,
ignoring group structure. Motivated by this, we formulate the group MB
learning with streaming features problem, and propose an Online MB learning
with Group Structure algorithm, OMBGS, to identify the MB of a class
variable within any feature group and under current feature space on the fly.
Extensive experiments on benchmark Bayesian network datasets demonstrate
that the proposed algorithm outperforms the state-of-the-art standard and
online MB learning algorithms.
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1 Introduction

The Markov blanket (MB) is an essential substructure in the Bayesian network (BN). Under
the faithfulness assumption, the MB of a given variable is unique and consists of parents (direct
causes), children (direct effects), and spouses (the other parents of the children) of the variable, which
represents the local causal relationships of the variable [1]. Since a given variable is independent of
others conditioning on its MB, the MB of the variable is the optimal feature subset [2–4]. Identifying
MB of a given variable captures the causal relationship between the variable and selected variables,
enhancing the interpretability of the prediction model [5,6].

Standard MB learning algorithms must obtain the entire variable space [7–10]. However, not
all variables can be obtained in advance [11]. Online MB learning algorithms have recently received
more and more attention because they can dynamically process variables [12,13]. Nevertheless, in
application scenarios, features are generated in groups [14]. For example, in environmental monitoring
and analysis, researchers will deploy monitoring stations at different locations, and each station will
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continuously generate data [15]; in medical examination, the different inspection items will generate
different feature groups [16–18]. In such application scenarios with group features arrived, if directly
using the existing online MB learning algorithm, group features need to be split into one by one feature,
which will destroy the original group structure, leading to loss of information and reduced accuracy.

Motivated by this, we focus on online MB learning with group structure, and the contributions of
this paper are as follows:

i) Different from online MB learning, we address the problem of online group MB learning
instead of online individual MB learning. To the best of our knowledge, this is the first effort
considering the online group MB learning problem.

ii) We propose OMBGS, Online MB learning with Group Structure, which consists of two parts:
intra-group selection and inter-group selection. OMBGS first selects MB of a class variable
within the newly arrived feature group, and then selects MB of the class variable under the
current feature space.

iii) We conducted experiments on eight benchmark BN datasets to validate the accuracy of the
proposed algorithms by comparison with eight standard MB learning algorithms and three
online MB learning algorithms.

The remainder of this paper is organized as follows. In Section 2, we review the related work.
In Section 3, we describe the basic notations and definitions. In Section 4, we provide the proposed
algorithms in detail, and in Section 5, we discuss the experimental results and their interpretation.
Finally, Section 6 concludes this paper.

2 Related Work

In this section, we first discuss the standard MB learning algorithms, then review the Online MB
learning algorithms.

2.1 Standard Markov Blanket Learning
Standard MB learning algorithms are divided into simultaneous and divide-and-conquer algo-

rithms [9]. Simultaneous algorithms are efficient, but the accuracy may suffer when the sample size
is insufficient because it uses a large conditioning set, and conditional independence tests are less
accurate with a large conditioning set [19,20]. Divide-and-conquer algorithms improve the accuracy
of the simultaneous algorithms with small samples by reducing the size of the conditioning set, and
dividing it into two steps: parents and children (PC) learning and spouses learning.

Incremental Association MB (IAMB) [21] is a typical representative of simultaneous algorithms.
IAMB first discovers all possible MB of a given variable conditioning on the selected MB, then removes
all false-positives. Later, multiple variants of IAMB were proposed (e.g., FBED [22] and EAMB [23]).

Min-max MB (MMMB) [24] algorithm is the earliest divide-and-conquer algorithm. MMMB
first uses a subset of the currently selected PC to identify the PC of a given variable, and then uses
the obtained PC to identify spouses of the variable. Later, HITONMB [25] improved the efficiency
of MMMB via the interleaved addition and removal of parent or child. To improve the efficiency
of previous algorithms, simultaneous MB (STMB) [26] identifies all spouses from non-PC of a given
variable. However, STMB algorithm uses a larger conditioning set in the spouses learning phase, which
reduces the accuracy of learning the MB of a given variable. Balanced MB discovery (BAMB) [27] and
the efficient and effective MB discovery (EEMB) [28] reduce the size of the conditioning set of STMB
in the spouses learning phase, which improves the accuracy of STMB with small samples. Cross-check
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and complement MB discovery (CCMB) [29] reduces the impact of conditional independence test
errors on MB learning through OR rules. Causal Feature Selection framework (CFS) [30] improves
the efficiency of MB learning algorithms by reducing the skeleton structure to be expanded during
spouses learning.

2.2 Online Markov Blanket Learning
Online MB learning algorithms can learn MB for a given variable without acquiring the entire

variable space. Online causal feature selection for streaming features (OCFSSF) [12] algorithm is the
earliest proposed online MB learning algorithm. When a new variable arrives, OCFSSF algorithm can
dynamically determine whether the current variable is the MB node of the target variable. However,
OCFSSF algorithm cannot remove all false-positive spouses. Online simultaneous MB learning (O-
ST) [13] algorithm takes the currently selected MB as the condition set and obtains the MB in the
current state on the fly. Online divide-and-conquer MB learning (O-DC) [13] algorithm is based on
mutual information theory. After a new variable has arrived, O-DC identifies PC and spouses of a
given variable in the current state.

However, the existing online MB learning algorithms can not handle features with the group
structure because online MB learning algorithms can only process a single feature at a time. To
tackle these problems, in this paper, we propose online MB learning with group structure algorithm
to accurately identify the MB of a given variable.

3 Notations and Definitions

In this section, we describe basic definitions and theorems. Table 1 summarizes the notations used
in this paper.

Table 1: Summary of notations

Notation Meaning

U A variable set
G A directed acyclic graph over U
P A joint probability distribution over U
X, Y A variable in U
x, y A discrete value that a variable may take
T A given target variable in U
S A conditioning set within U
X �Y |S X is conditionally independent of Y given S
X �\Y |S X is conditionally dependent on Y given S
MBT Markov blanket of T
PCT Parents and children of T
CPCT A candidate set of PCT

SPT{X} A subset of spouses of T with respect to X
CSPT{X} A candidate set of SPT{X}
SepT{X} A set that d-separates T from X
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Definition 1 (Bayesian Network) [31]. A triplet <U, G, P> is called a Bayesian network iff <U,
G, P> satisfies the Markov condition: each variable in U is independent of all non-descendants of the
variable conditioning on its parents.

Definition 2 (Faithfulness) [32]. A BN <U, G, P> is faithful iff all conditional dependencies
between features in G are captured by P.

Definition 3 (Conditional Independence) [30]. For two variables X and Y are conditionally
independent given a set S (i.e., X �Y |S), if P(X = x, Y = y|S = s) = P(X = x|S = s) P(Y = y|S =
s).

Definition 4 (D-separation) [31]. For two variables X and Y are conditionally independent given
S (S ⊆ U\{X ∪ Y}), iff each path from X to Y is blocked by the set S. For a path π between X and Y ,
if a collider and it descendants on π is not included in S, or every non-collider on π is included in S,
then path π is blocked by S.

Under the faithfulness assumption, Definition 4 can be used to determine whether two variables
are independent given a conditioning set.

Definition 5 (Markov Blanket) [31]. In a faithful BN, MB of each variable is unique and consists
of its parents, children, and spouses (the other parents of its children).

Given MB of T , MBT , all other variables are conditionally independent of T , that is, Y �T |MBT ,
for $∀ Y∈ U\MBT\T . Thus, MB is the optimal feature subset for prediction.

Definition 6 (V-Structure) [31]. Three variables T, X, Y form a V-structure (i.e., T → X ← Y ), iff
T and Y are both parents of X .

The V-structure can be used to identify spouses of a given variable. Such as, if there is a V-structure
T → X ← Y , then Y is a spouse of T .

Theorem 1 [31–33]. In a faithful BN, given two variables T ∈ U and X ∈ U, if there is an edge
between T and X , then T �\X |S, for ∀ S ⊆ U\{T, X}.

4 Proposed Algorithm

In this section, we first describe the OMBGS algorithm, then describe two of the important
subprograms, and finally analyze the correctness of the OMBGS algorithm.

4.1 The OMBGS Algorithm
In this subsection, we propose the OMBGS, and the pseudo-code of the OMBGS is shown in

Algorithm 1, which consists of two parts: intra-group selection and inter-group selection. For the
newly arrived variable group, OMBGS first identifies the MB of a given variable within the newly
arrived group (Lines 4–10), and then obtains the MB of the variable in the current variable space via
the newly arrived group (Lines 11–25).

Algorithm 1: Online MB learning with group structure
Require: T : target variable
Ensure: MBT : MB of T
1: CPCT = Ø
2: Repeat
3: V ← get-variable-group()

(Continued)
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Algorithm 1: Continued
/∗intra group feature selection∗/

4: NCPCT = Get-PC(T , Ø, CPCT , V)
5: for X ∈ NCPCT do
6: CSPT{X} = Get-SP(T , X , INDT)
7: if CSPT{X} is not empty then
8: SPT{X} = Get-PC(T , X , Ø, CSPT{X} ∪ CPCT ∪ NCPCT)
9: end if
10: end for

/∗inter group feature selection∗/
11: OCPCT = Get-PC(T , Ø, NCPCT , CPCT)
12: for X ∈ OCPCT do
13: CSP = Get-SP(T , X , V\NCPCT)
14: CSPT{X} = CSPX{T} ∪ CSP
15: if CSPT{X} is not empty then
16: SPT{X} = Get-PC(T , X , Ø, CSPT{X} ∪ CPCT ∪ NCPCT)
17: end if
18: end for
19: PCT = OCPCT ∪ NCPCT

20: for X ∈ PCT do
21: if T �X|S ∪ Y∈S SPT{Y} for some S ⊆ PCT\{X} then
22: PCT = PCT\{X}
23: end if
24: end for
25: MBT = PCT ∪ Y∈PCT SPT{Y}
26: Until no new variable group arrived

The Part 1 in OMBGS (Algorithm 1, Lines 4–10) identifies the MB of a class variable from the
newly arrived variable group. OMBGS first uses Get-PC (Algorithm 2) to identify the PC of the class
variable from the newly arrived variable group V (Line 4). Then, based on the identification of PC
(NCPCT) from the newly arrived variable group, OMBGS identifies spouses with respect to these PC
(Lines 5–10). For a newly identified PC, X , OMBGS uses Get-SP (Algorithm 3) to identify all possible
spouses from variables that are independent of the class variable (INDT) in the current feature space
(Line 6). If the spouses can be identified by variable X , then continue to remove all false-positives in
the identified spouses (Lines 7–9).

Note that the Get-PC subroutine utilizes Theorem 1 to identify PC of a class variable, and the
essence of Get-PC is to identify all variables that are independent of a class variable. Thus, according
to Definition 6, we can use Get-PC to remove variables independent of the class variable in a containing
set that includes X for learning all true-positive spouses.

The Part 2 in OMBGS (Algorithm 1, Lines 11–25) identifies the MB of a class variable under the
current variable space. OMBGS first uses Get-PC to remove false-positives in CPCT based on newly
identified NCPCT (Line 11). Then, similar to Part 1, OMBGS identifies spouses of the class variable
from the newly arrived variable group V according to the variables in OCPCT (Lines 12–18). Finally,
OMBGS uses the currently identified MB to remove the false-positives in PCT (Lines 20–25).
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Algorithm 2: Get-PC
Require: T : target variable, Y : the variable that must be included in conditioning set, PCT : the current
PC of T , V: candidate variables
Ensure: NPCT : PC of T in V
1: NPCT = V
2: for X ∈ V do
3: if T �X| Z ∪ {Y} for ∃ Z ⊆ NPCT ∪ PCT\{X} then
4: NPCT = NPCT\{X}
5: end if
6: end for
7: for X ∈ PCT do
8: if T �X| Z ∪ {Y} for ∃ Z ⊆ NPCT ∪ PCT\{X} then
9: PCT = PCT\{X}
10: end if
11: end for
12: Return NPCT

Algorithm 3: Get-SP
Require: T : target variable, Y : a parent or child of T , V: candidate variables
Ensure: CSPT{Y}: candidate spouses of T with respect to Y
1: CSPT{Y} = Ø
2: for X ∈ V do
3: if T �\X| SepT{X} ∪ {Y}then
4: CSPT{Y} = CSPT{Y} ∪ {X}
5: end if
6: end for
7: Return CSPT{Y}

4.2 The Get-PC Subroutine
Based on the PC of a target variable T in the current state, PCT (initially, PCT is the empty set).

OMBGS first uses the currently identified PC, PCT , to identify the false-positive PC in the newly
arrived variable group for minimizing the current candidate PC (Lines 2–6). Then, using the newly
identified PC, NPCT , OMBGS removes the false positives in PCT (Lines 7–11).

Proposition 1. Any true-positive PC in V is included in the identified NPCT .

Proof : For each variable in V, the algorithm Get-PC uses a subset of the currently selected PC
(PCT) as the condition set to determine whether it is independent of the class variable. According to
Theorem 1, the PC of a class variable is strongly correlated features, and the nodes independent of the
class variable for the current condition must be non-PC of the class variable.

4.3 The Get-SP Subroutine
Proposition 2. In a faithful BN, for a variable T , if variable X is a spouse of T with respect to Y ,

then T and X are dependent containing on a set including Y .

Proof : For a variable T , if variable X is a spouse of T with respect to X , there exists the structure,
T → Y ← X , where variable Y is a collider. According to D-separation, we can obtain that T and X
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are conditionally dependent when Y is in the conditioning set, because the path T-Y-X between T and
X is open. Thus, the conditioning set includes PC of T , Y , and T and X are conditionally independent.

For each variable in V (Line 2), the Get-SP subroutine determines whether the variable is a spouse
of a given variable T (Lines 3–5). According to Proposition 2, the Get-SP subroutine identifies all
spouses (CSPT{Y}) of the given variable T with respect to a variable Y .

4.4 Correctness of OMBGS
Proposition 3. Under the faithfulness assumption, OMBGS finds the correct MB of a class variable

under the current feature space.

Proof : First, we show that OMBGS can discover all PC and spouses of a class variable. For PC
discovery, OMBGS uses Get-PC (Algorithm 2) to discover the PC of a class variable T in the newly
arrived feature group V. All PC will be discovered owing to Proposition 1. For spouses discovery,
OMBGS first obtains spouses from INDT by newly joining PC, NCPCT (Line 6), and then obtains
spouses from the newly arrived feature group by OCPCT (Line 13). After these two steps, all spouses
will be discovered owing to Proposition 2. Second, we show that OMBGS will remove all false-positive
spouses and PC. For the false-positives in CSPT{X}, OMBGS use CSPT{X} ∪ CPCT ∪ NCPCT to
remove them (Line 8). Since this step will remove all variables independent of T about X . Thus, all
false-positive spouses are removed. For the PC in the current state, OMBGS first removes the false-
positives from them using the newly identified PC (Line 11), and then based on the property of MB,
OMBGS removes all false-positive PC using the current MB (Line 20–25). Thus, all false-positive PC
in the current state will be removed.

4.5 Computational Complexity
We use the number of conditional independence tests to represent the time complexity of OMBGS

algorithm. Assume that |N| denotes the number of all arrived variables in the current state and |V|
denotes the number of feature groups that arrive in the next state. In the intra-group selection phase,
for PC learning, Algorithm 2 uses the subsets of the union of currently selected PC and feature group V
to identify PC of a given variable in V, and the time complexity is O(|V|2|PC|+|V|). For spouses learning,
for each variable in the newly identified PC, the possible spouses are identified from the non-PC
of the given variable, and the time complexity is O(|PC||nonPC|), and the true-positive spouses are
identified by removing all false spouses, and the time complexity is O(|PC||CSP|2|CSP|+|PC|). Similarly,
in the inter-group selection phase, for PC learning, the time complexity is O(|PC|2|PC|), and for spouses
learning, the time complexity is O(|PC||nonPC|) + O(|PC||CSP|2|CSP|+|PC|). Thus, the time complexity
of OMBGS is O(|PC||CSP|2|CSP|+|PC|).

5 Experiments

In this section, we evaluate the proposed OMBGS. We first describe datasets, compared algo-
rithms, and evaluate metrics used in the experiment. Then we summarize and discuss the experimental
results.

5.1 Experiment Setting
5.1.1 Datasets

Table 2 shows the eight benchmark BN datasets (Child, Insurance, Alarm, Child10, Insurance10,
Alarm10, Pigs, and Gene). We used two data groups for each benchmark BN network, one contained
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ten datasets with 500 data samples, and the other contained ten datasets with 5000 data samples. The
number of variables in these datasets ranges from 20 to 801.

Table 2: Summary of benchmark Bayesian network datasets

Num. Num. Max In/Out- Min/Max
Network Vars Edges Degree |PC set|

Child 20 25 2/7 1/8
Insurance 27 52 3/7 1/9
Alarm 37 46 4/5 1/6
Child10 200 257 2/7 1/8
Insurance10 270 556 5/8 1/11
Alarm10 370 570 4/7 1/9
Pigs 441 592 2/39 1/41
Gene 801 972 4/10 0/11

5.1.2 Comparison Algorithms

We compare the proposed algorithm OMBGS against the following eight standard MB learning
algorithms and three online MB learning algorithms:

Standard MB learning algorithms

1) MMMB [24]. MMMB algorithm first uses MMPC [24] algorithm to learn PC of a given
variable, and then learns PC of each variable in PC of the given variable for obtaining spouses
of the given variable.
2) HITONMB [25]. Compared to MMMB, HITONMB uses HITONPC [25] for learning the
PC of a given variable.
3) STMB [26]. STMB algorithm first uses PCsimple [26] to learn the PC of a given variable,
and then identifies spouses from non-PC of the given variable.
4) BAMB [27]. BAMB algorithm uses HITONPC to add and remove PC and spouses of a
given variable alternately.
5) EEMB [28]. EEMB algorithm first uses HITONPC to learn PC and spouses of a given
variable alternately, then removes false-positives.
6) CCMB [29]. CCMB algorithm finds the PCMasking phenomenon caused by the conditional
independence test error and avoids the error using symmetry checking.
7) CFS [30]. CFS algorithm reduces the skeleton structure that needs to be expanded when
identifying spouses by identifying the children with multiple parents (C-MP) in the PC of a
class variable.
8) EAMB [23]. EAMB algorithm recovers missed true-positive MB from the removed MB to
avoid false deletes due to conditional independence test errors.

Online MB learning algorithms

1) OCFSSF [12]. OCFSSF algorithm alternately learns the PC and spouses of a class variable
via the newly arrived variable to obtain the MB of the class variable on the fly.
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2) O-ST [13]. O-ST algorithm uses the property of MB to determine whether a newly arrived
variable is an MB of a class variable on the fly.
3) O-DC [13]. O-DC algorithm based on mutual information theory to identify MB of a class
variable via the new arrival feature on the fly.

5.1.3 Evaluation Metrics

MATLAB was used to implement all the algorithms. Standard MB learning algorithms are
implemented by Causal learner [34]. All experiments were conducted on a Windows 10 computer with
an Intel Core i7-4790 processor and 16 GB of RAM. The best results are shown in bold in the tables
in the experimental results.

We run every algorithm for each variable in every network. On the benchmark BN datasets, the
following metrics were used to assess the algorithms:

Precision: Precision is the number of true-positives in the output (i.e., variables in the output that
belong to the MB of a given variable) divided by the number of variables in the output of an algorithm.

Recall: Recall represents the number of true-positives in the output divided by the number of
true-positives (i.e., the amount of the MB of a given variable).

F1: F1 is the harmonic average of Precision and Recall (F1 = 2 ∗ precision ∗ recall/(precision +
recall)), where F1 = 1 is the best case, and F1 = 0 is the worst case.

Time: Time is the runtime of an algorithm.

We report the average F1, precision, recall, and runtime for ten datasets for each algorithm. The
results are presented in the following tables in the format A ± B, where A denotes the average F1,
Precision, Recall, or Time, and B denotes the standard deviation.

5.2 Experiment Result
5.2.1 OMBGS and Standard MB Learning Algorithms

We compare OMBGS with MMMB, HITONMB, STMB, BAMB, EEMB, CCMB, CFS, and
EAMB on the eight BNs, as shown in Table 2. The average results of F1, Precision, Recall, and Time
of each algorithm are reported in Tables 3 and 4. Table 3 summarizes the experimental results on three
small-sized BN datasets (Child, Insurance, and Alarm), and Table 4 reports the experimental results on
five large-sized BN datasets (Child10, Insurance10, Alarm10, Pigs, and Gene). Since the benchmark
BN datasets do not have a group structure, we divided the dataset into ten groups according to the
order of the variable number as the input of OMBGS algorithm. Since OMBGS and standard MB
algorithms process different data types, we only compare the accuracy (F1) rather than the efficiency
of OMBGS and its rivals. From the experimental results, we have the following observations.

On the Child network, regardless of the number of samples, OMBGS is the most accurate in terms
of F1 metric compared to other algorithms. On the Insurance network with 500 samples, OMBGS
is more accurate than its rivals. However, on the Insurance network with 5000 samples, compared
with standard MB learning algorithms, OMBGS does not achieve a high accuracy, which may be
due to some information missing due to grouping, and thus the true-positives are removed. On the
Alarm network with 500 samples, OMBGS achieves higher accuracy than half of the comparison
algorithms. On the Alarm network with 5000 samples, OMBGS algorithm achieves higher accuracy
than all comparison algorithms.



42 IASC, 2023, vol.37, no.1

Table 3: Comparison of OMBGS with state-of-the-art standard MB learning algorithms on three
small-sized benchmark BNs

Size = 500 Size = 5000
Network Algorithm F1 Precision Recall Time F1 Precision Recall Time
Child MMMB 0.79 ± 0.01 0.75 ± 0.02 0.93 ± 0.01 0.11 ± 0.02 0.98 ± 0.02 0.97 ± 0.01 0.99 ± 0.00 0.21 ± 0.05

HITONMB 0.82 ± 0.03 0.81 ± 0.01 0.90 ± 0.02 0.05 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.13 ± 0.02
STMB 0.60 ± 0.05 0.54 ± 0.03 0.86 ± 0.01 0.02 ± 0.00 0.87 ± 0.02 0.82 ± 0.01 0.99 ± 0.03 0.04 ± 0.01
BAMB 0.81 ± 0.01 0.81 ± 0.02 0.88 ± 0.01 0.04 ± 0.02 0.93 ± 0.02 0.95 ± 0.01 0.92 ± 0.01 0.11 ± 0.06
EEMB 0.84 ± 0.02 0.88 ± 0.01 0.86 ± 0.01 0.02 ± 0.01 0.98 ± 0.02 0.97 ± 0.01 0.99 ± 0.02 0.04 ± 0.01
CCMB 0.81 ± 0.02 0.77 ± 0.01 0.94 ± 0.03 0.01 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 1.19 ± 0.35
CFS 0.84 ± 0.01 0.88 ± 0.01 0.86 ± 0.02 0.03 ± 0.01 0.97 ± 0.02 0.97 ± 0.01 0.99 ± 0.01 0.05 ± 0.03
EAMB 0.81 ± 0.01 0.94 ± 0.01 0.77 ± 0.02 0.01 ± 0.00 0.90 ± 0.02 0.89 ± 0.01 0.92 ± 0.03 0.02 ± 0.01
OMBGS 0.84 ± 0.01 0.91 ± 0.02 0.81 ± 0.01 0.03 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.11 ± 0.03

Insurance MMMB 0.59 ± 0.01 0.59 ± 0.02 0.64 ± 0.02 0.08 ± 0.01 0.81 ± 0.01 0.92 ± 0.02 0.76 ± 0.01 0.26 ± 0.06
HITONMB 0.61 ± 0.01 0.72 ± 0.02 0.58 ± 0.03 0.03 ± 0.01 0.80 ± 0.02 0.91 ± 0.01 0.74 ± 0.03 0.20 ± 0.06
STMB 0.42 ± 0.01 0.41 ± 0.01 0.57 ± 0.03 0.02 ± 0.01 0.72 ± 0.03 0.73 ± 0.01 0.80 ± 0.01 0.07 ± 0.02
BAMB 0.58 ± 0.01 0.69 ± 0.01 0.56 ± 0.02 0.03 ± 0.01 0.78 ± 0.01 0.90 ± 0.02 0.73 ± 0.01 0.23 ± 0.05
EEMB 0.61 ± 0.01 0.80 ± 0.01 0.53 ± 0.02 0.02 ± 0.00 0.79 ± 0.01 0.94 ± 0.01 0.72 ± 0.01 0.07 ± 0.02
CCMB 0.53 ± 0.03 0.60 ± 0.01 0.53 ± 0.02 0.56 ± 0.15 0.80 ± 0.01 0.81 ± 0.02 0.81 ± 0.02 2.31 ± 0.57
CFS 0.60 ± 0.01 0.80 ± 0.02 0.53 ± 0.03 0.03 ± 0.01 0.81 ± 0.01 0.96 ± 0.01 0.74 ± 0.01 0.07 ± 0.03
EAMB 0.54 ± 0.01 0.85 ± 0.01 0.43 ± 0.02 0.01 ± 0.00 0.75 ± 0.02 0.93 ± 0.01 0.67 ± 0.01 0.03 ± 0.01
OMBGS 0.61 ± 0.01 0.81 ± 0.02 0.53 ± 0.01 0.04 ± 0.02 0.78 ± 0.01 0.91 ± 0.02 0.72 ± 0.01 0.17 ± 0.06

Alarm MMMB 0.71 ± 0.02 0.67 ± 0.01 0.83 ± 0.01 0.07 ± 0.02 0.96 ± 0.01 0.96 ± 0.01 0.97 ± 0.02 0.13 ± 0.07
HITONMB 0.77 ± 0.02 0.82 ± 0.01 0.77 ± 0.02 0.03 ± 0.01 0.97 ± 0.01 0.99 ± 0.01 0.97 ± 0.02 0.10 ± 0.03
STMB 0.49 ± 0.02 0.40 ± 0.01 0.82 ± 0.01 0.03 ± 0.01 0.78 ± 0.02 0.76 ± 0.01 0.94 ± 0.01 0.05 ± 0.02
BAMB 0.72 ± 0.01 0.76 ± 0.01 0.74 ± 0.03 0.05 ± 0.01 0.90 ± 0.03 0.92 ± 0.02 0.90 ± 0.01 0.14 ± 0.05
EEMB 0.77 ± 0.01 0.84 ± 0.01 0.74 ± 0.02 0.02 ± 0.01 0.95 ± 0.01 1.00 ± 0.00 0.91 ± 0.01 0.05 ± 0.02
CCMB 0.78 ± 0.03 0.80 ± 0.02 0.79 ± 0.01 0.94 ± 0.03 0.96 ± 0.02 0.95 ± 0.02 0.98 ± 0.01 2.24 ± 0.87
CFS 0.77 ± 0.01 0.85 ± 0.02 0.75 ± 0.01 0.03 ± 0.01 0.95 ± 0.02 0.99 ± 0.01 0.92 ± 0.01 0.05 ± 0.01
EAMB 0.71 ± 0.01 0.87 ± 0.02 0.64 ± 0.01 0.01 ± 0.00 0.90 ± 0.02 0.94 ± 0.01 0.87 ± 0.02 0.02 ± 0.01
OMBGS 0.75 ± 0.02 0.85 ± 0.02 0.72 ± 0.01 0.06 ± 0.02 0.98 ± 0.01 1.00 ± 0.00 0.96 ± 0.01 0.21 ± 0.03

Table 4: Comparison of OMBGS with state-of-the-art standard MB learning algorithms on five large-
sized benchmark BNs

Size = 500 Size = 5000
Network Algorithm F1 Precision Recall Time F1 Precision Recall Time

Child10 MMMB 0.66 ± 0.01 0.62 ± 0.01 0.83 ± 0.02 0.15 ± 0.05 0.88 ± 0.02 0.81 ± 0.01 0.99 ± 0.00 0.23 ± 0.10
HITONMB 0.69 ± 0.01 0.68 ± 0.02 0.80 ± 0.03 0.11 ± 0.05 0.94 ± 0.02 0.91 ± 0.01 0.99 ± 0.01 0.27 ± 0.07
STMB 0.35 ± 0.01 0.27 ± 0.02 0.86 ± 0.01 0.11 ± 0.60 0.58 ± 0.01 0.44 ± 0.02 0.99 ± 0.01 0.15 ± 0.08
BAMB 0.70 ± 0.00 0.70 ± 0.01 0.79 ± 0.01 0.09 ± 0.01 0.90 ± 0.02 0.89 ± 0.01 0.93 ± 0.01 0.29 ± 0.09
EEMB 0.74 ± 0.01 0.77 ± 0.01 0.78 ± 0.01 0.08 ± 0.03 0.95 ± 0.01 0.93 ± 0.02 0.99 ± 0.01 0.15 ± 0.05
CCMB 0.70 ± 0.01 0.68 ± 0.02 0.80 ± 0.01 7.51 ± 1.05 0.92 ± 0.01 0.88 ± 0.01 1.00 ± 0.00 19.02 ± 3.25
CFS 0.74 ± 0.02 0.76 ± 0.01 0.78 ± 0.01 0.10 ± 0.01 0.94 ± 0.02 0.92 ± 0.01 0.99 ± 0.01 0.15 ± 0.05
EAMB 0.62 ± 0.01 0.69 ± 0.02 0.67 ± 0.01 0.04 ± 0.03 0.72 ± 0.01 0.65 ± 0.01 0.92 ± 0.01 0.13 ± 0.07
OMBGS 0.74 ± 0.10 0.80 ± 0.02 0.74 ± 0.01 0.12 ± 0.05 0.96 ± 0.01 0.94 ± 0.01 0.99 ± 0.01 0.26 ± 0.07

Insurance10 MMMB 0.60 ± 0.01 0.55 ± 0.01 0.74 ± 0.02 0.19 ± 0.08 0.78 ± 0.01 0.74 ± 0.01 0.87 ± 0.02 0.48 ± 0.16
HITONMB 0.64 ± 0.01 0.67 ± 0.01 0.68 ± 0.02 0.18 ± 0.01 0.81 ± 0.01 0.88 ± 0.02 0.80 ± 0.01 0.55 ± 0.13
STMB 0.35 ± 0.03 0.25 ± 0.02 0.75 ± 0.02 0.13 ± 0.05 0.43 ± 0.06 0.32 ± 0.05 0.82 ± 0.04 0.33 ± 0.10
BAMB 0.65 ± 0.01 0.69 ± 0.02 0.68 ± 0.01 0.17 ± 0.01 0.77 ± 0.01 0.83 ± 0.01 0.77 ± 0.02 0.73 ± 0.05

(Continued)
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Table 4: Continued
Size = 500 Size = 5000

Network Algorithm F1 Precision Recall Time F1 Precision Recall Time

EEMB 0.67 ± 0.02 0.76 ± 0.01 0.66 ± 0.01 0.13 ± 0.05 0.80 ± 0.02 0.88 ± 0.01 0.78 ± 0.01 0.36 ± 0.07
CCMB 0.63 ± 0.02 0.65 ± 0.01 0.69 ± 0.01 13.44 ± 3.12 0.76 ± 0.01 0.75 ± 0.01 0.83 ± 0.01 43.94 ±

10.62
CFS 0.66 ± 0.01 0.74 ± 0.01 0.66 ± 0.01 0.16 ± 0.03 0.80 ± 0.02 0.88 ± 0.01 0.78 ± 0.02 0.29 ± 0.05
EAMB 0.54 ± 0.01 0.80 ± 0.01 0.47 ± 0.02 0.05 ± 0.02 0.66 ± 0.01 0.77 ± 0.02 0.65 ± 0.01 0.14 ± 0.03
OMBGS 0.65 ± 0.01 0.78 ± 0.01 0.61 ± 0.01 0.18 ± 0.07 0.78 ± 0.01 0.89 ± 0.02 0.74 ± 0.01 0.51 ± 0.05

Alarm10 MMMB 0.62 ± 0.01 0.65 ± 0.01 0.68 ± 0.01 0.16 ± 0.05 0.76 ± 0.02 0.74 ± 0.02 0.84 ± 0.01 0.27 ± 0.07
HITONMB 0.64 ± 0.03 0.77 ± 0.03 0.63 ± 0.02 0.16 ± 0.09 0.85 ± 0.02 0.91 ± 0.01 0.83 ± 0.03 0.32 ± 0.09
STMB 0.38 ± 0.01 0.31 ± 0.01 0.68 ± 0.02 0.11 ± 0.04 0.47 ± 0.02 0.38 ± 0.01 0.86 ± 0.03 0.23 ± 0.08
BAMB 0.63 ± 0.01 0.77 ± 0.02 0.61 ± 0.01 0.13 ± 0.01 0.80 ± 0.02 0.90 ± 0.02 0.77 ± 0.01 0.54 ± 0.08
EEMB 0.65 ± 0.01 0.80 ± 0.01 0.61 ± 0.02 0.12 ± 0.03 0.85 ± 0.01 0.94 ± 0.02 0.81 ± 0.01 0.26 ± 0.05
CCMB 0.65 ± 0.02 0.70 ± 0.02 0.68 ± 0.01 18.92 ± 2.12 0.84 ± 0.01 0.87 ± 0.02 0.86 ± 0.02 46.44 ± 6.03
CFS 0.65 ± 0.01 0.80 ± 0.01 0.61 ± 0.01 0.15 ± 0.07 0.84 ± 0.01 0.93 ± 0.01 0.81 ± 0.01 0.24 ± 0.05
EAMB 0.56 ± 0.02 0.71 ± 0.02 0.54 ± 0.01 0.08 ± 0.03 0.72 ± 0.01 0.74 ± 0.02 0.76 ± 0.02 0.25 ± 0.06
OMBGS 0.63 ± 0.01 0.80 ± 0.01 0.58 ± 0.01 0.16 ± 0.04 0.83 ± 0.02 0.94 ± 0.01 0.78 ± 0.01 0.32 ± 0.07

Pigs MMMB 0.77 ± 0.01 0.66 ± 0.01 1.00 ± 0.00 9.36 ± 1.06 0.92 ± 0.01 0.87 ± 0.02 1.00 ± 0.00 37.74 ± 5.32
HITONMB 0.93 ± 0.01 0.88 ± 0.01 1.00 ± 0.00 7.01 ± 2.01 0.92 ± 0.01 0.87 ± 0.01 1.00 ± 0.00 19.95 ± 1.57
STMB 0.28 ± 0.03 0.17 ± 0.02 1.00 ± 0.00 0.64 ± 0.06 0.27 ± 0.02 0.18 ± 0.02 1.00 ± 0.00 2.88 ± 0.57
BAMB 0.93 ± 0.01 0.91 ± 0.01 0.97 ± 0.01 0.94 ± 0.07 0.91 ± 0.01 0.89 ± 0.01 0.95 ± 0.01 33.64 ± 7.23
EEMB 0.95 ± 0.01 0.92 ± 0.02 1.00 ± 0.00 0.80 ± 0.05 0.95 ± 0.01 0.92 ± 0.01 1.00 ± 0.00 1.58 ± 0.86
CCMB 0.90 ± 0.02 0.84 ± 0.02 1.00 ± 0.00 226.68 ± 35.02 0.90 ± 0.01 0.83 ± 0.01 1.00 ± 0.00 1536.83 ±

25.27
CFS 0.95 ± 0.01 0.92 ± 0.01 1.00 ± 0.00 0.44 ± 0.07 0.95 ± 0.01 0.91 ± 0.01 1.00 ± 0.00 1.25 ± 0.58
EAMB 0.78 ± 0.01 0.82 ± 0.01 0.81 ± 0.02 0.13 ± 0.00 0.77 ± 0.02 0.70 ± 0.01 0.95 ± 0.01 0.82 ± 0.15
OMBGS 0.98 ± 0.01 0.96 ± 0.01 1.00 ± 0.00 2.07 ± 0.89 0.98 ± 0.01 0.98 ± 0.01 1.00 ± 0.00 160.76 ±

15.96

Gene MMMB 0.75 ± 0.01 0.66 ± 0.01 0.92 ± 0.02 0.53 ± 0.21 0.75 ± 0.02 0.65 ± 0.02 0.94 ± 0.01 0.77 ± 0.03
HITONMB 0.82 ± 0.01 0.79 ± 0.00 0.91 ± 0.03 0.33 ± 0.07 0.83 ± 0.02 0.77 ± 0.01 0.94 ± 0.01 0.90 ± 0.08
STMB 0.21 ± 0.03 0.13 ± 0.03 0.93 ± 0.01 0.29 ± 0.15 0.16 ± 0.02 0.09 ± 0.01 0.95 ± 0.02 0.77 ± 0.12
BAMB 0.79 ± 0.02 0.77 ± 0.02 0.87 ± 0.01 0.31 ± 0.03 0.74 ± 0.05 0.72 ± 0.01 0.84 ± 0.02 3.02 ± 1.07
EEMB 0.81 ± 0.01 0.77 ± 0.01 0.90 ± 0.01 0.28 ± 0.08 0.82 ± 0.01 0.76 ± 0.02 0.94 ± 0.02 0.53 ± 0.09
CCMB 0.78 ± 0.02 0.72 ± 0.02 0.92 ± 0.01 175.56 ± 32.25 0.81 ± 0.01 0.75 ± 0.01 0.94 ± 0.03 1362.62 ±

0.02
CFS 0.80 ± 0.01 0.77 ± 0.01 0.90 ± 0.00 0.31 ± 0.05 0.81 ± 0.01 0.75 ± 0.01 0.94 ± 0.02 0.60 ± 0.15
EAMB 0.65 ± 0.01 0.67 ± 0.02 0.77 ± 0.02 0.29 ± 0.12 0.62 ± 0.01 0.55 ± 0.02 0.88 ± 0.01 1.79 ± 0.32
OMBGS 0.87 ± 0.01 0.88 ± 0.01 0.89 ± 0.01 0.49 ± 0.25 0.93 ± 0.01 0.92 ± 0.01 0.95 ± 0.01 3.63 ± 0.56

Compared to other algorithms, OMBGS achieved the highest accuracy on three out of five
datasets on large-sized networks. Especially on the high-dimensional Pigs and Gene datasets, OMBGS
has more than 3% and 6% improvement in accuracy compared to other algorithms. It shows that
OMBGS can be better applied to high-dimensional data than the standard MB learning algorithms.

To make a more intuitive comparison, the accuracy (using F1 metric) of OMBGS with its rivals
is shown in Fig. 1. As we can see from the figure, OMBGS has comparable accuracy to the standard
MB learning algorithms on all datasets. In particular, on the high-dimensional datasets Pigs and Gene,
OMBGS has a significant advantage over its rivals.

Meanwhile, to further evaluate OMBGS against its rivals, we performed the Friedman test at
the 5% significance level. For accuracy, the null hypothesis of MMMB, HITONMB, STMB, BAMB,
EEMB, CCMB, CFS, EAMB, and OMBGS is rejected, and the average ranks are 3.88, 6.88, 1.06,
4.25, 7.25, 5.22, 6.81, 2.38, and 7.28, respectively. Then, we proceed with the Nemenyi test as a post
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hoc test. In the Nemenyi test, with a critical difference of 3.00, OMBGS was significantly faster than
its rivals, and the crucial difference diagram of the Nemenyi test is shown in Fig. 2.

Figure 1: The accuracy results of the experiments (the higher the F1 value is, the better the result) of
OMBGS and standard MB learning algorithms on eight benchmark BN datasets with 500 samples
and 5000 samples. (Numbers 1 to 8 denote the datasets with 500 samples: 1: Child, 2: Insurance, 3:
Alarm, 4: Child10, 5: Insurance10, 6: Alarm10, 7: Pig, 8: Gene. Numbers 9 to 16 denote the datasets
with 5000 samples: 9: Child, 10: Insurance, 11: Alarm, 12: Child10, 13: Insurance10, 14: Alarm10, 15:
Pig, 16: Gene)

Figure 2: Crucial difference diagram of the Nemenyi test for the accuracy of OMBGS and standard
MB learning algorithms

5.2.2 OMBGS and Online MB Learning Algorithms

We compare OMBGS with OCFSSF, O-ST, and O-DC on the eight BN datasets, as shown in
Table 5. The average results of F1, Precision, Recall, and running time of each algorithm are reported
in Table 5. For online MB learning algorithms, we add variables in variable numbers order. From the
experimental results, we have the following observations.
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Table 5: Comparison of OMBGS with state-of-the-art online MB learning algorithms on eight
benchmark BNs

Size = 500 Size = 5000
Network Algorithm F1 Precision Recall Time F1 Precision Recall Time
Child OCFSSF 0.83 ± 0.02 0.85 ± 0.01 0.86 ± 0.01 0.01 ± 0.00 0.98 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 0.03 ± 0.01

O-ST 0.78 ± 0.02 0.93 ± 0.02 0.74 ± 0.01 0.01 ± 0.00 0.88 ± 0.02 0.91 ± 0.01 0.87 ± 0.01 0.02 ± 0.01
O-DC 0.74 ± 0.02 0.81 ± 0.02 0.74 ± 0.01 0.01 ± 0.00 0.80 ± 0.02 0.95 ± 0.02 0.73 ± 0.01 0.02 ± 0.01
OMBGS 0.84 ± 0.01 0.91 ± 0.02 0.81 ± 0.01 0.03 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.11 ± 0.03

Insurance OCFSSF 0.59 ± 0.01 0.74 ± 0.01 0.56 ± 0.02 0.01 ± 0.02 0.77 ± 0.02 0.90 ± 0.01 0.70 ± 0.01 0.06 ± 0.02
O-ST 0.53 ± 0.02 0.85 ± 0.01 0.42 ± 0.02 0.01 ± 0.00 0.75 ± 0.01 0.94 ± 0.02 0.67 ± 0.01 0.03 ± 0.01
O-DC 0.58 ± 0.02 0.81 ± 0.02 0.50 ± 0.01 0.01 ± 0.00 0.59 ± 0.03 0.83 ± 0.01 0.48 ± 0.02 0.03 ± 0.01
OMBGS 0.61 ± 0.01 0.81 ± 0.02 0.53 ± 0.01 0.04 ± 0.02 0.78 ± 0.01 0.91 ± 0.02 0.72 ± 0.01 0.17 ± 0.06

Alarm OCFSSF 0.72 ± 0.01 0.78 ± 0.02 0.71 ± 0.01 0.02 ± 0.02 0.92 ± 0.01 0.95 ± 0.02 0.92 ± 0.01 0.09 ± 0.04
O-ST 0.71 ± 0.01 0.86 ± 0.02 0.64 ± 0.01 0.01 ± 0.00 0.91 ± 0.01 0.96 ± 0.02 0.89 ± 0.01 0.06 ± 0.03
O-DC 0.67 ± 0.01 0.77 ± 0.02 0.62 ± 0.01 0.02 ± 0.01 0.75 ± 0.02 0.85 ± 0.02 0.72 ± 0.01 0.05 ± 0.02
OMBGS 0.75 ± 0.02 0.85 ± 0.02 0.72 ± 0.01 0.06 ± 0.02 0.98 ± 0.01 1.00 ± 0.00 0.96 ± 0.01 0.21 ± 0.03

Child10 OCFSSF 0.55 ± 0.01 0.47 ± 0.02 0.78 ± 0.01 0.08 ± 0.03 0.86 ± 0.01 0.80 ± 0.02 0.98 ± 0.01 0.20 ± 0.09
O-ST 0.61 ± 0.02 0.69 ± 0.01 0.65 ± 0.03 0.06 ± 0.02 0.67 ± 0.01 0.60 ± 0.01 0.91 ± 0.01 0.24 ± 0.09
O-DC 0.68 ± 0.02 0.72 ± 0.01 0.68 ± 0.03 0.04 ± 0.01 0.72 ± 0.02 0.81 ± 0.03 0.66 ± 0.01 0.11 ± 0.03
OMBGS 0.74 ± 0.01 0.80 ± 0.02 0.74 ± 0.01 0.12 ± 0.05 0.96 ± 0.01 0.94 ± 0.01 0.99 ± 0.01 0.26 ± 0.07

Insurance10 OCFSSF 0.51 ± 0.02 0.45 ± 0.01 0.69 ± 0.02 0.14 ± 0.01 0.75 ± 0.01 0.79 ± 0.02 0.78 ± 0.01 0.39 ± 0.03
O-ST 0.53 ± 0.02 0.79 ± 0.01 0.46 ± 0.02 0.08 ± 0.01 0.63 ± 0.02 0.74 ± 0.02 0.65 ± 0.01 0.33 ± 0.10
O-DC 0.58 ± 0.02 0.75 ± 0.02 0.54 ± 0.03 0.07 ± 0.03 0.59 ± 0.01 0.86 ± 0.01 0.49 ± 0.02 0.17 ± 0.08
OMBGS 0.65 ± 0.01 0.78 ± 0.01 0.61 ± 0.01 0.18 ± 0.07 0.78 ± 0.01 0.89 ± 0.02 0.74 ± 0.01 0.51 ± 0.05

Alarm10 OCFSSF 0.54 ± 0.02 0.59 ± 0.03 0.59 ± 0.02 0.15 ± 0.01 0.79 ± 0.02 0.83 ± 0.01 0.81 ± 0.02 0.40 ± 0.07
O-ST 0.55 ± 0.01 0.68 ± 0.01 0.52 ± 0.01 0.13 ± 0.05 0.67 ± 0.02 0.67 ± 0.02 0.76 ± 0.01 0.61 ± 0.21
O-DC 0.63 ± 0.03 0.74 ± 0.02 0.61 ± 0.01 0.10 ± 0.07 0.69 ± 0.01 0.89 ± 0.08 0.60 ± 0.02 0.26 ± 0.05
OMBGS 0.63 ± 0.01 0.80 ± 0.01 0.58 ± 0.01 0.16 ± 0.04 0.83 ± 0.02 0.94 ± 0.01 0.78 ± 0.01 0.32 ± 0.07

Pigs OCFSSF 0.83 ± 0.01 0.74 ± 0.02 1.00 ± 0.00 0.35 ± 0.12 0.87 ± 0.01 0.80 ± 0.01 1.00 ± 0.00 33.58 ± 3.25
O-ST 0.75 ± 0.01 0.79 ± 0.02 0.80 ± 0.01 0.22 ± 0.07 0.71 ± 0.01 0.62 ± 0.01 0.93 ± 0.02 0.75 ± 0.07
O-DC 0.95 ± 0.01 0.96 ± 0.01 0.95 ± 0.01 0.14 ± 0.09 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.35 ± 0.09
OMBGS 0.98 ± 0.01 0.96 ± 0.01 1.00 ± 0.00 2.07 ± 0.89 0.98 ± 0.01 0.98 ± 0.01 1.00 ± 0.00 160.76 ± 15.96

Gene OCFSSF 0.72 ± 0.01 0.65 ± 0.02 0.90 ± 0.01 0.39 ± 0.03 0.79 ± 0.02 0.72 ± 0.02 0.94 ± 0.01 1.48 ± 0.35
O-ST 0.64 ± 0.02 0.67 ± 0.01 0.76 ± 0.06 0.38 ± 0.07 0.58 ± 0.01 0.51 ± 0.01 0.86 ± 0.02 1.35 ± 0.12
O-DC 0.91 ± 0.01 0.89 ± 0.01 0.96 ± 0.02 0.24 ± 0.08 0.97 ± 0.01 0.99 ± 0.01 0.96 ± 0.01 0.65 ± 0.25
OMBGS 0.87 ± 0.01 0.88 ± 0.01 0.89 ± 0.01 0.49 ± 0.25 0.93 ± 0.01 0.92 ± 0.01 0.95 ± 0.01 3.63 ± 0.56

The OMBGS algorithm significantly outperforms the OCFSSF and O-ST algorithms on all
datasets, and the OMBGS algorithm outperforms the O-DC algorithm on 13 out of 16 datasets. This
shows that the online group MB learning algorithm has a significant advantage over the online MB
learning algorithm. On the Gene dataset, OMBGS outperforms OCFSSF and O-ST, which also use
conditional independence tests, but is slightly worse than the O-DC algorithm, which uses mutual
information, and thus applying mutual information for PC learning may be a future research direction
to improve the accuracy of online group MB learning. Online MB learning algorithms achieve less
running time because some of the correct variables are removed in advance, thus its accuracy is
significantly lower than that of OMBGS.
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To make a more intuitive comparison, the accuracy (using F1 metric) of OMBGS with its rivals is
shown in Fig. 3. As we can see from the figure, OMBGS significantly outperforms its rivals on most
data sets. Meanwhile, to further evaluate OMBGS against its rivals, we performed the Friedman test
at the 5% significance level. For accuracy, the null hypothesis of OCFSSF, O-ST, O-DC, and OMBGS
is rejected, and the average ranks are 2.38, 1.56, 2.28, and 3.78, respectively. Then, we proceed with the
Nemenyi test as a post hoc test. In the Nemenyi test, with a critical difference of 1.17, OMBGS was
significantly faster than its rivals, and the crucial difference diagram of the Nemenyi test is shown in
Fig. 4.

Figure 3: The results of the experiments on the accuracy of OMBGS and online MB learning
algorithms on eight benchmark BN datasets with 500 samples and 5000 samples (The numbers 1 to
16 are the same as those in Fig. 1)

Figure 4: Crucial difference diagram of the Nemenyi test for the accuracy of OMBGS and online MB
learning algorithms
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6 Conclusion

In this paper, we propose an OMBGS algorithm to address the problem of online group MB
learning. OMBGS consists of two parts, intra-group and inter-group selection, which are used to
identify the MB of the new arrival variable group and the current variable space, respectively.
Experiments conducted on eight BN datasets indicated the effectiveness of the proposed algorithm.
However, the proposed OMBGS algorithm depends on the conditional independence test, and the
accuracy of the conditional independence test is lower when the data sample is small. Thus, future
research could focus on proposing new methods for online MB discovery with group structure without
using conditional independence tests.
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