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Abstract: One of the most prevalent cancers in women is breast cancer. Early
and accurate detection can decrease the mortality rate associated with breast
cancer. Governments and health organizations emphasize the significance
of early breast cancer screening since it is associated to a greater variety
of available treatments and a higher chance of survival. Patients have the
best chance of obtaining effective treatment when they are diagnosed early.
The detection and diagnosis of breast cancer have involved using various
image types and imaging modalities. Breast “infrared thermal” imaging is
one of the imaging modalities., a screening instrument used to measure the
temperature distribution of breast tissue, and even though it has not been used
as extensively as mammography it demonstrated encouraging outcomes when
utilized for early detection. It also has several advantages, as it is safe, painless,
non-invasive, and inexpensive. The literature showed that the use of thermal
images with deep neural networks improved the accuracy of early diagnosis of
breast malformations. Therefore, in this paper, we aim to provide a systematic
review of research efforts and state-of-the-art studies in the domain of breast
cancer detection using AI techniques. The review highlighted different issues,
such as using different imaging modalities and deep attention mechanisms
with deep learning (DL), which proved to enhance detection accuracy.
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1 Introduction

Diseases in humans are gradually increasing because of personal or environmental reasons, despite
the diversity of detection and prevention. Cancer, the most common disease worldwide, is a disorder
that affects many body regions and causes cells to grow irregularly. These include cancers of the breast,
prostate, lung, skin, and pancreas. Cancers also cause many deaths worldwide [1].

Breast cancer is the most prevalent and leading cause of mortality in women if it is not detected
early. The advancement of breast cancer diagnostic and treatment procedures has increased the
likelihood of survival. Screening patients using different imaging modalities is one of the treatments
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frequently used in medicine to identify breast cancer. The imaging modalities include various types
such as mammography, magnetic resonance imaging (MRI), ultrasound, computed tomography
imaging (CT), and thermal imaging. Various techniques and tools are used in these modalities;
expected results depend on different factors, and they are advised to use more than one method to
verify the results. Mammography is the most common for breast cancer screening. Although it is called
the gold standard, it carries many risks for patients; therefore, in recent years thermal imaging has
gained attention due to its low risks, unlike mammography [2]. Digital infrared thermal imaging has
not yet been used as the main tool to early diagnose, since it based on skin diseases and temperature
[3]. However, promising results show that radiologists can combine it with mammography to interpret
the breast’s state for an appropriate evaluation and breast cancer diagnosis.

Many researchers have developed algorithms that help diagnose, predict, and treat important
recurrent diseases, such as cancer and heart disease, based on patients’ health records kept in large
databases of clinics and hospitals.

The ability to identify and diagnose breast cancer using machine learning (ML) and deep learning
(DL) approaches has recently improved due to the massive development of these techniques.

The integration of deep attention mechanisms with DL algorithms is getting more attention in
this field as a result of the promising and encouraging results it has achieved [4]. This offers special
attention to prominent regions of the image rather than considering all batches as equally essential,
enhancing the likelihood of improving the effectiveness of the applied approaches.

Despite advances in breast cancer screening, more research is required to investigate various
detection modalities and improve detection accuracy using new ML algorithms with deep attention
mechanisms.

In this paper, the authors aim to contribute to the field of breast cancer detection by introducing
studies in the field of breast cancer using ML techniques and deep attention mechanisms. This will
also highlight open issues in the field.

Following is the arrangement of the remaining sections of this paper. Section 2 provides some
background on the subject matter, including breast cancer, medical imaging modalities, and overview
of ML and DL methods. Section 3 presents the details of related works on breast cancer detection
using Artificial Intelligence (AI) based on the literature, which includes studies conducted using ML
and DL, studies conducted using thermal imaging of breast cancer, and studies conducted using deep
neural networks (NN) with an attention mechanism. Finally, Section 4 provides a discussion the main
open issues, future directions and conclusion.

2 Background

Cancer is a disease characterized by abnormal cells that spread by infiltrating healthy cells, and
it affects different parts of the body [5]. There are many types of cancers, the most common of which
are skin cancer, lung cancer, colorectal cancer, prostate cancer, stomach cancer, breast cancer, and
cervical cancer [6]. Breast cancer is a disease that specifically affects women. It also affects men, albeit
to a much smaller extent. In supporting breast cancer awareness and treatment, doctors have made
significant achievements in the early detection and treatment of breast cancer, reducing deaths from
the disease [7].

This section briefly gives some background information on breast cancer and the imaging
modalities used to diagnose it and highlights the main automatic detection techniques, in addition
to a brief outline of attention mechanisms.
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2.1 Breast Cancer Overview
Breast cancer occurs due to the excessive condensation of breast cells, leading to the emergence of

benign or malignant tumors. Benign tumors usually do not cause breast pain or spread to surrounding
tissues; they are left without treatment, unlike malignant tumors that require early detection and
treatment. Self-examination is recommended for the early detection of strange differences in the
breast. At the same time, the radiologist uses various imaging methods to interpret the state of the
breast for the accurate assessment and diagnosis of breast lesions. However, conflicts often occur
among specialists during interpretation; therefore, to avoid this conflict, a standard dictionary was
produced by the American College of Radiology (ACR) requiring the provision of highly trained
medical practitioners and experts. Moreover, this involves a long and boring task. Computer-assisted
diagnostic (CAD) systems help radiologists and other practitioners distinguish abnormalities and
identify suspicious features in medical images. Accurate information can be extracted from these
images through CAD systems and helps to avoid many unnecessary biopsies [8].

According to the World Health Organization (WHO) in 2020 [9], breast cancer is the most
common cancer worldwide and represents 11.7% of all cancers. It accounts for 1 in 4 cases of cancer
in women and is a major cause of mortality for hundreds of thousands of women each year. In
the Arab region, WHO statistics conducted in the Arab region in 2020 showed that breast cancer
is the most prevalent among women, representing 49.9% of all cancers. In Saudi Arabia, new breast
cancer cases in women reached 3,954, which represents 29% of all cancers, and it is the second most
common cause of death, of which 1,095 died, representing 8.4% of deaths. Worldwide, similar figures
for breast cancer have been reported. For example, in 2021, new breast cancer cases estimated in
the United States 281,551, accounting for 14.8% of all new cancer cases. However, the number of
deaths has been estimated at 43,600, representing 7.2% of all cancer deaths [10]. Cancer mortality rates
worldwide indicate progress against cancer or survival by improving early detection, raising awareness
of breast cancer symptoms, and improving various treatment methods. This has shown significantly
low mortality rates throughout the previous years in the United States. [7].

A specific risk factor cannot be identified for the majority of breast cancer patients. Still, many
factors have been documented, accounting for 5%–10% of all breast cancer cases in women. These
include obesity, alcohol consumption, physical inactivity, hormonal therapy use, high breast density,
and hereditary susceptibility to breast cancer [11]. Cancer mortality rates worldwide are the best
indicator of progress against cancer or survival by improving early detection, raising awareness of
breast cancer symptoms, and improving various treatment methods that have shown significantly lower
mortality rates over the past few years in the United States. Since its peak in 1989, the female breast
cancer mortality rate has declined by 41% in 2018. As a result, 403,000 breast cancer deaths were
avoided during this period. Survival rates for breast cancer patients have increased; the number of
deaths associated with the disease has decreased regularly, mainly due to several factors, such as early
detection, the use of a new treatment method that considers the individual condition, and a better
understanding of the nature of the disease [7].

As mentioned earlier, the diagnosis of breast cancer is mainly through imaging tools or modalities.
In the following section, we will highlight the main imaging modalities for breast cancer diagnosis.

2.2 Imaging Modalities for Breast Cancer
There are several cancer associations around the world. Many recommend screening for breast

cancer detection and diagnosis and accessing assistance in the early stages. The development of
different imaging models helped to increase the chances of life, reduce the need for treatment, and
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increase the chances of early healing [7–12]. Medical images play a crucial role in diagnosing breast
cancer and are the most effective methods. Different models are used, such as: (1) mammography, (2)
scintigraphy, (3) MRI, (4) ultrasound, (5) CT, (6) positron emission tomography (PET), (7) histological
imaging, (8) microwave imaging, (9) optical imaging, (10) electrical impedance tomography (EIT), and
(11) thermal imaging. We will discuss each modality by showing sample images, as follows:

• Mammography is one of the most common ways to detect breast cancer early and is a type
of X-ray that generates high-resolution images to diagnose deformities in overlapping tissues
[13]. Fig. 1 shows a mammography image. The main task of digital mammography is to
distinguish between malignant and benign lesions [14]. The breast is photographed by placing
it on a platform in the mammography unit, pressing it to reduce the patient’s movement, and
passing X-rays through it to facilitate and take pictures. Mammography is based on varying
degrees of absorption of X-rays by the body’s tissues. Fibrous tissues and muscles absorb more
radiation than fat, showing glandular tissues, white radial imaging muscles, and fatty gray
areas [15]. Ionizing radiation exposure is a major downside of this approach [16]. In addition,
mammography is affected by the density of the breast; therefore, the ability to diagnose cancer
becomes difficult due to the fibrous fatty tissue in the breast. Studies indicate that breast fat
percentage increases with advancing age in women. Adipose tissue in women under 50 years of
age has somewhat less effectiveness due to the sensitivity of imaging and its impact on breast
density and age [17].

• Scintigraphy imaging is one of the techniques for detecting breast lesions, as shown in Fig. 1. It
can depict significant and palpable abnormalities and provide better accuracy for diagnosing
women with dense breasts. It is also used when multiple tumors are suspected. A high-resolution
breast-specific gamma camera is used to assess ambiguous breast cancer in women at a high risk
of breast cancer. Studies show that high-resolution scintimammography could detect small (1
cm) ambiguous and imperceptible lesions that are otherwise undetectable by mammography, or
breast and physical examination in women with an increased risk of breast cancer [18].

• MRI is another technique for detecting early breast cancer, as shown in Fig. 1. It uses magnetic
fields of hydrogen ions to produce detailed high-resolution 3D images of the breast. The patient
is injected with a contrast factor and examined using magnetic resonance in a magnetic field,
while a radio frequency wave is applied to create a high-contrast image of the breast [17]. An
MRI is helpful for women who have a high risk of developing breast cancer. It has good image
accuracy, is effective for evaluating dense breasts, allows for simultaneous evaluation of both
breasts, and helps determine whether tumor removal or mastectomy is the best treatment.
Furthermore, it has no side effects, because there is no radiation; however it takes a long
time, it is expensive and can be used in high-risk cases or to improve tumor diagnosis. Studies
indicate that mammography and MRI enhance the likelihood of detecting high-risk early-stage
cancers [18].

• Ultrasound imaging can also be used to detect tumors by the ultrasonic bounce from the
tissue’s surface (Fig. 1). A transformer interprets reflected waves to determine the boundaries
of different types of tissues and displays 2D images. This technique is usually an auxiliary
tool to examine suspicious areas of the breast based on mammography or during breast
examinations. It helps to distinguish between cysts (non-tumor bags filled with fluids) and
solid blocks. Additionally, there is no radiation exposure and breast ultrasound is non-invasive
and safe. Ultrasound can be used together with mammography in screening abnormalities,
especially in women with dense breasts. A 3D ultrasound can also be used for the breast.
This makes ultrasound an attractive supplement to mammography, as it is widely available,
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relatively inexpensive, and non-invasive. Ultrasound can improve screening sensitivity while
reducing specificity and the need for biopsy [17]. Although ultrasound in women who do not
show symptoms causes false and unacceptable negative and positive results, ultrasound should
always be used with mammography or other imaging techniques because used alone, it will not
detect lesions accurately. Advancements in ultrasound technology include 3D ultrasound that
formats sound wave data into 3D images, automated ultrasound for a good overall view of the
breast, Doppler ultrasound, and sonoelastography [18].

• CT purification of the breast details breast anatomy to produce high-resolution images and
evaluate the exact anatomical location of the lesions, and is considered more sensitive to cysts,
calcifications, and high fat; therefore, the scope of CT analysis outperforms the image of
mammography (Fig. 1). However, CT scans are expensive, have radiation exposure, and may
cause an allergic reaction risk compared to other techniques [19]. In addition, it is unsuitable
for the early diagnosis of low-risk patients [20]. The tumor’s location is better captured using
CT scans, which can be used as hybrids with PET technology that indicates a malignant or
active tumor in metabolism based on glucose absorption. A combination of the two techniques
is useful for identifying possible cancer stages [18].

• PET is a technique for imaging in nuclear medicine. It is commonly used for detecting breast
cancer. In this medical imaging technique, a pair of gamma rays emitted from radionuclides
enter the human body to produce 3D images of organs and tissues (Fig. 1). Glucose metabolism
in malignant tumors increases compared to normal cells. Thus breast cancer can be diagnosed
through PET images that show the variation of cancer cells from normal cells. The PET used
in mammography is known as positron emission mammography (PEM). It has been reported
that PEM may not be adversely affected by breast density, hormone replacement therapy, or
the patient’s menopause status. However, PET is expensive and produces low-resolution images.
Moreover, the patient is exposed to radiation. PET has been used frequently to predict treatment
responses in many cancers [18].

• Histological imaging is a technique for diagnosing breast cancer in microscopic tissue images
of biopsies, (Fig. 1). However, with the progress of techniques in this field, tissue diagnosis is
critical. Nevertheless, it takes a long time and requires a pathologist to develop an analyze the
tissue images [21].

• Microwave imaging detects breast cancer using microwave imaging technology. Waves of shorter
wavelength than radio waves, penetrate the breast tissue and identify cancerous tissues and
normal tissues (Fig. 1). In recent decades, biosensors have gained considerable attention;
through the microwave sensor and their specifications, the quality of the microwave image is
determined [20].

• Optical imaging uses the near-infrared system (NIR) and is a non-surgical technique for
distinguishing between normal breast tissues and cancerous tissues. Optical imaging of the
breast is shown in Fig. 1. In some cancers optical imaging is based on the ratio of Hegelian
and oxygen saturation. Optical imaging technology is considered non-invasive, non-radioactive,
harmless to the patient, and inexpensive. However, it has a low accuracy in diagnosing breast
cancers and presents spatial accuracy issues [20].

• EIT is one of the emerging ways to diagnose breast cancer. However, it is still undergoing clinical
and organizational acceptance processes [22]. Fig. 1 shows an example of an EIT image. The
imaging device is a portable adapter and a computer screen to display the image of the breast.
small currents are applied to the breast through conductive electrodes connected to the skin.
The resulting electrical voltage is measured to distinguish the cancer tissues from natural tissues
based on the theory that cancer cells have higher conductive values. EIT is non-invasive and does
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not emit ionizing radiation; therefore, it is considered safe for pregnant women. In addition, it
is not expensive in terms of cost [23].

• Thermal imaging: Breast lesions cause changes in skin temperature that have physiological and
thermal properties, such as blood flow rate and metabolic thermogenesis. Analysis of surface
temperature distribution can predict breast tumor size and location [12]. Through thermal
imaging of the breast, as shown in Fig. 1, it is possible to obtain thermal distribution using
liquid crystals, which were common, or infrared radiation, which has recently received much
attention and development [24]. Thermal imaging is a non-contact, non-invasive, and safe
method for pregnant women and young women with dense breasts [16]. It is inexpensive and has
encouraged research to fill the need in countries where it is difficult to provide other financially
expensive techniques. Infrared thermal imaging uses the infrared radiation emitted by an object
to measure the thermal radiation emitted by surfaces with a temperature higher than this value
(i.e., 0 K or –273 1°C) [25]. During the examination, the patient is asked to stay in a temperature-
and humidity-controlled room for 15 min to adapt and balance the body’s temperature to
reduce external influences that may cause changes that may affect the examination results [26].
The images consist of different colors, depending on the heat distribution, as carcinoid tumors
are usually high in metabolic heat compared to normal tissues. To interpret thermal images
of the breast, doctors typically use asymmetry analysis. Cancer tissue can be detected based
on the analysis of asymmetric temperature patterns for each chestwith the help of elevated
temperatures [27]. However, the low variation in normal tissue causes difficulties distinguishing
malignant masses from benign masses [14]. Infrared systems have many advantages for checking
temperature, other than their cost and the sensitivity and accuracy of the thermal sensors
or thermal cameras used [28]. Thermal cameras that have a resolution of 640 × 480 pixels
and better sensitivity can detect a minute difference in temperature [29]. Because of advanced
infrared cameras (IR) and the development of image processing and ML algorithms in the field
of AI to investigate breast heat, the accuracy of thermal imaging has improved significantly and
enhanced the role of thermal imaging as an effective and automatic tool in the early detection of
breast secretions [2]; therefore the research field of thermal imaging for breast cancer detection
has become active.

In conclusion, many imaging models have been developed to detect breast cancer, each with its
main advantages and disadvantages, summarized in Table 1; however, they still contribute effectively
to early diagnosis. The most commonly used method is mammogram imaging, but it hurts patients,
exposes them to ionizing radiation, which increases the risk of cancers, and is expensive in terms of cost
[30]. Due to these issues, other alternative techniques have been developed. One of these alternatives is
thermal imaging, which does not produce any radiation, and it is low in cost, making it safe for frequent
use. Active research and improvements in infrared detectors have encouraged further research in this
area. Radiologists are primarily responsible for reading, analyzing, and diagnosing imaging modalities.
As with humans, radiologists may make errors in image interpretation, resulting in a misdiagnosis or
missed diagnosis, which can be avoided by incorporating AI solutions. CAD has been implemented
to prevent human error. A suitable ML algorithm completes the processing and analysis of an image
in CAD systems [31]. In the following section, we will briefly discuss the main ML algorithms and
techniques.
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Figure 1: Samples of imaging modalities
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Table 1: Summarizing the advantages and disadvantages of imaging modalities

Imaging modalities Advantages Disadvantages

Mammography • High-resolution images in overlapping
tissues

• Distinguishes malignant from benign
lesions

• Influenced by density of breast
• Exposure to ionizing radiation

Scintigraphy • More accurate diagnosis of dense
breasts

• Used when multiple tumors are
suspected

MRI • Effective for women with high risk of
breast cancer

• Effective for evaluating dense breasts
• Enables simultaneous assessment of

both breasts
• Helps determine the best treatment

method
• No side effects

• Costly and time-consuming

Ultrasound • Auxiliary tool to mammography in
dense breasts cases

• Helps distinguish between cysts and
solid blocks

• Safe and non-invasive
• Relatively inexpensive

• Not used alone

CT • High-resolution images
• Evaluates the exact anatomical location

of the lesions
• Sensitive to cysts, calcification, and high

fat
• Captures the tumor’s area

• Expensive
• Exposure to radiation
• Risk of allergic reactions
• Not suitable for low-risk

patients

PET • 3D images of organs and tissues
• Breast density, hormone replacement

therapy, and the patient’s menopause
state might not have an adverse
influence

• Expensive and produces
low-resolution images

• Exposure to radiation

Histological • Significant for tissue diagnosis • Requires a pathologist

Microwave • Used to identify cancerous and natural
tissues

(Continued)



IASC, 2023, vol.37, no.1 947

Table 1: Continued
Imaging modalities Advantages Disadvantages

Optical • Non-invasive
• Non-radioactive
• Inexpensive

• Low accuracy

EIT • Non-invasive
• Non-radioactive
• Inexpensive

• Clinical and regulatory
acceptance challenges are still
being processed.

Thermal • Non-contact
• Non-invasive
• Safe Inexpensive

• Affected by conditions

2.3 ML and DL
ML is a subset of AI that allows systems to learn and enhance automatically from experiments

without needing to program them explicitly using a dataset as experiences, instructions, or examples
during training to assist in analyzing and extracting meaning from data [32]. The results help in
classification, prediction, and detection, especially in the medical field. However, AI innovations can
be categorized into two categories: conventional ML and DL.

Conventional ML algorithms are used to build a model based on sample data, known as training
data. Some of the well-known algorithms are: support vector machine (SVM), discriminative analysis,
naive Bayes classifier and decision tree (DT) [33]. These algorithms have enhanced the development of
many applications to run automatically and provide many advantages that have effectively contributed
to the performance of these applications. However, the performance of conventional ML algorithms
was outperformed by an advanced type of ML algorithm, DL [34].

Understanding the latest advancements in AI and ML can seem overwhelming. However, AI
innovations can be categorized into two: conventional ML and DL. In the following subsections, we
will highlight these two categories.

2.3.1 Conventional ML

Conventional ML algorithms are classified into four main categories, as shown in Fig. 2, which
are supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning.
Each type of conventional ML algorithm has its own requirements and applications. Next, we will
briefly discuss these types:

• Supervised learning algorithms: In ML, supervised learning algorithms attempt to model
relationships and dependencies between the target prediction output and the input features to
predict output values for new data based on the relationships learned from previous data sets
[35]. They have pairs of inputs and outputs known as labeled data, which help identify traits
or variables to train the system to predict desired outcomes based on the stored pattern [36].
The main techniques in this category of ML are classification and linear regression techniques.
Classification is used in many fields, most notably the medical field that classifies patients’
pre-diagnosis of a specific disease based on data analysis and pattern recognition. The most
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common classification techniques are logistic regression (LR), SVMs, random forest (RF), and
NN. Linear regression is used to predict and find relationships between numerical data [35].

• Unsupervised learning algorithms: This type of ML algorithm works with predefined unlabeled
data with only input and no idea of the expected outcome. The system trains unlabeled data
to discover a pattern on its own without external guidance [37]. Clustering is a common
unsupervised learning technique that can collect anonymous data using algorithms, one of the
most popular of which is K-means. Its application is market research by learning customers’
buying habits [38].

• Semi-supervised learning is an ML technique that gathers many unlabeled data and few labeled
data for training, increasing the accuracy of learning from the data. Semi-supervised learning
fell between unsupervised learning (with unlabeled training data) and supervised learning (with
only labeled training data), which is a particular case of weak supervision. Semi-supervised
techniques can be used for both clustering and classification techniques. The data structure
is discovered and learned through the input variables using clustering techniques and the
prediction of unfair data using classification techniques, then feeding that data back into the
supervised learning model as training data [39].

• Reinforcement learning (RL): These algorithms repetitively interact with the environment to
continue the learning process over a long period. All possible system states are learned through
their interaction with the environment, and ideal procedures are taken in proportion to the
current situation to improve performance. Common algorithms used for RL are Q-Learning,
time difference (TD), and deep adversarial networks. Typical applications in this technology are
games in which the system is an opponent for the user and self-driving cars [34].

Figure 2: Basic types of conventional ML
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The development of several apps that run automatically and offer various benefits has been
facilitated by conventional ML algorithms, which have significantly improved the performance of the
medical areas [40]. However, conventional ML algorithms have been outperformed by an advanced
type of ML algorithm, DL. The following subsection will highlight some DL algorithms.

2.3.2 DL Techniques

DL is a branch of ML that cares about artificial NN revolving around learning multiple levels of
representation and abstraction that help understand data, such as images, sound, and text [40]. The
handling of massive data by DL algorithms is effective, other than small data. In the literature, DL
approaches from several categories have been used and are shown in Fig. 3. Four of the main DL
algorithms are: convolutional neural networks (CNNs), recurring neural network (RNN), generative
adversarial networks (GANs), and deep autoencoders (AUD). We will briefly discuss each type as
follows:

• CNN: This is an effective DL technique for image-based classification and recognition tasks
for supervised learning. A CNN is made up of many layers that are assembled on top of each
other. This contains convolutional layers, pooling layers, and fully connected layers, each of
which performs a distinct function. The correct input is given to the CNN during training, and
the parameters are determined layer by layer to generate the desired result. The convolution
layer determines the existence of particular features or patterns in the input data, and various
filters can extract multiple features. In contrast, the pooling layer decreases the feature map and
network parameter size. The fully connected layer, which is the final step, links neurons with all
of the preceding layers’ neurons to provide crucial outcomes, such as the category scores in a
classification task [41].

• RNN: This is a supervised learning approach specializing in discovering patterns in time series
data and solving sequential data problems. It has become an appropriate option for processing
chronology and natural language. It is used in medical tests in which information can only be
understood by analyzing time values, such as biomedical signals. The essential feature of RNN
is that it has memories, which means RNN captures previous information from previous inputs
and then affects current inputs and outputs. RNN imposes the same processes on each element,
so it is repetitive. The inputs and outputs of traditional deep NN are independent of each other,
while RNN relies on previous elements within the sequence. Long short-term memory networks
(LSTMs) are the most popular RNNs [42]. LSTM overcomes the memory problems of RNN
for long-term learning through a memory capable of maintaining a state over long periods of
time. LSTM consists of 3 layers, an input layer, a recurrent hidden layer, and an output layer,
where the hidden layer is the main innovation. The LSTM network can only record information
in a one-time direction, whereas the bidirectional LSTM (BLSTM) has a bidirectional memory
channel that can process the input sequence forward and backward to capture the previous and
future features [43].

• GANs: This is a semi-supervised learning architecture comprising two NN, a generator and a
discriminator. They operate in opposing directions, striving to create phony samples that are
“as similar as feasible” to actual samples. The generative network produces synthetic outputs,
such as images, which seem realistic and difficult for humans to distinguish. In contrast, the
discriminative network compares them with the original inputs, such as authentic images, to
determine whether they are real or fake. By following this process, both models improved their
performance [44].
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• Deep AUD): an unsupervised learning approach with the same input and output as a particular
type of feed-forward NN, consisting of two chained blocks [45]. The first block decodes by
reducing the input data size to bring out the features that distinguish the single data into a
small piece of data called a token. The second block is a decoder that combines symbols to
reconstruct the input data. The input patterns are gradually encoded and decoded throughout
the process [46].

Figure 3: DL techniques

In conclusion, superhuman accuracy techniques developed by DL have transformed computer
vision in various applications. Several prominent techniques to image processing and classification that
have increased performance, particularly in the medical domain, have been discussed. Even though
DL has improved the performance of developed models, this performance can be further enhanced by
employing some attention mechanisms. The attention mechanism has been one of the most valuable
breakthroughs in DL research in the last decade. As we know, DL techniques mimic the way the human
brain works, and attention techniques mimic human cognitive attention. In the following section, we
briefly overview deep attention mechanisms.

• Attention Mechanisms: Usually, ML algorithms, when applied on images, will give equal
importance “attention” to all patches of an image and will not give special attention to
prominent areas. On the other hand, incorporating attention mechanisms with ML will focus on
the most prominent areas of the image, increasing the possibility of improving the performance
of the applied techniques. The ability to extract the most pertinent information for each part
of the outcome and suppress or entirely disregard irrelevant information is improved by the
attention mechanism, which can also highlight the most important parts of the input data. As
a result this leads to an improvement in the output quality that is generated dynamically. The
attention mechanism was provided for the first time for machine translation and then became
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utilized in NN, which obtained a rapid development in image processing, answering questions
and machine translation [47]. There are three main types of attention mechanisms:

• Soft Attention: Categorical distribution is calculated using a set of element. The weights created
by the resultant possibilities, which account for the relative relevance of each element, are then
utilized to create context-aware encoding, which encodes the weighted sum of all elements [48].
Given the interdependency between the deep neural network’s mechanism and the target, it
determines how much focus should be given to each input element by giving each one a weight
between 0 and 1. The attentional model as a whole is deterministic and differentiable since the
weights in the attention layers are calculated using softmax functions. The flexibility of soft
attention allows for both temporal and spatial actions. The spatial context’s primary purpose
is to extract the features or weight of the essential features. Since samples taken at different
times contribute differently, it modifies the weights of all samples in sliding time windows for
the temporal context. Although they are predictable and differentiable, soft mechanisms have
a high processing cost [49].

• Hard Attention: A subset of elements are selected from the input sequence. The weight assigned
to an input element in hard AMs is either 0 or 1, forcing the model to concentrate only on
the critical elements and ignore all rest. Due to the input elements being either observed or
not, the goal is non-differentiable. A sequence of decisions must be made on which aspects
of the process to focus on. For instance, in the temporal context, the model pays attention to
a portion of the input to gather information while deciding where to focus in the next stage,
depending on the known information. A neural network could make a decision based on this
information. Since there is no ground truth to indicate the ideal selection policy, hard-attention
mechanisms are represented by stochastic processes. Models with hard attention must be trained
using reinforcement learning techniques since they cannot be differentiated [49].

In actuality, many tasks in natural language processing only need sparse tokens from extensive
text input. These tasks benefit from hard attention because they can overcome soft attention in long
sequence limitations [48]. Unlike soft mechanisms, the whole input is not stored or processed; thus,
inference time and computing costs are decreased [49].

• Self-Attention: The interdependence of the mechanism’s input elements is measured since it
enables interaction between the input and the other “self” to determine what it should pay
more attention to. One of the essential benefits of the self-attention layer over soft and hard
mechanisms is its parallel computing capability for a long input. To verify that all the same
input elements are being paid attention to, this mechanism layer performs straightforward and
efficiently parallelizable matrix calculations [49].

• Transformer: In the current DL stack, transformers are a dominant influence. Transformers are
widely used and have had a significant influence on a variety of domains, including language
learning and image processing.

Transformer is a frame structure that contains encoders and decoders. The encoder processes the
input repeatedly, and the decoder does the same as the encoder’s output.

Layers are uniformly connected to construct the encoder and decoder. One of the main char-
acteristics that distinguishes transformer models is the self-attention mechanism. A relevance-based
pooling operation links all tokens in a sequence in the mechanism, which may be considered a graph-
like inductive bias. To achieve the output, the encoder and decoder employ attention mechanisms to
weigh each input, determine its relevance, and pull information from them accordingly [50].
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2.3.3 Evaluation Matrices

According to the literature, the metrics commonly used for evaluating binary ML classifiers and
in medical applications are the four entries in the confusion matrix [51]:

M =
(

TP FN
FP TN

)
(1)

When evaluating multi-class classification methods, some metrics have varying interpretations in
context. However, multi-class settings still apply the underlying principles.

True positive (TP): This is a result where the model effectively predicts the positive labels.

True negative (TN) is a result in which the model effectively predicts the negative labels.

False positive (FP): is a result in which the model inaccurately predicts the positive labels.

False negative (FN): is a result in which the model inaccurately predicts the negative labels.

Accuracy is the proportion of samples in the assessment dataset that were correctly classified to
all samples. This metric is one of the most often utilized in ML applications in medicine, but it is also
notorious for being deceptive in the situation of varied class proportions, since it is simple to get high
accuracy by just classifying all samples into the most prevalent class.

Accuracy = TP + TN
TP + TN + FP + FN

(2)

Sensitivity, also referred to as the recall or true positive rate (TPR), indicates the proportion of
positive samples that are correctly classified. It is calculated as the ratio between the proportion of
positive samples that are correctly classified and the total number of samples assigned to the positive
class. Since it is intended to overlook as few positive instances as possible, which corresponds to a high
recall, this metric is considered to be among the most significant for medical investigations.

Sensitivity = TP
TP + FN

(3)

In contrast to sensitivity, specificity measures the percentage of negative samples that are properly
classified.

Specificity = TN
TN + FP

(4)

Precision indicates the proportion of correctly retrieved samples that are relevant, and it is
determined as the ratio of samples that were accurately classified to all samples assigned to that class.

Precision = TP
TP + FP

(5)

The F1-score is regarded to be a more accurate measure of the classifier’s effectiveness than
accuracy. It combines the two opposing criteria of sensitivity and precision to calculate a model’s
prediction performance.

F1 − score = 2
Precision × Recall
Precision + Recall

(6)

Area under the receiver operator characteristic (ROC) curve and area under the curve (AUC):
proportion of subjects correctly classified, sensitivity, and specificity. Overall accuracy is sometimes
expressed as the area under the ROC curve (AUC) and provides a useful parameter for comparing test
performance [52].
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3 Related Work

A review of recent studies on the diagnosis and detection of breast cancer is presented in this
section of the paper. In the first part, we will review studies conducted using ML and DL, while the
second part covers studies conducted on breast cancer detection using thermal imaging. In the last
subsection studies conducted using deep NN with an attention mechanism are discussed.

3.1 Studies on Breast Cancer Detection
In the past few years, a large amount of literature has been conducted applying ML algorithms.

One of the uses of ML is to diagnose breast cancer. Numerous studies have argued for ML algorithms
to detect and classify breast cancer with different imaging modalities.

The authors proposed in [53] used local quinary pattern (LQP) to feature extraction and SVM
to classify 322 and 206 mammograms from the Mammograms Image Analysis Society (MIAS) and
InBreast datasets, respectively. To evaluate the performance of the approach, the authors used a ten-
fold cross-validation scheme in which the images were randomly divided into 90% for training and
10% for testing and repeated 100 times. The proposed approach produced higher MIAS scores of
86.13% accuracy, 80.67% sensitivity, 92.81% specificity, and 89.92% AUC, which were compared with
recent literature and showed competing results. A different study using the same previous classifier
[54] have proposed Hough transform to detect the features of 95 images from the MIAS dataset. The
data split into equal sizes were trained and tested, which showed effective results with an accuracy of
94% compared to other classifiers such as Linear Discriminant Analysis. The results show that using
an SVM classifier with Hough transform to extract features has higher performance than LQP.

Using SVM was also proposed in [55], where authors conducted a study on 153 RIDER Breast
MRI database images, split into 64 for training and 89 for testing. It showed a result of 98.03%
accuracy, 96.42% sensitivity, and 96.72% specificity, and this proposal achieved higher accuracy than
the literature mentioned.

Authors in [56] worked on detecting normal, malignant, and benign conditions in 90 mammog-
raphy images taken from the mini-MIAS dataset using non-linear multi-class SVM. The data were
divided into three categories. Each category contained 30 cases, randomly split into two subgroups;
one set of 10 samples representing 33% was selected as training data, while the other set of 20 samples
representing 67% was used as test data. The proposal achieved an excellent accuracy of 92.5% when
classifying benign from malignant cases, compared to modern classification methods.

In the study [57], authors investigated the classification of 120 mammography images from
MIAS into natural and abnormal images at early stages using a KNN proposed algorithm, with a
classification of 92% accuracy.

KNN has also been used in [58] for the binary classification of tumors (benign and malignant) for
100 mammographic images extracted from the mini-MIAS dataset. The results at different k values
were compared when the k = 5 value with cross-validation when fold = 5 showed a 91.8% accuracy,
while k = 15 without cross-validation also showed the same accuracy of 91.8%.

In [59], three of the most well-known ML algorithms (KNN, SVM, and DT) have been trained on
mammography from the MIAS dataset. The performance of the three classifiers has been compared
based on methods of extracting image features using LBP, Tamura, wavelet, and discrete cosine
transform (DCT); KNN has provided 100% specificity and sensitivity in most cases, but it takes longer
processing time compared to others.
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On the other hand, a voting classifier was developed in [60], consisting of KNN, DT, and gradient
boosting, to classify 322 mammograms as normal or abnormal extracted from MIAS. The voting
classifier performs very well as it combines the competencies of individual classifiers with performs
superior to them, with an accuracy of 85%.

Recently, many DL techniques have been developed to overcome the challenges of ML, such as
dealing with a large dataset, achieving high performance on it, and extracting features automatically.
Several studies have been conducted proposing DL techniques to improve the accuracy of detecting
and diagnosing breast abnormalities.

In the study [61], the author used 400 mammograms from a local image dataset to train the
proposed model. They used CNN deep features and unsupervised extreme learning machine (US-
ELM) clustering for mass detection. They then built a feature set that fuses deep, morphological,
texture, and density features. Finally, they developed an ELM classifier using the combined feature set
to classify benign and malignant breast masses. The proposed model achieved high results of 86.50%
accuracy, 85.10% sensitivity, and 88.02% specificity compared to SVM based on multiple features.

A hybrid method using CNN and LSTM was proposed in [62] to classify 7,909 histological images
extracted from the BreakHis dataset. Features were extracted using a proposed model fed into Sofmax
and SVM for the decision stage. The dataset contains four sets of images depending on magnification
factors of 40×, 100×, 200×, and 400×. The best precision of 96% was achieved with a 40× dataset,
and the best accuracy was 91% with 200×.

In the study [63], the following four CNN models, CNN-2, CNN-2d, CNN-4, and CNN-4d were
built to study the effect of depth and hidden layer structure on model performance in classifying
abnormalities in mammogram images extracted from mini-MIAS. A total of 547 images were used,
including 275 benign and 272 malignant images, for training and 137 images, including 73 benign and
64 malignant, for testing. The CNN-4d model has the greatest performance among the four suggested
models, as evidenced by its sensitivity of 90.63%, specificity of 87.67%, and accuracy of 89.05%.

The authors of presented a novel CNN architecture influenced by the U-net topology of the two
CBIS-DDSM mass and macrocalcification mammography datasets [64]. The entire dataset of 603
macrocalcification images and 692 mass images were trained, while 152 and 202 were tested, respec-
tively. The model was 94.31% accurate.In another study [65], a CNN-based approach was proposed to
classify 285 hematoxylin- and eosin-stained histological breast images from the BIOIMAGING 2015
dataset into four classes: benign lesion, normal tissue, in invasive carcinomas, and situ carcinoma.
They also proposed the same model to classify the same images into two classes: carcinoma and non-
cancerous carcinoma. From the dataset, 249 images were used for training and 36 images were used
for testing. The model achieved an accuracy of 77.8% for four classes of a task, 83.3% for two classes
of a task, and the sensitivity of the proposed method for cancer cases was 95.6%.

A CNN with nine layers was proposed in [66] to classify over 9,000 mammograms from a teaching
hospital in Taiwan. From that dataset, 70% were used for training, 10% for verification, and 20% for
testing. In the dataset test, the model’s accuracy was 82.3%. The sensitivity, specificity, and F1 scores
of an image preprocessing approach were 91%, 57%, and 88%, respectively. The sensitivity, specificity,
and F1 scores were 79%, 0%, and 88%, respectively, without the image preprocessing approach.

Proposed model based on CNN architecture in [67] to classify breast cancer (benign/malignant)
using 7909 histopathological images extracted from the BreaKHis dataset. To evaluate the perfor-
mance of the model, the data were divided into 70% for training and 20% for testing. The model
achieved an accuracy of 91.4%, a sensitivity of 96.8%, and a specificity of 89.4%.
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In another study [68], authors proposed a model named BC-DROID that enables a one-step
automatic detection and classification using CNN. They trained the model using 10,480 complete
mammograms extracted from DDSM data, obtained an AUC of 92.315%, a detection accuracy
of 90%, and a classification accuracy of 93.5%. The classification performance of this model was
compared with [67,69–72] based on AUC, and the result showed that BC-DROID was the best.

A 3D deep CNN model (DCNNs) was proposed for the diagnosis and localization of lesions in
dynamic contrast-enhanced MRI (DCE) [71]. A total of 1,537 images extracted from the MRI breast
dataset were used and were split into 1,073 for training, 157 for verification, and 307 for testing. The
model showed an accuracy of 83.7%, a sensitivity of 90.8%, a specificity of 69.3%, and an AUC of
85.9%. Compared to a radiologist, the model yielded similar performance results.

In another study [72], a CNN model was proposed based on non-negative matrix factorization and
statistical self-similarity to analyze 11218 mammography images extracted from the DDSM database.
A 10-fold validation approach was used to evaluate the model performance in two classification tasks,
three classes (normal, benign, and malignant) and two classes, recognizing normal from abnormal
(benign and malignant joined together) of mammography. In the 3-class task, the model achieved
84.75% accuracy, 73.36% sensitivity, 86.01% specificity, and 90.9% AUC, while in the 2-class task it
achieved an accuracy of 85.82%, sensitivity of 82%, and specificity of 86.59%. The model for this
study showed an improvement in the sensitivity of 3-class image classification compared to a study
conducted in 2015 [73] on the same dataset, which achieved a sensitivity of 60.43%.

In [74], gray-level co-occurrence matrix and gray-level run-length matrix were extracted and fed
as two inputs into a hybrid DL of CNN and RNN called CRNN for the detection of mammographic
breast cancer. The proposed method achieved a diagnostic accuracy of 90.59% and a sensitivity of
92.42%, which outperformed the traditional models. The specificity was 89.88%, which was lower
than in some models.

Similarly, in [75] a novel dual deep neural network between two learning branches with region-
level classification and region ranking in weakly and semi-supervised environments (Cls-Det-RS)
was proposed to classify and localize abnormalities in 3,000, and 410 mammography images from
the FFDM and INBreast datasets, respectively. To evaluate the model, the authors used 5-fold
cross-validation; the empirical results showed the potential and advantages of the proposed method
compared to previous weakly supervised strategies. It achieved an area under the receiver operating
characteristic curve (AUROC) of 84.1%, a partial area under curve ratio (pAUCR) of 36.7%, a
specificity of 55%, and a sensitivity of 38%.

Tables 2 and 3 below summarize the reviewed studies in the field of breast cancer detection. To
conclude, it is clear that SVM and KNN are the most-used ML techniques, and have achieved high
performance compared to most of the previous methods. In addition, the most-used type of breast
cancer imaging is the mammogram. Furthermore, DL has shown its effectiveness when using large
datasets and provides automatic extraction of features; DL has proved to outperform ML algorithms.
Within DL algorithms, CNNs are the most prominent type of DL technique used in the literature. It
has also achieved promising results in detecting breast cancer.
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Table 2: Breast cancer detection studies of mammography

Ref. Approaches Imaging modalities Datasets Number of
images

Data splitting
techniques

Results

[53] SVM Mammography MIAS 322 10-fold
cross-validation

Acc: 86.13%
Sn: 80.67%,

InBreast 206 Sp: 92.81%
AUC: 89.92%

[54] SVM Mammography MIAS 95 Training = 50%
Testing = 50%

Acc: 94%

[56] Non-linear
SVM

Mammography Mini-MIAS
dataset

90 Training = 30
Testing = 60

Acc = 92.5%

[57] KNN Mammography Mini-MIAS 120 NA Acc = 92%

[58] KNN Mammography MIAS 110 Cross-validation Acc = 91.8%

[59] KNN Mammography MIAS NA NA Sn = 100%
Sp = 100%

[60] Voting classifier Mammography MIAS 322 NA Acc = 85%

[61] ELM Mammography Local 400 5-folded
cross-validation
method

Acc = 86.50%
Sn = 85.10%
Sp = 88.02%

[63] CNN Mammography Mini-MIAS 547 Training = 547
Testing = 137

Acc = 89.05%.
Sn = 90.63%
Sp = 87.67%

[64] U-Net CNN Mammography CBIS-DDSM
mass images

692 Training = 692
Testing = 202

Acc = 94.31%

CBIS-DDSM
microcalcifica-
tion
images

603 Training = 603
Testing =152

[66] CNN Mammography Teaching
hospital in
Taiwan

Over 9,000 Training = 70%
Validation = 10%
Testing = 20%

Acc = 82.3%

[68] CNN Mammography DDSM 10,480 NA Acc = 93.5%
AUC = 92.315%

[72] CNNs Mammography DDSM
database

11218 10-fold
cross-validation

Acc (2-Class) = 85.82%
Sn (2-Class) = 82.28%
Sp (2-Class) =86.59%
AUC (2-Class) = 0.919
Acc (3-Class) = 84.75%
Sn (3-Class) = 73.36%
Sp (3-Class) = 86.01%
AUC (3-Class) = 0.909

(Continued)
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Table 2: Continued
Ref. Approaches Imaging modalities Datasets Number of

images
Data splitting
techniques

Results

[74] CNN-RNN Mammography Mammogram
Image dataset

NA NA Acc = 90.59%
Sn = 92.42%
Sp = 89.88%

[75] Cls-Det-RS Mammography FFDM 3000 5-fold
cross-validation

AUROC = 84.1%
pAUCR = 36.7%

INBreast 410 Sp = 55%
Sn = 38%

Note: Accuracy = Acc, Sensitivity = Sn, Specificity = Sp, and Precision = Prec.

Table 3: Breast cancer detection studies of MRI and histopathology

Ref. Approaches Imaging modalities Datasets Number of
images

Data splitting
techniques

Results

[55] SVM MRI RIDER Breast 153 Training = 64 Acc = 98.03%
MRI database Testing = 89 Sp = 96.72%

Sn = 96.42%

[71] CNN MRI MRI breast 1537 Training =1073
Validation = 157
Testing = 307

Acc = 83.7%
Sn = 90.8%
Sp = 69.3%
AUC = 0.859

[62] CNN-LSTM Histopathology BreakHis 7909 NA Acc = 91%
Prec = 96%

[65] CNN Histopathology BIOIMAGING
2015

285 Training = 249
Testing = 36

4-classes
Acc = 77.8%
2-classes
Acc = 83.3%
Sn = 95.6%.

[67] CNN Histopathology BreaKHis 7909 Training = 80%
Testing = 20%

Acc (Training) = 99%
Acc (Testing) = 91.4%

Note: Accuracy = Acc, Sensitivity = Sn, Specificity = Sp, and Precision = Prec.

3.2 Studies on Breast Cancer Diagnosis Using Thermal Images
Studies have grown in recent years the detection and diagnosis of breast cancer utilizing thermal

imaging as a result of the significant growth in the development of IRs. On thermal imaging, ML
and DL algorithms have been used in several investigations. The following paragraphs provide a brief
review of those studies.

The University Hospital of Pernambuco Federal University provided 1,052 thermographic images
that were used in the breast cancer classification task [76] They used several classifiers: naive Bayes,
SVM,RF, knowledge tree J48, ELM, random tree (RT), multi-layer perceptron (MLP), and Bayes
network. The dataset was divided into 75% and 25% for training and testing, respectively. The
findings indicated that MLP performed well when compared to other classifiers, with an accuracy
of 73.38%, a sensitivity of 78%, a specificity of 88% and a kappa index of 0.6007. The accuracy was
enhanced to 76.01% by employing a 10-fold cross-validation procedure with a kappa index of 0.6402.
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The overall effectiveness of the system was 83%. Another study [77], FStat (first-order statistical
features), STex (second-order texture feature), and SSigFS (statistically significant first-order and
second-order features) were fed to enhance the performance of SVM, ANN, DT and KNN classifiers.
To diagnose 70 and 80 thermal images from the DBT-TU-JU and DMR-IR datasets, respectively.
The classifier’s performance in both databases was compared; in DBT-TU-JU dataset, SVM-RBF
and ANN produced the highest accuracy of 84.29% each, while in the DMR-IR dataset, ANN and
SVM-Linear yielded the highest accuracy of 87.50% each.

The discrete wavelet transform and texture features extracted from thermograms were used in [78]
to classify normal and abnormal, then they were fed to DT, Sugeno fuzzy, naive Bayes classifier, k
nearest neighbor, Gaussian mixture model, and probabilistic neural network classifiers to evaluate the
best classifier. Field data were acquired using non-contact thermal imaging from the Department of
Diagnostic Radiology at Singapore General Hospital, and infrared thermograms were obtained using
the NEC-Avio Thermo TVS2000 MkIIST system. The 5-fold stratified cross-validation method was
used to test the performance of six classifiers on 50 images. The DT and fuzzy showed the best results
over the other classifiers, with an accuracy of 93.30%, a sensitivity of 86.70%, and a specificity of 100%.

All of the above studies used conventional ML algorithms. On the other hand, DL algorithms,
especially CNN, have been applied to thermal images and have shown competitive performance in
diagnosing breasts. One of the studies that applied DL on thermal images [5] proposed for the first
time the use of CCN classifies thermal images and was optimized by the Bayes optimization algorithm.
The model’s accuracy was 98.05% after it underwent training using 1,116 images taken from the
DMI dataset. The model outperformed earlier experiments that utilized the same dataset but different
features and classifiers by performing better on more images.

In another study [79], authors diagnosed breast cancer from thermal images using a DCNN model.
They extracted 680 thermal images from a Visual Lab-IR dataset, converted them to grayscale, and
they were pre-processed, segmented, and classified. They achieved a detection accuracy of 95.8% with
680 thermograms.

The suggested model in [80] was a deep neural network (pre-trained Inception V3 model) coupled
to SVM only when there was uncertainty in the DNN output. They used 1,062 images from the DMR-
IR dataset to train 849 images and tested 213 images, and 480 images for validation. Their report was
on only two images without model validation. This model had the probability of a sick class and a
healthy class for each image, and then it was classified into the class with the highest probability. Thus,
the confidence (sick) was 78%, while the confidence (healthy) was 94%.

In [81], authors investigated the combination of breast segmentation by gradient vector flow
method (GVF) and classification by CNNs to detect breast cancer. They used 63 breast thermal
images from the DMR-IR dataset labeled normal and abnormal. Using a 2-fold cross-validation
methodology, the model’s accuracy, sensitivity, and specificity were all recorded as 100%. It achieved
better performance than Tree Random Forest (TRF), MLP, and Bayes networks. However, achieving
100% may raise questions on the evaluation scheme used to measure the performance of this model.
The same results cannot be expected with larger datasets. In addition, the authors did not justify their
results, especially since they achieved 100% on all measures (accuracy, sensitivity, and specificity).

The authors of [82] used a CNN-based multi-input classifier model for early diagnosis of breast
cancer that integrates thermal images from various perspectives with personal and clinical data
from 287 patients. The M. 4 without personal and clinical data (M. 4 ncd) model achieved the
greatest accuracy of 97%, a specificity of 100%, sensitivity of 83% and AUC ROC of 99%, when the
performance of the seven models was compared. Furthermore, the M. 4 ncd model was compared
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with two studies that used the DMR database for classification purposes [83–86]. It outperformed the
two studies in AUC ROC and specificity measures, but with lower sensitivity.

CNNs were taught to classify thermal pictures using static and dynamic protocols [87] The DMR-
IR dataset was classified through the static protocol using 300 thermal images, 90% for training, and
10% for testing. For the dynamic protocol, 2,740 images were classified using 88% of them for training
and 12% for testing. Competitive results were obtained using both protocols using the suggested
approach. In terms of color and grayscale images, the static protocol had accuracy rates of 98%
and 95%, respectively. While the dynamic protocol achieved 95% accuracy for color images and 92%
accuracy for grayscale images. Using a static or dynamic protocol, the proposed method outperformed
other methods in [88,77] applied on the same dataset.

Deep transfer learning models are used for transmission to classify medical images. A new idea
is suggested in [89] to train a visual geometry group 16 (VGG 16) model to classify normal or
abnormal breast thermal images with the help of a static and dynamic DMR-IR dataset of 1,345
images with multi-view and single view. For the first time, conventional frontal, left, and right-view
breast thermal images from the Mastology Research database are sequenced with an infrared image to
produce multi-view thermal images. This approach improves the system’s accuracy by providing a more
comprehensive and informative thermal temperature. The static and dynamic datasets are augmented,
then split into two sets, training 70% and validation 30%. Using multi-view images, VGG 16 achieves an
encouraging test accuracy of 99% on the dynamic breast imaging test dataset. To compare the VGG 16
model performance with other deep transfer learning models, VGG19, ResNet50V2, and inceptionV3
were trained and tested to achieve test accuracy of 95%, 94%, and 89%, respectively. This indicates
that the VGG 16 model outperformed even though these models are more complex and provide better
results in other medical imaging classification tasks.

Table 4 below summarizes the reviewed studies using thermal images to detect breast cancer. In
summary, the reviewed studies using thermal breast cancer images showed that when compared to
other types of image modalities, thermal images gave promising results in the detection of breast cancer
and that they were used with both conventional ML and DL methods.

Table 4: State-of-the-art studies using thermal images

Ref. Approaches Datasets Number of images Data splitting techniques Results

[76] -Bayes network
-Naive bayes
-SVM
-Knowledge tree J48
-MLP
-RF
-RT
-ELM

University Hospital of
the Federal university
of Pernambuco

1,052 Training = 75%
Testing = 25%
&
10-fold cross-validation

Acc = 76.01%

[77] SVM
KNN
DT

DBT-TU-JU Breast
thermogram database

70 NA Acc = 84.29%

ANN DMR-IR database 80 Acc = 87.50%

(Continued)
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Table 4: Continued
Ref. Approaches Datasets Number of images Data splitting techniques Results

[78] -DT
-Fuzzy sugeno
-Naive bayes
-K nearest Neighbor
-Gaussian mixture
Model
-Probabilistic Neural
network

Singapore general
Hospital
NEC-Avio Thermo
TVS2000 MkIIST
System

50 5-fold stratified
cross-validation

Acc = 93.30%
Sn = 86.70%
Sp = 100%

[5] CNNs-bayes
optimization algorithm

DMI dataset 1,116 NA Acc: 98.95%

[79] DCNNs DMR-IR database 680 Training = NA
Validation = NA
Testing = NA

Acc = 95.8%
Sn = 99.40%
Sp = 76.3%

[80] DNN DMR-IR database 1,062 Training = 849 Images
Validation = 480 Images
Testing = 213 Images

Conf (sick) = 78%
Conf (healthy) = 94%

[81] CNNs- GVF DMR-IR database 63 2-fold cross-validation Acc = 100%
Sn = 100%
Sp = 100%

[82] Multi-input CNN DMR-IR database 287 patients Training = 70%
Validation = 15%
Testing = 15%
5-fold cross-validation

Acc = 97%
Sn = 83%
Sp = 100%
AUC ROC = 0.99

[87] CNNs DMR-IR database Static: 300 Training = 90%
Testing = 10%

Acc (color) = 98%
Acc (grayscale) = 95%

Dynamic: 2,740 Training = 88%
Testing = 12%

Acc (color) = 95%
Acc (grayscale) = 92%

[89] -VGG16
-VGG19
-ResNet50V2
-InceptionV3

DMR-IR database Static and
Dynamic: 1345

Training = 70%
Validation = 30%

Acc (Static) = 98%
Sn (Static) = 98%
Sp (Static) = 98%
Prec (Static) = 98%
F1-score (Static) = 98%
Acc (Dynamic) = 99%
Sn (Dynamic) = 98.04%
Sp (Dynamic) = 100%
Prec (Dynamic) = 100%
F1-score (Dynamic) = 99.01%

Note: Accuracy = Acc, sensitivity = Sn, specificity = Sp, confidence = Conf, and precision = Prec.

3.3 Studies Using DNNs with Deep-Attention Mechanisms on Medical Images for Detection
In the previous sections, we reviewed conventional ML and DL algorithms for breast cancer

detection using different types of images. As indicated, the reviewed studies gave all portions of an
image the same amount of “attention”and did not pay particular attention to any important regions. In
this section, we review studies conducted using attention mechanisms integrated with DL algorithms
on medical images to detect abnormalities and diseases in general.

For the diagnosis and classification of histology images, the authors of [90] proposed a new
DL model. They consist of CNN and RNN models and use a parallel structure of two different
types of NNs—CNN (DenseNet) and RNN (LSTM)—with the mechanism of interest conducted
on three datasets. They applied the models to three datasets: BACH2018, bioimaging2015, and
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Extended Bioimaging 2015. The accuracy achieved on these three datasets was 92%, 96%, and 97.5%,
respectively.

The BreastNet model, developed based on CNNs and attention module [91], to classify 7,909
histology images obtained from the BreakHis dataset. The best results were obtained with 200×
images, which had an accuracy of 98.51%, sensitivity of 98.70%, and F1-score of 98.28%.

In order to explore a more efficient features for classifying 7,909 histology images extracted
from the BreakHis dataset, investigators have developed a novel CNN-based method that consists
of two distinct interest units [4]. The model yielded a 98% accuracy when amplified at 100×, which
outperformed the latest methods on the same dataset by a large margin.

The authors in [92] have suggested a fine-grained CNN-based image model to extract features and
used a novel attention mechanism for localizing objects. They utilized 400 images from the benchmark
dataset for the 2018 Grand Challenge in Breast Cancer Histology Images and 2,000 images from
the Peking Union Hospital’s histology collection (BACH). The suggested method’s performance was
compared against five recently published approaches for the histological dataset. The results showed
that the proposed model achieved an accuracy of 96%, which showed an improvement of 2% compared
to the others.

In the study in [93], authors used guided soft attention (GuSA), and regions of interest were
localized and used to guide the attention of the classification network on the histopathology imaging
simultaneously using GuSA, feature aggregation (FA) network, and baseline (B) network. A total of
500 images from the BACH microscopy dataset were used. The ensemble GuSA with B + FA achieved
an accuracy of 93%, while the single model (B + FA) attained an accuracy of 88%. The GuSA and
ensemble model improved the accuracy by 5% over the single model.

To identify potential lesion areas from the image and avoid processing the whole image, the authors
in [94] proposed a model based on the deep attention network to classify 7,909 histological images
extracted from the BreakHis dataset. The model showed 98% accuracy in four different amplification
types, and a 50% reduction in training time compared to the POMDP-based approach [95].

Using CNN and BLSTM, an new attention mechanism was created, to classify high-resolution
histology images of breast tissue [96]. The model was trained on 400 images extracted from ICIAR
2018, where the data were divided into 70% training, 10% validation, and 20% testing. The experi-
mental findings demonstrated that the model achieved the accuracy metrics of patch-wise and image-
wise for classifying four classes at 85.50% and 96.25%, respectively, and for two classes at 96% and
98.75%, respectively. The performance of the model was also compared when used with and without
the attention mechanism; results showed that BLSTM without attention achieved 93.75% accuracy
and BLSTM with attention (proposed model) achieved 96.25% accuracy. Moreover, this model was
compared with some state-of-the-art methods [97–100], and it outperformed them.

Attention was also used in [101]. The authors proposed attention-guided and deep residual CNNs
for classifying 1,985 mammogram images from the clinical dataset collected by the researchers and
410 images from the INBreast dataset. The model was evaluated using a 5-fold cross-validation, and
showed superior performance compared to existing models on the two datasets. The model on the
clinical dataset achieved an accuracy of 88.7%, an F1-score of 87.1%, and an AUC of 97.4%. With
the INBreast dataset, the model achieved an accuracy of 70%, an F1-score of 63.5%, and an AUC of
84.7%.

The authors in [102] improved CNNs by integrating an innovative squeeze-and-excitation network
(SE-Net)–attention mechanism to classify 18,157 clinically collected mammograms and build a new
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benchmarking dataset. They used 10-fold cross-validation to evaluate the model’s performance, which
outperformed other studies, with an accuracy of 92.17%.

The authors in [103] proposed a RESNET-based classification framework for breast cancer images
using a convolutional block attention module (CBAM) to enhance performance on the BreakHis
dataset. The proposed model was used to classify 7,909 images. At 200× magnification factor, it
showed an impressive performance increase by reaching accuracy of 92.6%, specificity of 88.9%,
sensitivity of 94.7%, F1-score of 94.1%, and AUC of 91.8%. In addition, the results of ResNet50 and
ResNet50 + CBAM at 200× magnification factor and ResNet-50 + CBAM showed an improvement
in accuracy at 92.6%, while ResNet50 was 92.1%.

For a summary of the reviewed studies, see Table 5. Through the reviewed studies using DL with
attention techniques, it is evident that many research studies have been conducted in recent years
integrating deep NN with deep attention mechanisms to improve detection accuracy. Most studies have
been conducted on histopathology images of breast cancer. Some mammography studies have also
started to show competitive performance in the last two years, encouraging more research on other
imaging models. Based on this brief survey of the literature, DL with deep attentional mechanisms
has not been applied to thermal images. In addition, the reviewed studies revealed that breast cancer
detection in thermal images showed promising accuracy results compared to other modalities. This
encourages the investigation of the effects of integrating DL methods with attention mechanisms in
detecting breast cancer in thermal images.

Table 5: Deep neural networks with attention mechanism studies

Ref. Approaches Imaging
modalities

Datasets Number of
images

Data splitting
techniques

Results

[90] CNNs-RNNs Histopathology BACH2018
Bioimaging2015

100
249

5-fold
cross-validation
Training = 20%
Validation = 20%

Acc= 92%
Acc = 96%

Extended
Bioimaging2015

400 Training = 70%
Validation = 20%
Testing = 10%

Acc = 97.5%

[91] CNNs Histopathology BreakHis 7,909 Training = 80%
Testing = 20%

Acc = 98.51%
Sn = 98.70%
F1-score = 98.28%

[4] CNNs Histopathology BreakHis 7,909 5-fold
cross-validation
Training = 70%
Testing = 30%

Acc = 99.3%

[92] CNNs Histopathology -Pekingn Union
Hospital
-Benchmark

2,000
400

NA Acc = 96%

[93] B + FA +
GuSA network

Histopathology BACH
microscopy

500 4-fold
cross-validation
Training = 25%

Acc (single model) = 88%
Acc (ensemble) = 93%

(Continued)
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Table 5: Continued
Ref. Approaches Imaging

modalities
Datasets Number of

images
Data splitting
techniques

Results

[94] Deep attention
network

Histopathology BreakHis 7,909 Training = 70%
Testing = 30%

Acc = 98%

[96] CNNs Histopathology ICIAR 2018 400 Training = 70%
Validation = 10%
Testing = 20%

Acc (2-class) = 96.25%
Acc (4-class) = 85.50%

[101] DCNNs Mammography -Clinical
Dataset
-INbreast

1,985
410

5-fold
cross-validation

Acc = 88.7%
F1-score = 87.1%
AUC = 97.4%
Acc = 70%
F1-score = 63.5%
AUC = 84.7%

[102] CNNs Mammography New
benchmarking
dataset

18,157 10-fold
cross-validation

Acc = 92.17%

[103] ResNet-CBAM Histopathology BreakHis 7,909 Training = 70%
Testing = 30%

Acc = 92.6%
Sn = 94.7%
Sp = 88.9%
F1-score = 94.1%
AUC = 91.8%

Note: Accuracy = Acc, Sensitivity = Sn, Specificity = Sp and Precision = Prec.

Summary

We conclude from our literature review that mammograms show close accuracy when using ML
and DL. In addition, studies have used attention mechanisms. The highest accuracy of 94.31% was
achieved using U-Net CNN [64].

There have not been many studies using MRI imaging to detect breast cancer; SVM shows superior
performance to CNN, with an accuracy improvement of 14.33% [71].

DL models have been the basis of breast cancer detection using histopathology images, and
attention mechanisms show improvements in DL results, which achieved the highest accuracy of 99.3%
by using CNN [4], making it a motivation for further studies in the field.

Thermal imaging has been an active field in recent years, and many studies have been conducted
using ML, DL, and pre-trained models. Studies conducted using DL achieved higher performance
than ML. Moreover, the pre-trained VGG16 model yielded the best result, with an accuracy of 99%
on a dynamic dataset [89].

The results show that the number of classes that have been classified is an influencing factor, as
studies conducted on two classes have outperformed the rest of the classes. Moreover, using different
datasets of different sizes may affect the performance of each model, as the size of the data affects
the performance [104]. Furthermore, some models reported their performance using different metrics,
while others used accuracy only. This is another problem that makes a comparison of models not
necessarily reliable.
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4 Conclusion

This paper has provided a systematic review of research works dealing with breast cancer detection
using AI models in conjunction with different types of imaging modalities, and one of the most used is
the mammogram. The reviewed studies in this paper were categorized based on ML algorithms, types
of images used, and the deep attention mechanisms adopted.

The review study highlighted several issues. One important issue is the validity and potential
of using thermography for early breast cancer detection. In their studies, researchers mostly use
mammograms for breast imaging, but it is harmful to the patient and exposes them to ionizing
radiation, which increases the risk of cancer, and it is also expensive. However, effective and promising
results were achieved with other less used types, such as infrared thermography.

Deep attention mechanisms have proven to be effective in enhancing the accuracy of DL models
by focusing on areas of interest rather than attaching equal importance to all areas of an image.

We can conclude that with rapid advancements in AI methods and techniques, enhancing the
accuracy and effectiveness of breast cancer detection models is still necessary, and there is a need to
provide AI models that can early detect breast cancer with high accuracy. This is crucial for increasing
the number of available treatment options, increasing survival, and improving the quality of life.
Therefore, the field of breast cancer detection systems requires more attention and research. With
the tremendous advancements made by DL models, it is interesting to note that the research domain
is open to enormous development efforts and may even open the door to enormous commercial
opportunities.

A limitation of our literature review is the complete reliance on previously published research and
its reported results. This made the comparison of methods based on their metrics and reported results
and the type of dataset used. All of these factors affected the reliability of the comparison. Since we
relied on the reported results, we assumed that all the results were accurate and reliable.

As a result, a future expansion of this work would be to perform another research using the various
approaches on the same dataset and reporting findings using various assessment metrics. This will
make the comparison and analysis of the performance more reliable.
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