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Abstract: In previous research on two-sided matching (TSM) decision, agents’
preferences were often given in the form of exact values of ordinal numbers
and linguistic phrase term sets. Nowdays, the matching agent cannot perform
the exact evaluation in the TSM situations due to the great fuzziness of
human thought and the complexity of reality. Probability hesitant fuzzy sets,
however, have grown in popularity due to their advantages in communicating
complex information. Therefore, this paper develops a TSM decision-making
approach with multi-attribute probability hesitant fuzzy sets and unknown
attribute weight information. The agent attribute weight vector should be
obtained by using the maximum deviation method and Hamming distance.
The probabilistic hesitancy fuzzy information matrix of each agent is then
arranged to determine the comprehensive evaluation of two matching agent
sets. The agent satisfaction degree is calculated using the technique for order
preference by similarity to ideal solution (TOPSIS). Additionally, the multi-
object programming technique is used to establish a TSM method with the
objective of maximizing the agent satisfaction of two-sided agents, and the
matching schemes are then established by solving the built model. The study
concludes by providing a real-world supply-demand scenario to illustrate the
effectiveness of the proposed method. The proposed method is more flexible
than prior research since it expresses evaluation information using probability
hesitating fuzzy sets and can be used in scenarios when attribute weight
information is unclear.

Keywords: Two-sided matching decision-making (TSMDM); probabilistic
hesitant fuzzy set (PHFS); the technique for order preference by similarity to
ideal solution (TOPSIS); multi-attribute

1 Introduction

Two-sided matching decision-making (TSMDM) consists of two sides of matching agents and
belongs to the decision-making problems [1], which was first proposed and applied by Gale and Shap-
ley in a study of matchmaking and college admission [2]. The agent, also called as the intermediary, is
what determines the result of the matching process but does not actually participate in the matching
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process directly. The matching agents could play various roles in various scenarios requiring decision-
making [3]. If you search or buy a product online today, you will find more of the same products on
the website tomorrow; this indicates that the matching system has automatically matched you as a
potential customer. Both sides of matching agents participate in the matching process, and using a
given matching technique, all matching agents are evaluated by those on the other side. The formation
of a perfect matching scheme which is satisfied by all matching agents must be facilitated by the
intermediary based on the preferences or evaluations provided by the matching agent.

TSMDM is now used in a wide range of fields, such as marriage matching problems [4,5],
colleges admissions [6], volunteer team dispatching [7], human resource management [8], economic
management matching [9], public-private partnership [10], and knowledge service matching [11]. The
two-sided matching theory has been used in a variety of areas recently, along with the development
of the market economy and the level of science and technology. For instance, Wu et al. [12] studied
the supply-demand issue in transport services and developed the corresponding TSMDM method.
Wang et al. [13] has developed a novel matching method for solving the freight source matching
problem. Liu et al. proposed a unique TSMDM method with the objective of achieving satisfying
matching between surgeons and patients [14]. For the purpose of resolving the existing house seller-
buyer matching problem, Jiang et al. [15] proposed a novel TSMDM.

Meantime, a significant number of scholars have studied the multi-attribute TSMDM problem.
For instance, Jiang et al. [16] proposed a multi-objective non-linear model to address one-shot
multi-attribute exchange problems. Based on the Choquet integral aggregation operator, a novel
TSMDM method was developed by Liang et al. [17], which was used to solve the multi-attribute
TSMDM problems considering q-Rung Orthopair fuzzy information. Liang et al. [18] developed a
novel TSMDM model based on the strict order number information. In light of multi-granularity
probabilistic linguistic MARCOS, Lu et al. [19] proposed a multi-attribute two-sided matching
method.

Some researchers studied the TSMDM problem with complete or partial preference ordering in
the previous studies. For instance, Pu et al. [20] proposed a novel TSMDM method under the goal of
maximizing intermediary revenue and overall agent satisfaction. Fan et al. [21] studied the TSMDM
problem with uncertain preference ordinal and proposed the corresponding TSMDM model. A novel
TSMDM method was developed by Chen et al. [22] after studying the TSMDM problem in perspective
of psychological behaviors. Qin et al. [23] proposed an optimization method for resolving the TSMDM
problem with incomplete weak preference ordering. To express the evaluation information in the
practical TSMDM problem, linguistic evaluation was also applied. For instance, Lin et al. [24]
studied the multi-attribute TSMDM problems with 2-tuple linguistic information and proposed a new
TSMDM method. Considering the multi-granular HFLTSs environment, Zhang et al. [25] developed
a comprehensive TSMDM method considering the stable one-to-one matching constraints.

Researches conducted by many scholars have provided sufficient solutions for the two-sided
matching problem under different scenarios. However, decision-makers find it difficult to deliver
precise and concise information given the complexity of the real world. In certain situations, decision-
makers are unable to convey the whole significance of the evaluation information. To describe the
evaluation information, several fuzzy information express tools would be employed, such as interval
numbers, fuzzy numbers, hesitant fuzzy sets, intuitionistic fuzzy sets [26] and others.

PHFS, which is an important extended form of the hesitant fuzzy set and a close and effective
combination of membership degree and probability distribution information, was first proposed by
Zhu [27]. Probabilistic hesitating fuzzy sets, as compared to HFS, are more capable of dealing with and
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explain the information of preference evaluation in complex decision-making situations. In real world,
significant and vital decisions are usually made by the group which consists of multiple members. Due
to the inaccurate estimations and lack of expertise, the evaluation information provided by experts
may have different assessment values. Therefore, the information of the probabilistic hesitant fuzzy
element (PHFE) may be used to express the overall opinion formed by these different evaluation
results. For instance, suppose a company invites ten experts to evaluate a scheme (score between [0,
1]), and let’s say that six of the ten experts give the scheme a score of 0.5 and four experts give it a score
of 0.7. The evaluation information can be provided by the PHFE {0.5 |0.6, 0.7| 0.4}. The PHFS theory
can be applied to handle imperfect, vague, and imprecise information. Thus PHFS has been widely
applied in economics [28], emergency management [29,30], and decision-making [31]. Meanwhile,
some theoretical foundations have been established, such as aggregation operations [32], distance
measures [33], and entropy measures [34]. Because of the major difference in individual cognition and
the lack of knowledge structure, the two-sided agents are used to express the evaluation information
by PHFS. Based on this overview of previous literature, the probability hesitant fuzzy environment in
multi-attribute TSMDM problems has not been given much attention. Therefore, a TSMDM method,
considering the PHFS with incomplete attribute weight information, will be proposed in this paper.
By using the TOPSIS method, the solution strategy is developed and the matching result takes into
account the maximum degree of satisfaction on both sides of the matching agents. Additionally, a
supply-demand example for catering services will be provided to highlight the usefulness and viability
of the proposed model. The new aspects of this paper are: (1) the development of a novel two-sided
matching decision-making method in a probability hesitant fuzzy environment; and (2) the application
of the proposed method to the two-sided matching problem with incomplete attribute weight.

The rest of this paper is organized as follows. Some preliminaries about TSMDM and PHFS
will be presented in Section 2. The proposed problem is explained in Section 3, and builds the
framework for the proposed method. In Section 4, a case is provided to demonstrate the effectiveness
of the proposed method. Additionally, Section 4 explains the characteristics of the proposed TSMDM
method. Finally, the main contributions of the proposed method are presented in Section 5.

2 Preliminaries

The concept of two-sided matching is given in this section, and then some related theories
of PHFSs are introduced, including the concept, operation rules, score function and aggregation
operation. Finally, it discusses the distance measure of PHFSs and TOPSIS method.

2.1 Two-Sided Matching
Two matching agent sets, A and B, are given in this subsection. Let A = {A1, A2, · · · , Am} denote

the set of m matching objects, where Ai denotes the ith agent in A. Let B = {B1, B2, · · · , Bn} be the
set of n matching objects, where Bj denotes the jth agent in B, and thus satisfies n ≥ m ≥ 2, M =
{1, · · · , m}, N = {1, · · · , n}.

Definition 1 [35]. Suppose μ: A ∪ B → A ∪ B is a one-to-one map, ∀Ai ∈ A, ∀Bj ∈ B, satisfying: i)
μ(Ai) ∈ B; ii) μ(Bj) ∈ A ∪ {Bj}; iii) μ(Ai) = Bj if and only if μ(Bj) = Ai.

Then, μ refers to the matching scheme between set A and set B, where μ(Ai) = Bj denotes that
Ai is matched with Bj in μ and the (Ai, Bj) is defined as a matching pair, μ(Ai) �= Bk denotes that Ai is
not matched with Bk in μ. Specially, when μ(Bj) = Bj, then Bj is unmatched in μ. As n ≥ m ≥ 2, each
matching object in A must be matched with one matching object in B and n − m matching objects in
B are unmatched.
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2.2 Probabilistic Hesitant Fuzzy Sets
HFS was first proposed by Torra [26] and further expressed in mathematical symbol by

Xia et al. [36]. Unlike other extensions of the fuzzy set, HFS allows the membership degree of an
element to a set presented by several possible values, which can express the uncertain information more
comprehensively. However, the probability of each membership degree is the same. To better represent
the preference information, by incorporating probability to describe the preference information in
HFS, Zhu [27] proposed the concept of PHFS. Compared with HFSs, the following PHFSs can
reserve more original information.

Definition 2 [27,32]. Let X be a fixed set. Then, a PHFS on X is H = {< x, h(γi(x) |pi(x)) >

|x ∈ X }, where, h(γi(x) |pi(x)) is a set of elements and γi(x) |pi(x) is a subset of [0, 1] denoting the

hesitant fuzzy information with probabilities to the set H. For convenience, h(γi(x) |pi(x)) is called a

probabilistic hesitant fuzzy element (PHFE), and PHFE h(γi(x) |pi(x)) is denoted by h(p), then h(p) =
{γi |pi, i = 1, 2, · · · , #h}, where pi is the probability of the membership degree γi and

∑#h

i=1 pi = 1,γi |pi

is considered as a term of the PHFE, #h is the total number of different membership degrees. In this
paper, we arrange the terms γi |pi in increasing order based on the value of γi.

Remark 1: In Definition 2,
∑#h

i=1 pi = 1 states that the PHFE includes the complete probabilistic
information.

∑#h

i=1 pi < 1 states that the probability information is incomplete. Therefore, the following
formula can be used to transform the PHFE with incomplete probability information into the PHFE

with complete probability information: pi = pi∑#h

i=1 pi

, i = 1, · · · , #h. For decision makers with different

culture and knowledge backgrounds, it is possible that
∑#h

i=1 pi < 1. In this paper, we assume that∑#h

i=1 pi ≤ 1.

Remark 2: In Definition 2, the PHFE h(p) = {γi |pi, i = 1, 2, · · · , #h} of PHFS may be revised
according to the multiplier of the membership degree γi and the corresponding probability pi, and then
re-order the terms γi pi in increasing order. For instance (0.5 |0.4, 0.6 |0.2, 0.7 |0.4) can be revised as
(0.12, 0.2, 0.28).

Definition 3 [27,32]: Let h(p), h1(p1), h2(p2) be three PHFEs and α > 0, then some operation rules
among them are defined as:

i) (h(p))α = ∪γ∈h(p){γ α |p};
ii) αh(p) = ∪γ∈h(p){1 − (1 − γ )α |p};

iii) (h(p))c = ∪γ∈h(p){1 − γ |p};
iv) h1(p1) ⊕ h2(p2) == ∪γ1∈h1(p1),γ2∈h2(p2){1 − (1 − γ1)(1 − γ2) |p1p2 };
v) h1(p1) ⊗ h2(p2) = ∪γ1∈h1(p1),γ2∈h2(p2){γ1γ2 |p1p2 }.
Definition 4 [27,32]: Let h(p) = {γi |pi, i = 1, 2, · · · , #h} be a PHFE, a score function is defined

by:

S (h (p)) =
#h∑
i=1

γipi (1)

According to the score function, the deviation function is defined by:

V(h(p)) =
#h∑
i=1

(γi − S(h(p)))2pi (2)
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According to the score functions, we can compare PHFEs h1(p) and h2(p) based on the following
rules:

if S(h1) > S(h2), then h1(p) � h2(p);

if S(h1) < S(h2), then h1(p) ≺ h2(p);

if S(h1) = S(h2): if V(h1) > V(h2), then h1(p) ≺ h2(p); if V(h1) < V(h2), then h1(p) � h2(p);
if V(h1) = V(h2), then h1(p) ∼ h2(p).

2.3 Aggregation Operators and Distance Measures for PHFEs
Zhang et al. [32] proposed the probabilistic hesitant fuzzy weighted averaging (PHFWA) operator

and the probabilistic hesitant fuzzy weighted geometric (PHFWG) operator, both of which are very
useful in decision-making using probabilistic hesitant fuzzy information.

Definition 5 [32]. Let h1(p1), h2(p2) · · · hn(pn) be PHFEs, and wj

(
n∑

j=1

wj = 1
)

be the weight of

PHFEs hj(pj), then a probabilistic hesitant fuzzy weighted averaging (PHFWA) operator and a
probabilistic hesitant fuzzy weighted geometric (PHFWG) operator are stated as follows:

PHFWA(h1(p1), h2(p2) · · · hn(pn)) =
⊕n

j=1wjhj(pj) = ∪γj∈hj (pj )

{
1 −

n∏
j=1

(1 − γj)
wj |p1 · · · pn

}
(3)

PHFWG (h1(p1), h2(p2) · · · hn(pn)) = ⊗n
j=1hj

(
pj

)wj = ∪γj∈hj (pj )

{
n∏

j=1

γ
wj

j |p1 · · · pn

}
(4)

These two operators can transform the fuzzy decision information of the decision makers into
aggregated decision information to identify the best option out of all feasible choices.

The definitions of the Hamming distance and the Euclidean distance of PHFEs are given as
follows:

Definition 6 [29]. Let h1(p1) and h2(p2) be two PHFEs. If #h = #h2 = #h1, the number of elements
in h1(p1) and h2(p2) are the same, then the normalized probabilistic hesitant fuzzy Hamming distance
measure between h1(p1) and h2(p2) is defined as dH(h1, h2), and the normalized probabilistic hesitant
fuzzy Euclidean distance measure between h1(p1) and h2(p2) is defined as dE(h1, h2),

dH(h1, h2) =
∑#h

i=1

∣∣h1σ(i)(p1σ(i)) − h2σ(i)(p2σ(i))
∣∣ =

∑#h

i=1

∣∣γ1σ(i)p1σ(i) − γ2σ(i)p2σ(i)

∣∣ (5)

dE (h1, h2) =
√

1
#h

∑#h

i=1

∣∣h1σ(i) − h2σ(i)

∣∣2 =
√

1
#h

∑#h

i=1

∣∣γ1σ(i)p1σ(i) − γσ(i)2p2σ(i)

∣∣2
(6)

where γ1σ(i) and γ2σ(i) are the ith biggest values in h1(p1) and h2(p2).

Remark3: In most cases, #h2 �= #h1. For the sake of calculation convenience, we need to treat the
small-length probabilistic hesitancy fuzzy elements with equal length. The short-length probability
hesitancy fuzzy element is supplemented by a smaller or larger membership degree element depending
on the decision-makers’ various risk preferences. If the decision maker is risk-averse, add the element
with the lowest value; if the decision maker likes taking risk, add the element with the highest value;
if the decision maker is risk-neutral, add the average of the maximum and minimum values in the set.
Let the probability of adding elements be 0, so that the correlation calculation remains unchanged
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even after adding elements. In this paper, the decision makers are assumed to be pessimists who expect
unfavorable outcomes and may add the minimum value, and we define that the probability of each
added value is 0. For example, h1(p1) and h2(p2) are two PHFEs, let h1(p1) = (0.5 |0.5, 0.7 |0.5), h2(p2) =
(0.5 |0.3, 0.6 |0.3, 0.7 |0.4). Apparently, #h2 > #h1; then, we extend h1(p1) until it has the same length
as h2(p2), that is h1(p1) = (0.5 |0, 0.5 |0.5, 0.7 |0.5). According to the Hamming distance measure,
dH(h1, h2) can be calculated as:

dH(h1, h2) = |0.5 × 0 − 0.3 × 0.5| + |0.5 × 0.5 − 0.6 × 0.3| + |0.7 × 0.5 − 0.7 × 0.4|
= 0.15 + 0.07 + 0.07 = 0.29.

Definition 7 [29]. The probabilistic hesitant fuzzy Positive Ideal Solution (PIS) is given as: h+ (p) ={
1

∣∣∣∣ 1
#h

, 1

∣∣∣∣ 1
#h

, · · · , 1

∣∣∣∣ 1
#h

}
, and the probabilistic hesitant fuzzy Negative Ideal Solution (NIS) is

given as: h− (p) =
{

0

∣∣∣∣ 1
#h

, 0

∣∣∣∣ 1
#h

, · · · , 0

∣∣∣∣ 1
#h

}
, respectively.

2.4 The TOPSIS Method for PHFS
The TOPSIS method, which was first proposed by Hwang and Yoon, is essential for processing

information from multi-attribute evaluations and is a topic of much scholarly discussion [37]. Accord-
ing to the PHFSs Hamming distance measure and the basic idea of traditional TOPSIS method, let
D− be the distance measure from the NIS and D+ be the distance measure from the PIS. Obviously,
the larger the distance D+ the better the alternative, while the smaller the distance D− the better the
alternative [33]. The alternative is defined as follows in order to represent the alternative closeness
coefficient:

C = D−

D+ + D− (7)

The closeness coefficients C for each alternative are calculated for both, the distance D+ and the
distanceD− simultaneously. The optimal solution is the one that comes closest to the positive ideal
solution and is farthest from the negative ideal solution. From the above analysis, we have come to
know that the higher the closeness coefficient, the better the alternative.

3 The Approach of TSMDM with PHFSs Information

In this section, the TSMDM problem with PHFSs is introduced and a novel TSMDM method is
proposed.

3.1 Problems Description
Two agent sets are given in the two-sided matching problem which is addressed in this paper.

Considering the fuzziness of the thinking of the matching subject and the disparity in knowledge
organization, the evaluation information given by the two-sided agent is presented in the form of
PHFS, and the attribute weight information given is also incomplete. The problem studied in this
paper is to promote the formation of equitable bilateral matching results based on the information of
probabilistic hesitancy fuzzy sets given by two-sided agents. The main notations used in this section
are presented as follows:

A = {A1, A2, · · · , Am}: The set of matching objects on the side A, Ai(i = 1, · · · , m) denotes the
ith matching object in A.
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B = {B1, B2, · · · , Bn}: The set of matching objects on the side B, Bj denotes the j th matching
object in B.

CA = {CA
1 , CA

2 , · · · , CA
s }: The set of attributes used by matching objects A when providing PHFE

assessments over matching objects B, where CA
k (k = 1, · · · , s) is the kth attribute that the matching

objects A pay attention to.

CB = {CB
1 , CB

2 , · · · , CB
t }: The set of attributes used by matching objects B when providing PHFE

assessments over matching objects A, where CB
l (l = 1, · · · , t) is the lth attribute that the matching

objects B pay attention to.

wAi = {wAi
1 , wAi

2 , · · · , wAi
s }: The weight vector of the attribute used by Ai, where wAi

k is the weight of

the kth attribute in CA, wAi
k > 0, k = 1, 2 · · · s and

∑s

k=1w
Ai
k = 1, i ∈ M.

wBj = {wBj
1 , w

Bj
2 , · · · , w

Bj
t }: The weight vector of the attributes used is the weight of the lth attribute

in CB, w
bj
l > 0, l = 1, 2 · · · t and

∑t

l=1w
Bj
l = 1, j ∈ N.

HAi = (hA
ijk)n×s: The matrix about matching objects B provided by Ai, where hA

ijk is Ai’s PHFE
assessment over Bj with respect to CA

k .

HBj = (hB
ijl)m×t: The evaluation matrix from objects A to Bj, where hB

ijl is Bj’s PHFE assessment
over Ai with respect to CB

l .

For the matching object Ai, let hA
ijk denote his/her assessment for the matching object Bj in

accordance with the attribute CA
k . The kth attribute’s weight in CA is due to wAi

k , then Ai’s overall

assessments of Bj can be obtained by hA
ij =

s∑
k=1

hA
ijkw

Ai
k , all these HPFEs are contained in the probabilistic

hesitant fuzzy matrixes HAi = (hA
ijk)n×s(i = 1, · · · m). For the matching object Bj, let hB

ijl denote his/her

assessment for the matching object Ai with respect to the attribute CB
l . Owing to w

Bj
l is the weight of

the lth attribute in CB, then Bj’s overall assessments of Ai can be obtained by hB
ij =

t∑
l=1

hB
ijlw

Bj
l , all these

PHFEs are contained in the probabilistic hesitant fuzzy matrixes HBj = (hB
ijl)m×t(j = 1, · · · n).

3.2 The Maximizing Deviation Method to Obtain the Weights of Attribute
Weight plays an essential role in reaching a reasonable decision result. The matching subject is

unable to provide a comprehensive attribute weight vector due to the diversity and fuzziness of the
information in the real decision-making environment. At the same time, Wang [38] puts forward
a maximum deviation method to determine the attribute weight, and the core idea is to give the
attribute weight based on the evaluation information given by the decision-maker. Some models will
be proposed to determine the attribute weight vector for a two-sided agent based on the maximum
deviation method.

In relation to the kth attribute CA
k in CA, if matching object Ai provides assessment to the matching

object Bj and Bf , denoted by hA
ijk and hA

ifk, then Definition 6 states that:

dH(hA
ijk, hA

ifk) =
∑#h

y=1

∣∣hjσ(y)(pjσ(y)) − hf σ(y)(pf σ(y))
∣∣ =

∑#h

y=1

∣∣γjσ(y)pjσ(y) − γf σ(y)pf σ(y)

∣∣ (8)

The total deviation among Ai’s PHFE assessments over B can be calculated by:
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dH

(
Ak

i

) =
n∑

j=1

n∑
f =1

dH

(
hA

ijk, hA
ifk

)
(9)

We can evaluate the total variance between Ai’s PHFE assessments over B with regard to all
attributes by considering the weights of each attribute.

dH (Ai) =
s∑

k=1

wAi
k dH

(
Ak

i

) =
s∑

k=1

n∑
j=1

n∑
f =1

wAi
k dH

(
hA

ijk, hA
ifk

)
(10)

Then, a constrained condition
s∑

k=1

(wAi
k )2 = 1 for the weight vector wAi = {wAi

1 , wAi
2 , · · · , wAi

s } is

introduced based on Wang’s analysis. On this basis, the optimal weight vector is determined.

Therefore, a model for computing the attribute weight for Ai can be presented as:

max
s∑

k=1

n∑
j=1

n∑
f =1

wAi
k dH

(
hA

ijk, hA
ifk

)

s.t.

s∑
k=1

(wAi
k )2 = 1

wAi
k ≥ 0, k = 1, · · · , s

(11)

By using the Lagrange multiplier method and normalizing the weight vector, we have

wAi
k =

n∑
j=1

n∑
f =1

#h∑
y=1

∣∣γjσ(y)pjσ(y) − γf σ(y)pf σ(y)

∣∣
s∑

k=1

n∑
j=1

n∑
f =1

#h∑
y=1

∣∣γjσ(y)pjσ(y) − γf σ(y)pf σ(y)

∣∣ (k = 1, · · · , s) (12)

Similar to that, the attribute weight vector for Bj, i.e., wBj = {wBj
1 , w

Bj
2 , · · · , w

Bj
t } can be calculated

as:

w
Bj
l =

m∑
i=1

m∑
u=1

#h∑
z=1

∣∣γiσ(z)piσ(z) − γuσ(z)puσ(z)

∣∣
t∑

l=1

m∑
i=1

m∑
u=1

#h∑
z=1

∣∣γiσ(z)piσ(z) − γuσ(z)puσ(z)

∣∣ (l = 1, · · · , t) (13)

Furthermore, the matrices HA = (hA
ij )m×n and HB = (hB

ij )m×n can be calculated by aggregating the
evaluation values based on the PHFWA operator.

3.3 The Satisfaction Degrees
First, the Hamming distance measure between the comprehensive evaluation of each matching

agent and their corresponding positive and negative ideal evaluation is calculated, that is:

d+
aij = dH(hA

ij , hA+
ij ), d−

aij = dH(hA
ij , hA−

ij ), d+
bij = dH(hB

ij , hB+
ij ), d−

bij = dH(hB
ij , hB−

ij ) (14)

Then, the closeness coefficients of each matching agent could be computed by:

ϕaij = d−
aij

d+
aij + d−

aij

, ϕbij = d−
bij

d+
bij + d−

bij

(15)

The degree of divergence within the matching agent sets could clearly be observed in the closeness
coefficients of each matching. For the matching agent Ai to the matching agent Bj, the small the
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distance d+
aij and the larger the distance d−

aij, the higher the closeness coefficient ϕaij. For the matching
agent Bj to the matching agent Ai, the small the distance d+

bij and the larger the distance d−
bij, the higher

the closeness coefficient ϕbij. The higher the closeness coefficient ϕaij meaning the higher the satisfaction
of the matching agent Ai to the matching agent Bj; the higher the closeness coefficient ϕbij meaning the
higher the satisfaction of the matching agent Bj to the matching agent Ai. From the above analysis, we
can find that the closeness coefficient information can be utilized to measure the satisfaction degree.
Therefore, we can establish the satisfaction degree matrices SA = (ϕaij)mn and SB = (ϕbij)mn to represent
the satisfaction degree of the matching agent Ai to the matching agent Bj, and the satisfaction degree
of the matching agent Bj to the matching agent Ai, respectively.

3.4 The TSMDM Model for PHFS
Additionally, a TSMDM model could be developed to obtain the best matching. Suppose xij

represents a binary variable, when xij = 0; it implies that Ai is not matched with Bj; xij = 1
implies that Ai is matched with Bj and thus we have a matching pair (Ai, Bj). Consequently, a multi-
objective programming model can be constructed as follows based on thorough consideration of agent
satisfaction maximization:

max ZA =
m∑

i=1

n∑
j=1

ϕaijxij (a)

max ZB =
m∑

i=1

n∑
j=1

ϕbijxij (b)

s.t.
m∑

i=1

xij ≤ 1, j = 1, 2, · · · n (c)
n∑

j=1

xij ≤ 1, i = 1, 2, · · · m (d)

xij = {0, 1}, i = 1, 2, · · · m; j = 1, 2, · · · n (e)

(16)

In model (16), formula (a) and formula (b) aim to maximize the overall satisfaction. And
formula (c) and formula (d) refer to the one-to-one matching constrains.

3.5 Model Solution
We apply the linear weighted method to solve the multi-objective optimization model, and thus

model (17) could be constructed as follows:

max Z = wA

m∑
i=1

n∑
j=1

ϕaijxij + wB

m∑
i=1

n∑
j=1

ϕbijxij

=
m∑

i=1

n∑
j=1

ϕijxij

s.t.
m∑

i=1

xij ≤ 1, j = 1, 2, · · · n
n∑

j=1

xij ≤ 1, i = 1, 2, · · · m

xij = {0, 1}, i = 1, 2, · · · m; j = 1, 2, · · · n

(17)

where ϕij = wAϕaij + wBϕbij; wA and wB refer to the different importance of two-sided agent sets, which
satisfies wA, wB ∈ (0, 1), wA + wB = 1. For both sides in the actual TSMDM, the goal ZA and ZB have
the same status, we can allow wA = wB, if the goal ZA is more important than ZB. We can also let
wA > wB. Finally, we can use Matlab or Lingo 11 to solve model (17).
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3.6 The Steps
In conclusion, the steps of the proposed TSMDM approach can be summed up as follows (see

Fig. 1 below):

Algorithm: 1
Input: evaluation matrices HAi = (hA

ijk)m×s and HBj = (hB
ijl)n×t

Output: matching scheme
Begin
For PHFE in evaluation matrices HAi = (hA

ijk)m×s and HBj = (hB
ijl)n×t

Do Normalized evaluation matrices HAi = (hA
ijk)m×s and HBj = (hB

ijl)n×t

For PHFE in HAi = (hA
ijk)m×s and HBj = (hB

ijl)n×t

Compute the attribute weight vector according to the Eqs. (8)–(13)
For attribute weight in attribute weight vector wAi

For attribute weight in attribute weight vector wBj

Do Determine the comprehensive evaluation matrices HA = (hA
ij )m×n and HB = (hB

ij )m×n

For comprehensive evaluation in comprehensive evaluation matrices HA = (hA
ij )m×n

For comprehensive evaluation in comprehensive evaluation matrices HB = (hB
ij )m×n

Do Determine the distance matrices D+
A = (d+

aij)mn, D−
A = (d−

aij)mn, D+
B = (d+

bij)mn, D−
B = (d−

bij)mn

For distance in distance matrices D+
A = (d+

aij)mn, D−
A = (d−

aij)mn, D+
B = (d+

bij)mn, D−
B = (d−

bij)mn

Do Construct the satisfaction degree matrices SA = (ϕaij)mn, SB = (ϕbij)mn

For satisfaction degree in satisfaction degree matrices SA = (ϕaij)mn, SB = (ϕbij)mn

Do Construct multiple objective model (16)
For multiple objective model (16)
Do Transform the multiple objective model (16) into a single objective model (17)
Then determine the matching scheme

Step 1: Construct evaluation matrices HAi = (hA
ijk)m×s(i = 1, · · · m) and HBj = (hB

ijl)n×t(j = 1, · · · n)

based on the PHFEs information given by two-sided agents.

Step 2: Compute the attribute weight vector wAi = {wAi
1 , wAi

2 , · · · , wAi
s } and wBj = {wBj

1 , w
Bj
2 , · · · , w

Bj
t }

according to Eqs. (12) and (13).

Step 3: According to the Eq. (3), transform evaluation matrices HAi = (hA
ijk)m×s (i = 1, · · · m) and

HBj = (hB
ijl)n×t(j = 1, · · · n) into evaluation matrices HA = (hA

ij )m×n and HB = (hB
ij )m×n based on the

attribute weight vector wAi = {wAi
1 , wAi

2 , · · · , wAi
s } and wBj = {wBj

1 , w
Bj
2 , · · · , w

Bj
t }.

Step 4: According to Eq. (13), determine the distance matrix D+
A = (d+

aij)mn, D−
A = (d−

aij)mn, D+
B =

(d+
bij)mn, D−

B = (d−
bij)mn by calculating the distance between the comprehensive evaluation of the matching

agent and the positive and negative ideal evaluation value d+
aij, d−

aij, d+
bij, d−

bij.

Step 5: Construct the satisfaction degree matrices SA = (ϕaij)mn, SB = (ϕbij)mn by using Eq. (14).

Step 6: Construct model (16) based on the satisfaction matrix SA = (ϕaij)mn and SB = (ϕbij)mn, and
then transform it into model (17) using the linear weighted method.

Step 7: Determine the matching scheme bysolving model (17).
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Figure 1: The procedure of two-sided matching

4 Illustrative Example and Discussion

To demonstrate the proposed approach, an example of lunch supply and demand matching is
provided in this section.

4.1 Illustrative Example
Because of operational constraints and limited space, primary schools are unable to provide lunch

for both students and teachers. Therefore, their lunch supply needs to be outsourced and completed
by external catering companies. The local education authority of a city intends to provide lunch to
students in three primary schools in order to improve public service and reduce chances for students
to leave school. The local education authority conducts a comprehensive survey of the situation and
information summary of the actual activity, and invites five catering companies to bid for three primary
schools. An enterprise can only bid effectively in one school for a prolonged period of time due to the
financial strain and service quality. To establish a compatible match and maintain a stable, strong
partnership that benefits both sides, the local education authority makes the three primary schools
Ai(i = 1, 2, 3) evaluate five catering companies Bj(j = 1, 2, 3, 4, 5) at four aspects of the management
experience, safety, health and the professional qualifications of the company, which are regarded as
the four attributes CA

k (k = 1, 2, 3, 4). Moreover, let the five companies Bj(j = 1, 2, 3, 4, 5) evaluate
the three primary schools Ai(i = 1, 2, 3) at these four given attributes CB

k (k = 1, 2, 3, 4), which are
the return of investment, the distance between school and company, the student amount, and the
credibility of the school. To be able to obtain a reasonable evaluation, 3 schools and 5 companies
invite experts to give the evaluation value anonymously based on the given attributes. By summarizing
the expert assessments, they provide the assessment information to the education bureau/commission
as a probability hesitation fuzzy set. We can take an example of the assessment of A1 to B1 with respect
to the attribute CA

1 . If three experts support 0.5, one expert suggests 0.4, and one expert insists on
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0.3, then the final assessment is determined by PHFE {0.5 |0.6, 0.4 |0.2, 0.3 |0.2}. Certainly, the PHFS
assessments will be more reasonable and include more information. Similarly, all the PHFS evaluation
matrices of candidates on the other side are obtained and shown in Tables 1–8.

Step 1: Construct evaluation matrices.

Table 1: PHFS evaluation matrix HA1 = (hA
1jk)5×4

A1 CA
1 CA

2 CA
3 CA

4
B1 (0.5 |0.6, 0.6 |0.4 ) (0.6 |0.3, 0.7 |0.3, 0.8 |0.4 ) (0.6 |0.8, 0.7 |0.2 ) (0.3 |0.3, 0.4 |0.7 )

B2 (0.4 |0.5, 0.6 |0.5 ) (0.4 |0.3, 0.5 |0.3, 0.6 |0.4 ) (0.5 |0.2, 0.6 |0.3, 0.7 |0.5 ) (0.7 |0.5, 0.8 |0.5 )

B3 (0.6 |0.6, 0.7 |0.2 ) (0.7 |0.5, 0.8 |0.3 ) (0.3 |0.2, 0.4 |0.4, 0.5 |0.4 ) (0.5 |0.2, 0.6 |0.8 )

B4 (0.7 |0.6, 0.8 |0.2 ) (0.5 |0.5, 0.6 |0.5 ) (0.6 |0.6, 0.7 |0.4 ) (0.6 |0.4, 0.7 |0.3, 0.8 |0.3 )

B5 (0.5 |0.3, 0.6 |0.3, 0.7 |0.4 ) (0.7 |0.3, 0.8 |0.7 ) (0.8 |0.4, 0.9 |0.5 ) (0.5 |0.3, 0.8 |0.7 )

Table 2: PHFS evaluation matrix HA2 = (hA
2jk)5×4

A2 CA
1 CA

2 CA
3 CA

4
B1 (0.5 |0.5, 0.7 |0.5 ) (0.7 |0.7, 0.8 |0.2, 0.9 |0.1 ) (0.4 |0.3, 0.6 |0.5 ) (0.5 |0.3, 0.6 |0.4, 0.7 |0.3 )

B2 (0.5 |0.4, 0.6 |0.6 ) (0.6 |0.7, 0.7 |0.3 ) (0.6 |0.3, 0.7 |0.4, 0.8 |0.3 ) (0.6 |0.5, 0.7 |0.5 )

B3 (0.5 |0.2, 0.6 |0.3, 0.7 |0.5 ) (0.7 |0.6, 0.8 |0.4 ) (0.3 |0.4, 0.5 |0.6 ) (0.6 |0.5, 0.7 |0.2, 0.8 |0.3 )

B4 (0.7 |0.4, 0.8 |0.4 ) (0.6 |0.5, 0.7 |0.1, 0.8 |0.4 ) (0.7 |0.5, 0.8 |0.3, 0.9 |0.2 ) (0.5 |0.4, 0.6 |0.6 )

B5 (0.6 |0.5, 0.7 |0.4, 0.8 |0.1 ) (0.6 |0.4, 0.7 |0.6 ) (0.4 |0.5, 0.5 |0.5 ) (0.7 |0.4, 0.8 |0.4 )

Table 3: PHFS evaluation matrix HA3 = (hA
3jk)5×4

A3 CA
1 CA

2 CA
3 CA

4
B1 (0.6 |0.3, 0.7 |0.5, 0.8 |0.2 ) (0.6 |0.4, 0.7 |0.4 ) (0.7 |0.6, 0.8 |0.4 ) (0.6 |0.2, 0.7 |0.8 )

B2 (0.6 |0.5, 0.7 |0.3 ) (0.5 |0.3, 0.6 |0.4, 0.7 |0.3 ) (0.6 |0.2, 0.7 |0.4, 0.8 |0.4 ) (0.5 |0.3, 0.6 |0.7 )

B3 (0.5 |0.3, 0.6 |0.7 ) (0.5 |0.5, 0.7 |0.5 ) (0.6 |0.5, 0.7 |0.3, 0.8 |0.2 ) (0.6 |0.2, 0.7 |0.4, 0.8 |0.4 )

B4 (0.5 |0.3, 0.6 |0.4, 0.7 |0.3 ) (0.5 |0.3, 0.6 |0.3, 0.7 |0.4 ) (0.7 |0.2, 0.8 |0.6 ) (0.6 |0.4, 0.7 |0.6 )

B5 (0.7 |0.5, 0.8 |0.5 ) (0.6 |0.6, 0.7 |0.4 ) (0.5 |0.2, 0.6 |0.4, 0.7 |0.4 ) (0.7 |0.8, 0.8 |0.2 )

Table 4: PHFS evaluation matrix HB1 = (hB
i1l)3×4

B1 CB
1 CB

2 CB
3 CB

4
A1 (0.5 |0.7, 0.6 |0.3 ) (0.7 |0.6, 0.9 |0.4 ) (0.5 |0.3, 0.8 |0.3, 0.9 |0.4 ) (0.4 |0.2, 0.5 |0.4, 0.7 |0.4 )

A2 (0.8 |0.5, 0.9 |0.3 ) (0.5 |0.3, 0.6 |0.4, 0.7 |0.3 ) (0.3 |0.1, 0.6 |0.4, 0.9 |0.5 ) (0.6 |0.3, 0.8 |0.7 )

A3 (0.6 |0.4, 0.7 |0.2, 0.8 |0.4 ) (0.5 |0.3, 0.6 |0.3, 0.7 |0.4 ) (0.5 |0.2, 0.7 |0.7 ) (0.5 |0.4, 0.9 |0.6 )

Table 5: PHFS evaluation matrix HB2 = (hB
i2l)3×4

B2 CB
1 CB

2 CB
3 CB

4

A1 (0.5 |0.2, 0.6 |0.5, 0.9 |0.3 ) (0.6 |0.4, 0.8 |0.5 ) (0.7 |0.5, 0.9 |0.5 ) (0.3 |0.2, 0.6 |0.3, 0.8 |0.5 )

A2 (0.7 |0.6, 0.8 |0.4 ) (0.6 |0.6, 0.7 |0.4 ) (0.4 |0.3, 0.8 |0.7 ) (0.5 |0.4, 0.8 |0.6 )

A3 (0.6 |0.4, 0.7 |0.6 ) (0.4 |0.5, 0.5 |0.5 ) (0.6 |0.5, 0.7 |0.2, 0.8 |0.3 ) (0.6 |0.7, 0.9 |0.3 )
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Table 6: PHFS evaluation matrix HB3 = (hB
i3l)3×4

B3 CB
1 CB

2 CB
3 CB

4
A1 (0.7 |0.4, 0.8 |0.4 ) (0.6 |0.4, 0.7 |0.2, 0.8 |0.4 ) (0.8 |0.5, 0.9 |0.5 ) (0.3 |0.2, 0.6 |0.3, 0.9 |0.5 )

A2 (0.6 |0.6, 0.9 |0.4 ) (0.4 |0.3, 0.8 |0.7 ) (0.6 |0.1, 0.7 |0.4, 0.8 |0.5 ) (0.4 |0.4, 0.8 |0.6 )

A3 (0.6 |0.3, 0.7 |0.7 ) (0.7 |0.5, 0.9 |0.5 ) (0.4 |0.4, 0.5 |0.2, 0.6 |0.3 ) (0.5 |0.5, 0.7 |0.5 )

Table 7: PHFS evaluation matrix HB4 = (hB
i4l)3×4

B4 CB
1 CB

2 CB
3 CB

4

A1 (0.5 |0.4, 0.6 |0.6 ) (0.4 |0.3, 0.5 |0.3, 0.6 |0.4 ) (0.6 |0.3, 0.7 |0.4, 0.8 |0.3 ) (0.3 |0.3, 0.4 |0.7 )

A2 (0.4 |0.5, 0.6 |0.5 ) (0.3 |0.2, 0.4 |0.4, 0.5 |0.4 ) (0.5 |0.2, 0.6 |0.8 ) (0.6 |0.5, 0.7 |0.2, 0.8 |0.3 )

A3 (0.7 |0.4, 0.8 |0.4 ) (0.6 |0.3, 0.7 |0.3, 0.8 |0.4 ) (0.7 |0.5, 0.8 |0.3, 0.9 |0.2 ) (0.6 |0.6, 0.7 |0.2 )

Table 8: PHFS evaluation matrix HB5 = (hB
i5l)3×4

B5 CB
1 CB

2 CB
3 CB

4
A1 (0.7 |0.4, 0.8 |0.3, 0.9 |0.3 ) (0.7 |0.5, 0.8 |0.5 ) (0.6 |0.8, 0.7 |0.2 ) (0.3 |0.2, 0.4 |0.4, 0.5 |0.4 )

A2 (0.5 |0.5, 0.8 |0.4 ) (0.4 |0.3, 0.5 |0.3, 0.6 |0.4 ) (0.5 |0.2, 0.6 |0.3, 0.7 |0.5 ) (0.4 |0.5, 0.7 |0.3, 0.9 |0.2 )

A3 (0.6 |0.6, 0.7 |0.2 ) (0.3 |0.4, 0.6 |0.2, 0.8 |0.4 ) (0.4 |0.4, 0.5 |0.5 ) (0.5 |0.2, 0.6 |0.8 )

At the same time, there are differences in the number of membership elements among different
PHFEs. Decision-makers are therefore considered to be risk-averse. Based on this, the PHFE, which
has a smaller number of membership degrees, is added with the minimal value, and the probability of
each additive value is 0. In accordance with the revised method of Definition 1, the PHFE of PHFS
evaluation matrix can be revised, and then the PHFS evaluation matrices can be modified and shown
in Tables 9–16.

Table 9: PHFS evaluation matrix HA1 = (hA
1jk)5×4

A1 CA
1 CA

2 CA
3 CA

4

B1 (0, 0.24, 0.3) (0.18, 0.21, 0.32) (0, 0.14, 0.48) (0, 0.09, 0.28)

B2 (0, 0.2, 0.3) (0.12, 0.15, 0.24) (0.1, 0.18, 0.35) (0, 0.35, 0.4)

B3 (0, 0.14, 0.36) (0, 0.24, 0.35) (0.06, 0.16, 0.2) (0, 0.1, 0.48)

B4 (0, 0.16, 0.42) (0, 0.25, 0.3) (0, 0.28, 0.36) (0.21, 0.24, 0.24)

B5 (0.15, 0.18, 0.28) (0, 0.21, 0.56) (0, 0.32, 0.45) (0, 0.15, 0.56)

Table 10: PHFS evaluation matrix HA2 = (hA
2jk)5×4

A2 CA
1 CA

2 CA
3 CA

4

B1 (0, 0.25, 0.35) (0.09, 0.16, 0.49) (0, 0.12, 0.3) (0.15, 0.21, 0.24)

(Continued)
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Table 10: Continued
A2 CA

1 CA
2 CA

3 CA
4

B2 (0, 0.2, 0.36) (0, 0.21, 0.42) (0.18, 0.24, 0.28) (0, 0.3, 0.35)

B3 (0.1, 0.18, 0.35) (0, 0.32, 0.42) (0, 0.12, 0.3) (0.14, 0.24, 0.3)

B4 (0, 0.28, 0.32) (0.07, 0.3, 0.32) (0.18, 0.24, 0.35) (0, 0.2, 0.36)

B5 (0.08, 0.28, 0.3) (0, 0.24, 0.42) (0, 0.2, 0.25) (0, 0.28, 0.32)

Table 11: PHFS evaluation matrix HA3 = (hA
3jk)5×4

A3 CA
1 CA

2 CA
3 CA

4

B1 (0.16, 0.18, 0.35) (0, 0.24, 0.28) (0, 0.32, 0.42) (0, 0.12, 0.56)

B2 (0, 0.21, 0.3) (0.15, 0.21, 0.24) (0.12, 0.28, 0.32) (0, 0.15, 0.42)

B3 (0, 0.15, 0.42) (0, 0.25, 0.35) (0.16, 0.21, 0.3) (0.12, 0.28, 0.32)

B4 (0.15, 0.21, 0.24) (0.15, 0.18, 0.28) (0, 0.14, 0.48) (0, 0.24, 0.42)

B5 (0, 0.35, 0.4) (0, 0.28, 0.36) (0.1, 0.24, 0.28) (0, 0.16, 0.56)

Table 12: PHFS evaluation matrix HB1 = (hB
i1l)3×4

B1 CB
1 CB

2 CB
3 CB

4

A1 (0, 0.18, 0.35) (0, 0.36, 0.42) (0.15, 0.18, 0.36) (0.08, 0.2, 0.28)

A2 (0, 0.27, 0.4) (0.15, 0.21, 0.24) (0.03, 0.24, 0.45) (0, 0.18, 0.56)

A3 (0.14, 0.24, 0.32) (0.15, 0.18, 0.28) (0, 0.1, 0.49) (0, 0.2, 0.54)

Table 13: PHFS evaluation matrix HB2 = (hB
i2l)3×4

B2 CB
1 CB

2 CB
3 CB

4

A1 (0.1, 0.27, 0.3) (0, 0.24, 0.4) (0, 0.35, 0.45) (0.06, 0.18, 0.4)

A2 (0, 0.32, 0.42) (0, 0.28, 0.36) (0, 0.12, 0.56) (0, 0.2, 0.48)

A3 (0, 0.24, 0.42) (0, 0.2, 0.25) (0.14, 0.24, 0.3) (0, 0.27, 0.42)

Table 14: PHFS evaluation matrix HB3 = (hB
i3l)3×4

B3 CB
1 CB

2 CB
3 CB

4

A1 (0, 0.28, 0.32) (0.14, 0.24, 0.32) (0, 0.4, 0.45) (0.06, 0.18, 0.45)

A2 (0, 0.36, 0.36) (0, 0.12, 0.56) (0.06, 0.28, 0.4) (0, 0.16, 0.48)

A3 (0, 0.18, 0.49) (0, 0.35, 0.45) (0.1, 0.16, 0.18) (0, 0.25, 0.35)
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Table 15: PHFS evaluation matrix HB4 = (hB
i4l)3×4

B4 CB
1 CB

2 CB
3 CB

4

A1 (0, 0.2, 0.36) (0.12, 0.15, 0.24) (0.18, 0.28, 0.24) (0, 0.09, 0.28)

A2 (0, 0.2, 0.3) (0.06, 0.16, 0.2) (0, 0.1, 0.48) (0.14, 0.24, 0.3)

A3 (0, 0.28, 0.32) (0.18, 0.21, 0.32) (0.18, 0.24, 0.35) (0, 0.14, 0.36)

Table 16: PHFS evaluation matrix HB5 = (hB
i5l)3×4

B5 CB
1 CB

2 CB
3 CB

4

A1 (0.24, 0.27, 0.28) (0, 0.35, 0.4) (0, 0.14, 0.48) (0.06, 0.16, 0.2)

A2 (0, 0.25, 0.32) (0.12, 0.15, 0.24) (0.1, 0.18, 0.35) (0.18, 0.2, 0.21)

A3 (0, 0.14, 0.36) (0.12, 0.12, 0.32) (0, 0.16, 0.25) (0, 0.1, 0.48)

Step 2: Compute the attribute weight vector.

Matching is performed by the municipal education bureau/commission using probabilistic hes-
itant fuzzy evaluation matrices. The information regarding how much each attribute weighs in the
evaluation is not provided by two-sided agents. In accordance with the above given steps, the weight
information of each attribute can be calculated by Eqs. (12) and (13), that is:

wA1 = {0.1571, 0.2500, 0.2500, 0.3429}, wA2 = {0.1883, 0.2467, 0.2971, 0.2679},
wA3 = {0.2709, 0.1992, 0.2769, 0.2530}, wB1 = {0.1914, 0.3148, 0.2593, 0.2436},
wB2 = {0.2158, 0.1655, 0.4532, 0.1655}, wB3 = {0.1892, 0.3297, 0.3297, 0.1514},
wB4 = {0.0993, 0.2128, 0.4255, 0.2624}, wB5 = {0.2381, 0.2698, 0.1958, 0.2963}.

Step 3: Comprehensive evaluation matrices.

On this basis, the comprehensive assessment hA
11 is taken under four attributes CA

k (k = 1, 2, 3, 4) of
primary school A1 to the catering company B1. For instance, we know that

hA
11 = PHFWA(hA

111, hA
112, hA

113, hA
114) = wA1

1 hA
111 ⊕ wA1

2 hA
112 ⊕ wA1

3 hA
113 ⊕ wA1

4 hA
114

Therefore, the comprehensive assessment hA
11 of A1 to B1 is

hA
11 = (0.4981|0.0432, 0.5239|0.1008, 0.5329|0.0108, 0.5570|0.0252, 0.5329|0.0432, 0.5570|0.1008,

0.5653|0.0108, 0.5877|0.0252, 0.5779|0.0576, 0.5997|0.1344, 0.6072|0.0144, 0.6275|0.0336,

0.5154|0.0288, 0.5403|0.0672, 0.5490|0.0072, 0.5722|0.0168, 0.5490|0.0288, 0.5722|0.0672,

0.5803|0.0072, 0.6019|0.0168, 0.5925|0.0384, 0.6135|0.0896, 0.6208|0.0096, 0.6403|0.0224)

The comprehensive PHFS evaluation information of the primary schools can be obtained, as
shown in matrix HA. Similarly, the comprehensive PHFS evaluation information of catering companies
can also be obtained, as shown in matrix HB.
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HA =
⎛
⎜⎝

hA
11 hA

12 hA
13 hA

14 hA
15

hA
21 hA

22 hA
23 hA

24 hA
25

hA
31 hA

32 hA
33 hA

34 hA
35

⎞
⎟⎠ , HB =

⎛
⎜⎝

hB
11 hB

12 hB
13 hB

14 hB
15

hB
21 hB

22 hB
23 hB

24 hB
25

hB
31 hB

32 hB
33 hB

34 hB
35

⎞
⎟⎠

Step 4: To calculate the distance.

Owing to the number of each PHFE is not equal for hA
ij , let #hA

ij be the number, then the positive

solution of hA
ij can be obtained hA+

ij =
(

1| 1
#hA

ij

, 1| 1
#hA

ij

, · · · , 1| 1
#hA

ij

)
, the negative solution of hA

ij can

be evaluated hA−
ij =

(
0| 1

#hA
ij

, 0| 1
#hA

ij

, · · · , 0| 1
#hA

ij

)
. According to the formula d+

aij = dH(hA
ij , hA+

ij ), d−
aij =

dH(hA
ij , hA−

ij ), for agent Ai, the distance between the comprehensive evaluation of matching agents and
the positive and negative ideal evaluation D+

A = (hA+
ij )3×5, D−

A = (hA−
ij )3×5 is calculated. Similarly, we can

calculate the distance of agent Bj, i.e., d+
bij = dH(hB

ij , hB+
ij ), d−

bij = dH(hB
ij , hB−

ij ), D+
B = (hB+

ij )3×5, D−
B = (hB−

ij )3×5.

D+
A =

⎛
⎜⎝

3.0136 1.7006 3.0505 2.6964 2.8777

1.9137 2.6982 1.7344 1.8404 2.8519

2.9334 1.8154 1.7415 1.7680 2.8929

⎞
⎟⎠ ,

D−
A =

⎛
⎜⎝

0.4949 0.5969 0.3872 0.7202 0.7013

0.4444 0.7336 0.6446 0.4620 0.5232

0.5590 0.4714 0.6555 0.5276 0.7029

⎞
⎟⎠ ,

D+
B =

⎛
⎜⎝

1.6852 1.7053 1.7503 1.7145 1.7567

1.8576 4.5413 2.9577 1.8337 1.0115

1.8017 2.8087 2.7961 1.8534 3.0713

⎞
⎟⎠ ,

D−
B =

⎛
⎜⎝

0.7221 0.6852 0.569 0.5793 0.7371

0.5451 0.7047 0.7282 0.5767 0.5274

0.6282 0.6658 0.6197 0.4217 0.3763

⎞
⎟⎠ .

Step 5: Construct the satisfaction degree matrices.

According to the satisfaction degree formula, the satisfaction degree of the matching agent Ai to
the matching agent Bj, and the satisfaction degree of the agent Bj to the agent Ai can be calculated and
stated as follows:

SA =
⎛
⎜⎝

0.8589 0.7402 0.8874 0.7892 0.8041

0.8115 0.7862 0.7290 0.7993 0.845

0.8399 0.7939 0.7265 0.7702 0.8045

⎞
⎟⎠ ,

SB =
⎛
⎜⎝

0.7000 0.7134 0.7547 0.7474 0.7044

0.7731 0.8657 0.8024 0.7607 0.6573

0.7415 0.8084 0.8186 0.8146 0.8909

⎞
⎟⎠ .

Step 6–7: Construct the model and solve it.
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Based on the satisfaction matrices SA = (ϕaij)mn and SB = (ϕbij)mn, the model can be solved by
determining the parameters wA and wB. If primary schools and catering companies have the same
status, then wA = wB = 0.5 and SAB = wASA + wBSB = 0.5SA + 0.5SB can be obtained by:

SAB =
⎛
⎝0.7795 0.7268 0.8211 0.7683 0.7542

0.7923 0.8259 0.7657 0.7800 0.7511
0.7907 0.8011 0.7725 0.7924 0.8477

⎞
⎠ .

The optimization model can be solved by utilizing the Lingo 11 software, so that we can get x12 =
x25 = x33 = 1, and the others xij = 0. Therefore, the optimal matching pairs are: (A1, B2), (A2, B5),

(A3, B3), which shows that primary school A1 matches the catering company B2, primary school A2

matches the catering company B5, and primary school A3matches the catering company B3.

4.2 Sensitivity Analysis and Discussion
To better illustrate the impact of the weights wA and wB in solving model (16), the paper conducts

sensitivity analysis of the model. For simplicity, different values of weights SA = (ϕaij)mn and SB =
(ϕbij)mn are discussed, and the results are shown in Table 17.

Table 17: Sensitivity analysis

Case Weight values Matching pairs

1 wA = 1, wB = 0 (A1, B2), (A2, B3), (A3, B4)

2 wA = 0.1, wB = 0.9 (A1, B2), (A2, B5), (A3, B1)

3 wA = 0.2, wB = 0.8 (A1, B2), (A2, B5), (A3, B1)

4 wA = 0.3, wB = 0.7 (A1, B2), (A2, B5), (A3, B1)

5 wA = 0.4, wB = 0.6 (A1, B2), (A2, B5), (A3, B1)

6 wA = 0.5, wB = 0.5 (A1, B2), (A2, B5), (A3, B3)

7 wA = 0.6, wB = 0.4 (A1, B2), (A2, B5), (A3, B3)

8 wA = 0.7, wB = 0.3 (A1, B2), (A2, B3), (A3, B4)

9 wA = 0.8, wB = 0.2 (A1, B2), (A2, B3), (A3, B4)

10 wA = 0.9, wB = 0.1 (A1, B2), (A2, B3), (A3, B4)

11 wA = 0, wB = 1 (A1, B2), (A2, B5), (A3, B1)

The matching objects can express their evaluations more flexibly in PHFS since the decision-
maker may hesitate while describing the preference evaluation information. As can be observed,
in comparison to the matching objects, information on their assessments is provided in triangular
intuitionistic fuzzy sets [39], hesitant fuzzy numbers [40] and intuitionistic fuzzy numbers [8], the
method proposed in this paper has more advantages.

Furthermore, the tendency of the object function value Z from cases 1–3 is displayed in Fig. 2. The
tendency of the matching scheme xij from cases 1–11 is displayed in Fig. 3. Fig. 4 reveals the tendency
of the object function value Z from cases 8–11. Based on Figs. 2–4 the comprehensive tendency of the
object function value Z from cases 1–11 could be acquired, as displayed in Fig. 4.

From Figs. 2 to 4, the paper analyzes the role of two-sided agent weight values on the objective
function value, as displayed in Fig. 5. As the weight of the two-sided agent changes from cases 1–2,
the object function drops significantly. As the weight changes from cases 2 to 9, the function value
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gradually decreases until it reaches its lowest point in case 9. However, from cases 9–11, results show
that the value of object functioninitially rises and then falls.
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Figure 2: The object function value Z from cases 1–3
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Figure 3: The object function value Z from cases 4–7
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Figure 4: The object function value Z from cases 8–11
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Figure 5: The object function value Z from cases 1–11

The tendency of matching scheme xij from cases 1–3 is displayed in Fig. 6. The tendency of
matching scheme xij from cases 1–11 is displayed in Fig. 7. The tendency of matching scheme xij from
cases 8–11 is revealed in Fig. 8. Based on Figs. 6 to 8, the comprehensive tendency of matching scheme
xij from cases 1 to 11 could be acquired, and is displayed in Fig. 9.
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Figure 6: The matching scheme xij from cases 1–3
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Figure 8: The matching scheme xij from cases 8–11
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Figure 9: The matching scheme xij from cases 1–11

From Figs. 6 to 8, the function of two-sided agent weight values on the matching scheme is
examined in the paper. Fig. 9 shows an overall comparison. It can be concluded that the matching
results slightly changes with the change in the two-sided agent’s weight. Therefore, it is clear that the
weight of the two-sided agent plays no significant role in the change of the matching scheme.

The tendency of the relationship between object function value Z and matching scheme xij from
cases 1–3 is displayed in Fig. 10. The tendency of the relationship between object function value Z
and matching scheme xij from cases 1–11 is displayed in Fig. 11. The tendency of the relationship
between object function value Z and matching scheme xij from cases8–11 is revealed in Fig. 12. The
comprehensive tendency of the relationship between object function value Z and matching scheme xij

from cases 1–11 could be acquired based on Figs. 10 to 12, as displayed in Fig. 13.

As shown in Figs. 10 to 12, the paper analyzes the role of two-sided agent weight values on the
objection function value and matching scheme. Fig. 13 displays the overall comparison. This leads to
the conclusion that a key factor in the change in the value of the objection function is the weight of the
two-sided agent. However, the result reveals that the weight of the two-sided agent has no vital role in
the change of matching scheme.
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Figure 10: The relationship between object function value Z and matching scheme xij from cases 1–3
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Figure 11: The relationship between object function value Z and matching scheme xij from cases 4–7
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Figure 13: The relationship between object function value Z and matching scheme xij from cases 1–11

Firstly, to better illustrate the advantages of the proposed method for handling fuzzy preference
information, the paper compares the proposed method with the one given in [35]. In Reference [35],
the score function is applied to the preference information provided by two-sided agents. Table 18
shows the matching results resulting from two methods. As can be seen in Table 18, there are many
differences in the bilateral matching scheme obtained by the above two separate methods. Compared
with the method used in reference [35] to process fuzzy preference information, the distance metric
applied in this paper accurately processes the preference evaluation information given by matching
agents, thus avoiding the loss and misunderstanding of preference information.

Table 18: Matching results proposed by different methods

Method Matching result

Method given in this paper (A1, B2), (A2, B5), (A3, B3)

Method given in [35] (A1, B5), (A2, B2), (A3, B1)

Second, in contrast to the traditional TSM research, the methodology used in this paper retains
complete information while taking into account hesitant fuzziness and the corresponding probability
when evaluating matching objects, making the evaluation more scientific and reasonable, and the
results under the probability hesitation fuzzy environment correspond to reality.

Third, multiple attributes are considered, and their weights are calculated by using the maximum
deviation method, which can ensure a scientific matching result. Simultaneously, the satisfaction of
TSM is acquired by the closeness coefficients of each matching subject, making the entire process
more interpretable.

5 Conclusions

In this paper, the TSMDM approach, by considering the attribute of matching objects under
probability hesitant fuzzy environment, is developed. The main contributions of this paper are as
follows: First, the PHFS is applied to describe the evaluation information provided by matching
agents, and the weight vector is incomplete. Second, attribute weight vectors for matching objects are
determined using the Hamming distance measures of PHFSs and the extended maximum deviation
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method based on the unknown weight and probability hesitant fuzzy environment of each matching
object. Third, agent satisfaction degrees are gained in accordance with the multi-attribute probability
hesitant fuzzy sets comprehensive assessments by using PHFOWA operator. Additionally, the relative
closeness coefficient is used to calculate the satisfaction degrees of matched agents. Finally, we build a
TSMDM model with the intention of maximizing the overall satisfaction of matching agents, and then
the best matching result is determined by solving the constructed TSMDM model with linear weighted
method. Overall, the proposed TSMDM approach not only has great potential for application in some
real-world TSMDM scenarios, but it could also enhance the theoretical framework for the study of
TSMDM problems. The psychology and expectations of the matching subjects when the evaluation
information is provided, which is also a future research direction, are not taken into account in
this paper. In terms of future research, the future research direction could be presented as follows:
(1) For some TSMDM problems, matching objects may provide more evaluation value in hybrid
formats, such as the PHFS, probability interval-valued hesitant fuzzy set (PIVHFS) and PHFLTS.
In the meanwhile, the matching agents might provide insufficient attribute information. Hence, it
could be useful to carry on the discussion of the TSMDM issues with multiple fuzzy information and
insufficient attribute values. (2) In the TSMDM process, each matching individual should determine
the automatic matching of recommended matching alternatives in the evolutionary environment as a
result of the development of artificial intelligence computing systems. In light of these conditions, it
could be necessary to develop a novel TSMDM method.
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