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Abstract:Mobile Edge Computing (MEC) is proposed to solve the needs of Inter-
net of Things (IoT) users for high resource utilization, high reliability and low
latency of service requests. However, the backup virtual machine is idle when
its primary virtual machine is running normally, which will waste resources.
Overbooking the backup virtual machine under the above circumstances can
effectively improve resource utilization. First, these virtual machines are deployed
into slots randomly, and then some tasks with cooperative relationship are off-
loaded to virtual machines for processing. Different deployment locations have
different resource utilization and average service response time. We want to find
a balanced solution that minimizes the average service response time of the IoT
application while maximizing resource utilization. In this paper, we propose a task
scheduler and exploit a Task Deployment Algorithm (TDA) to obtain an optimal
virtual machine deployment scheme. Finally, the simulation results show that the
TDA can significantly increase the resource utilization of the system, while redu-
cing the average service response time of the application by comparing TDAwith
the other two classical methods. The experimental results confirm that the perfor-
mance of TDA is better than that of other two methods.

Keywords: Mobile edge computing; overbooking; resource utilization; service
response time; task deployment algorithm

1 Introduction

With the development of Internet of Things (IoT) applications, IoT technology, and IoT communication
technology, users can experience various applications on IoT terminals, such as virtual reality, augmented
reality and artificial intelligence [1]. Although this brings a good experience to users, it also brings new
challenges to the processing performance, storage capacity, and timeliness of IoT devices. Mobile Edge
Computing (MEC) is designed to meet the needs of IoT users for high resource utilization, high
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reliability and low latency of service requests [2]. IoT applications located on the mobile side can be divided
into several tasks with dependencies [3], and MEC can provide a variety of time-critical and resource-
intensive services for IoT users nearby [4]. Reliability and service response time are very important
factors to measure the quality of service (QoS) [5], due to a large number of virtual machines running in
the edge network, it is unrealistic to assure that all virtual machines can work normally [6].

There is no way to avoid virtual machine failures in MEC, this also results in unreliable many edge
networks [7]. In MEC environment, QoS plays a crucial role, there may be some unpredictable fault
events in MEC [8,9], and there is some connection between these failures. For example, if an edge cloud
in MEC fails, any switch and edge server in the edge cloud are both unavailable, if a switch fails, any
edge server connected to the switch is unavailable, all virtual machines on the edge server are also
unavailable. Therefore, it is very necessary to enhance the reliability of MEC services [10]. The reliability
of MEC can be greatly improved by utilizing virtual machine replication [11] or redundancy methods.
Among them, When the operation of the primary virtual machine fails, the backup virtual machine of the
primary virtual machine takes over and continues to work normally. However, when the primary virtual
machine is working normally, the backup virtual machine is in an idle state, this will consume additional
resources and reduce resource utilization [12].

Overbooking these backup virtual machines in idle state can increase resource utilization. Supposing
that each server is virtualized into several slots, each primary virtual machine uses a separate slot, while
one or more backup virtual machines can use a common slot, this can greatly increase resource utilization
[13]. An application is composed of multiple tasks with a cooperative relationship [14]. If the tasks are
unreasonably deployed on the virtual machine, it may cause unbalanced resource allocation among edge
servers, decrease resource utilization [15], and network congestion may occur in severe cases, this cannot
realize the low latency requirements of some applications [16]. Therefore, how to deploy tasks to
minimize the average service response time of the application and maximize the resource utilization is the
goal of this paper.

We introduced Task Scheduler (TS) to solve the above problems. First, a random algorithm is used to
randomly place virtual machines in slots according to the placement rules, and then the applications are
handed over to TS for processing. TS first sorts applications according to their priorities, and then
considers that different task deployment schemes have different resource utilization, deployment scheme
risks, and average service response time of applications. Finally, the Task Deployment Algorithm (TDA)
is used to get an optimal task deployment strategy to achieve the minimum average service response time
of the application and the maximum system resource utilization within the risk range of the system
deployment scheme.

Our main contributions are as follows:

� We propose overbooking of backup virtual machines to deal with the waste of resources. In addition,
we propose three models, one is a risk model, it is used to evaluate the overall deployment scheme risk
corresponding to different deployment schemes of virtual machines, another is a service response time
model that measures the average completion time of an application, and the last is a resource
utilization model that measures the overall resource allocation of the system.

� Based on the above three models, we propose our optimization objective, that is, minimizing the
average service response time of an application while maximizing resource utilization, and turning
it into a single-objective optimization problem. Finally, this paper proposes TDA to maximize the
joint optimization value.

� We set up a MEC environment, and carry out simulation experiments in this environment. The final
results show that our method outperforms the other two more classical methods.
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The rest of this article is structured as follows. Section 2 studies and analyzes the related literature;
Section 3 presents the problem and establishes the model; Section 4 defines the problem; Section
5 proposes corresponding solutions to the above problems; Section 6 sets up the experimental
environment and the analyzes the results; Section 7 summarizes the whole article.

2 Related Work

On the basis of ensuring system reliability, reasonable deployment of tasks to increase resource
utilization and reduce the average service response time of applications. These are important challenges
that MEC faces and call on many researchers to conduct research [17]. Zhao et al. [18] proposed the
Harmonic and First-Fit algorithms, these two algorithms can solve the deployment problem of virtual
machines. In addition, they also proposed least reliable first and reduced density greedy algorithms. These
four algorithms can improve resource utilization. Liu et al. [19] proposed a task offloading method for
reliability enhancement and differential tasks to optimize the trade-off between bandwidth consumption
and reliability. The final simulation results show that this method can effectively increase the system
reliability and resource utilization. Li et al. [20] proposed an energy-aware edge server placement
algorithm based on particle swarm optimization to optimize resource utilization. And they used the data
set to conduct experiments, the results show that the algorithm can reduce energy consumption by about
10% and improve resource utilization by about 15% compared with other representative algorithms.
These methods only consider the optimization of resource utilization, but not the optimization of latency.
In addition, these methods do not consider the overbooking of backup virtual machines. Rahman et al.
[21] proposed a combined partial computation offload and resource allocation algorithm based on deep
learning, and can obtain the optimal value of task offload and resource allocation. Simulation results
verify the effectiveness of the algorithm.

Kavitha et al. [22] proposed a latency-aware concurrent data management method in MEC. This method
optimizes data based on differential evolution, and data can be allocated precisely. Finally, it is confirmed by
simulation experiments that it can optimize resource utilization and service response time. Li et al. [23]
proposed a distributed game theory task offloading assignment algorithm. They regard the task
assignment problem as a game to maximize resource utilization within the application deadline. Finally,
experiments show that the algorithm can significantly improve the system resource utilization within the
range of most task offloading delays. Rodrigues et al. [24] proposed a method using virtual machine
deployment and transmission power limitation, combined with a heuristic algorithm to decrease latency
and increase resource utilization. Ren et al. [25] exploited an optimal joint communication and computing
resource allocation algorithm to improve resource utilization and reduce latency. Although these methods
consider the joint optimization of delay and resource utilization, they do not consider that the application
can be processed by a middleware to achieve the optimization of the target. Zhang et al. [26] proposed an
available embedded framework for aware virtual data center, this is equivalent to a middleware, the
middleware calculates physical hardware components and specified resource requirements to increase
availability and generate higher revenue. Although this paper considers the use of virtual data center as a
middleware to increase the availability of resources, it does not take into account the joint optimization of
resource utilization and the average service response time of the application.

In the research and integration of recent literature, we noticed that these documents did not apply the
concept of overbooking to the placement of virtual machines. In addition, these documents did not
consider the use of a middleware to deploy tasks, thereby jointly optimizing resource utilization and the
average service response time of applications [27]. Combining these shortcomings [28], in this paper, we
first adopt RFF to put virtual machines into slots, and some backup virtual machines can be overbooked
during the placement process. Then we exploit TS to schedule the application, and determined an optimal
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deployment scheme through the TDAmethod to maximize resource utilization while minimizing the average
service response time of the application.

3 System Model

In this section we propose TS (as shown in Fig. 1), and study the principle of TS. The TS-based MEC
system model diagram is shown in Fig. 2. The system in Fig. 2 contains multiple edge clouds (ECs), and the
MEC network is interconnected by a fiber-optic network in a full mesh topology. Each edge cloud consists of
a number of servers and switches. Each server can be virtualized into multiple slots, each slot can place a
primary virtual machine or multiple backup virtual machines, and each virtual machine (VM1 or VM2)
can only host one task (T1 or T2).

Every IoT application constitutes of multiple tasks with cooperative relationships, these tasks are
modeled as a directed acyclic graph, there are dependencies between these different tasks, as shown in

Figure 1: TS architecture diagram

Figure 2: TS-based MEC system model
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Fig. 3. Task T2 (T3) can be processed only after task T1 is completed and the result is sent to T2 (T3), and
only when tasks T2, T3 are completed and their results are sent to T4, T5 and T5, T6, T7 can be processed.
The arrows indicate the dependencies between tasks.

First, we exploit a random algorithm to place the virtual machine in the slot of the edge server, and then
hand over the IoT applications (IoT APP1, IoT APP2, IoT APP3) to the TS for processing, the completion
deadlines of applications are different, and their priorities are also different. The shorter the deadline, the
higher the priority. The TS offloads the application to different virtual machines for processing according
to the priority order of the application. The TS architecture diagram is shown in Fig. 1. It is divided into
three modules, namely the monitoring module, the task level analysis module and the target optimization
scheduling module. The monitoring module is responsible for detecting the usage of physical resources.
The task hierarchy analysis module is responsible for dividing the uninstalled application into multiple
tasks, analyzing the relationship between tasks, and determining the priority of task deployment. Finally,
the target optimization scheduling module determines a set of optimal task deployment plans according to
the data provided by the monitoring module, that is to minimize the average response time of the
application while maximizing resource utilization. In addition, the risk of the overall deployment scheme
of the system should also be considered. To attack these problems, we introduce a risk model, a service
response time model and a resource utilization model. To facilitate viewing, we show the key notations of
the context in Table 1.

T1

T3T2

T4 T5 T6

T7

Figure 3: Directed acyclic graph of applications

Table 1: Key notations

Notation Description

Pf Probability of virtual machine failure

Px Probability of failure of component X

A The collection of execution paths of all tasks of application m

v A non-empty subset path in set A

bwi The bandwidth of virtual machine i

R The set of virtual machines

y The number of applications

Vi The size of virtual machine i

O All task sets for application m

I The set of IoT applications
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3.1 Risk Model

In MEC, the task is offloaded and handed over to the virtual machine in the edge cloud environment for
processing. Assuming that the fault rate of every virtual machine is independent of each other, the probability
of each virtual machine failure is calculated using formulation (1), and the probability of each component
working normally is calculated using formulation (2):

Pf ¼ Ped þ P0edðPswþ P0sw PseÞ (1)

P0
X ¼ 1� PX (2)

Among them, Ped indicates the fault rate of the edge cloud, Psw indicates the fault rate of switches in the
edge cloud, and Pse indicates the fault rate of the edge server connected to the switch in the edge cloud.

Ped ¼ MTTR

MTBFED þMTTR
(3)

Psw ¼ MTTR

MTBFSW þMTTR
(4)

Pse ¼ MTTR

MTBFSE þMTTR
(5)

MTBFED, MTBFSW and MTBFSE represent the average time between failures of edge cloud, switch and
edge server categories respectively.MTBF represents the average value of the two fault occurrence periods of
the system, MTTR represents the average time taken by the system from occurrence to repair failure. The
virtual machine placement rules need to be followed when the virtual machine is placed in the slot.

Virtual machine placement rules: If a primary virtual machine is placed in a slot with a high fault rate,
it is easy to fail. Therefore, the backup virtual machine that takes over the primary virtual machine can only
be placed in a slot with a low fault rate, and the backup virtual machine must have a single slot. If a primary
virtual machine is placed in a low fault rate slot, the backup virtual machine that takes over the primary
virtual machine can be placed in a high fault rate slot or a low fault rate slot, and these backup virtual
machines can enjoy one slot at a certain overbooking rate.

This paper mainly studies the 1 + 1 system (i.e., 1 task corresponds to 1 primary virtual machine + 1
backup virtual machine). If there are n tasks, a total of 2n virtual machines are required. The systematic
risk model is calculated using formulation (6).

P ¼
Yn

k¼1
Pk

Yn0

k 0¼1
Pk 0 (6)

The formulation is expressed as the product of the probability of all failures of the primary virtual
machine and the backup virtual machine processing n tasks. Since each primary virtual machine occupies
a slot, n primary virtual machines need to occupy n slots. For backup virtual machines, some of them
need to occupy a single slot, and some share a slot within the range of the overbooking rate. The number
of these slots is n′, Pk indicates the fault rate of the slot where the primary virtual machine processing n
tasks is located, and Pk′ indicates the fault rate of the slot where the backup virtual machine processing n
tasks is located. It can be seen from this formulation that the fewer the number of slots occupied by these
virtual machines, the higher the probability that the virtual machines will fail as a whole. This is because
when a slot fails, it is easy to cause all virtual machines located in the slot to fail.
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3.2 Service Response Time Model

For the application, the service response time consists of the following three parts: (1) The transmission
delay required to offload the service request for IoT to the nearby MEC server; (2) The processing time and
processing delay of the application; (3) The communication time generated when tasks located on different
servers communicate with each other.

IoT applications and edge cloud access through orthogonal frequency division multiple access to achieve
wireless communication between them. psm represents transmission power. gedm represents the channel gain
between edge cloud ed and application m. sedm represents the data transfer rate between application m and
edge cloud ed, it can be calculated using formulation (7).

sedm ¼ BW log 1þ psm:g
ed
m

N

� �
(7)

BW and N represent the bandwidth and noise power of the link between application m and edge cloud
ed, respectively. dm indicates the data size of the application to be transferred. The transmission delay tm for
IoT devices to offload applications to edge servers can be calculated using formulation (8).

tm ¼ dm
sedm

(8)

In addition, the communication between tasks located on different edge servers will cause
communication delay. The time required for the j-th virtual machine to process task q of the m-th
application tmqj is equal to lmq/cj, where lmq represents the directive length of the q-th task, and cj
represents the processing power of virtual machine j. The calculation process of the overall processing
time Tmqj of the task is calculated using formulation (9), it is composed of processing time tmqj and
processing delay dmqj.

Tmqj ¼ tmqj þ dmqj (9)

Application m is composed of multiple tasks with a cooperative relationship. The execution paths of
these tasks are different and the time spent is different. The time taken to complete the longest path is the
service response time used to complete the application, it consists of the transmission time of an
application and the longest path of the application’s maximum task processing time and communication
time between tasks, the specific calculation process can be determined by formulation (10). Since the
amount of data feeding back the results of the application is very small, the time to return data to IoT
users is negligible.

Tmi ¼ tm þmax
v2A

Xjvj
q¼1

Tmqj þ
Xjvj
z¼1

bmqz:qmqz:
datamq
bxi

� � ! !
; i 2 R (10)

Among them, A represents the set of paths of all tasks of application m, and v represents a non-empty
subset path in set A. βmqz and qmqz are both binary variables, βmqz is used to determine whether two tasks q and
z of application m are located in the same edge server, if in the same server, βmqz = 0, otherwise βmqz = 1. qmqz
is used to determine whether q transmits data to z, if data is sent, qmqz = 1, otherwise qmqz = 0; datamq
represents the size of data transmit by q. bwi represents the bandwidth of the virtual machine i used to
process q.

3.3 Resource Utilization Model

First, the virtual machine needs to be placed in the slot on the basis of the virtual machine placement
rules, and then the task is offloaded to the virtual machine. The model of system resource utilization U is
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calculated using formulation (11), it is equal to the total number of virtual machines processing tasks divided
by the total number of slots occupied by these virtual machines. Among them, 2n represents the total number
of virtual machines processing tasks, and S represents the total number of slots occupied by these virtual
machines.

U ¼ 2n

S
(11)

4 Problem Formulation

This section mainly introduces the joint optimization objective function. In MEC, the primary virtual
machine needs to process tasks and maintain communication, while the backup virtual machine only
needs to keep the data of its main virtual machine synchronized at regular intervals. If the virtual
machines processing tasks are not on the same edge server, the communication time between them is
mainly determined by the bandwidth of the virtual machine in the sending state and the data size of the
tasks that the virtual machine needs to process. The total bandwidth of the edge server is fixed. If the
bandwidth required to process a task of an application increases, the bandwidth required for other tasks
located on that server will decrease, the communication time of IoT applications corresponding to these
tasks increases. In addition, the virtual machines that process tasks are deployed in different locations in
the edge server, and the corresponding system deployment solutions have different risks and resource
utilization. The more slots for deploying this part of virtual machines, the lower the risk, but at the same
time, the resource utilization will decline. Therefore, we should look for a trade-off solution to solve
these problems.

The optimization goal of this paper is to maximize resource utilization while minimizing the average
service response time of the application. This is a multi-objective optimization problem, the problem is
transformed into a single objective optimization problem by using the method of weighted value, where y
represents the number of applications, as shown in formulation (12), where θ is an adjustable weight
factor, which ranges from 0 to 1.

Maximize: F ¼ hU � ð1� hÞ
Py
i¼1

Tmi

y
(12)

s:t:
X2n

i¼1
Vixia � Ca (13)

X2n

i¼1
xia ¼ 1; xia ¼ 0 or 1 (14)

XO

q¼1
ximq ¼ 1; ximq 0 or 1; m 2 I (15)

XO

q¼1
Vmqximq � Li (16)

Pf � Pfmax (17)

P � Pmax (18)

Formulation (13) indicates that the sum of the capacities of all virtual machines cannot be more than the
capacity of the slots containing these virtual machines, Vi represents the size of the i-th virtual machine, xia
represents slot a for placing the i-th virtual machine, and Ca represents the maximum capacity of slot a;
Formulation (14) indicates that each virtual machine can only be placed in one slot; Formulation (15)
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indicates that each task can only be placed in one slot, Vmq indicates the size of the q-th task of application m,
ximq represents the size of the i-th virtual machine that processes the q-th task, O represents all task sets of
application m, and I represents IoT application set; Formulation (16) indicates that the size of every task
cannot more than the size of the virtual machine where the task is deployed, and Li represents the
maximum capacity of the i-th virtual machine; Formulation (17) indicates that the fault rate of each slot
to place virtual machines cannot exceed the maximum fault rate allowed by the system; Formulation (18)
indicates that the risk of the total placement scheme of the system cannot exceed the maximum risk value.

5 Problem Solution

In this section, the first virtual machine is randomly placed in the slot. If the slot cannot hold the virtual
machine, it will continue to select other slots until it is successfully placed in the slot, and then perform the
same operations successively until all virtual machines are placed in the slot. Secondly, we analyze the
application of TS and its impact on the average service response time of the application and the resource
utilization of the system, and propose TDA, this method considers the application’s task in the virtual
machine should be how to deploy to ensure the maximum value of the joint optimization objective F, as
shown in Algorithm 1.

The algorithm first initializes all parameters and sorts them according to application deadline priority,
with smaller deadlines having higher priority. Second, the third and fourth lines determine the level of
division according to the top-to-bottom order of the task directed acyclic graph, and traverse these tasks.
For example: use Am to represent the number of task structure layers of application m (m ∈ 1, 2, … y),
the top task needs to send data to the next layer task that has a cooperative relationship with it, and the
bottom task is used to receive data that has a cooperative relationship with it. The data sent by the upper-
layer task of the collaboration relationship, the middle-layer task can both send data and receive data.
Line 5 represents the traversal of each layer of the task. Lines 6–11 represent the priority judgment of
top-level tasks and the methods used to deploy these tasks.

The top-level tasks of the application (Am = 1) are sorted in descending order according to Q, and tasks
with large Q are prioritized, as shown in formulation (19).

Q ¼ ð1� aÞdatamq þ almq (19)

Among them, a is a trade-off factor, and lmq and datamq respectively represent the instruction length of
task q and the data size of the sender task.

Algorithm 1: Task Deployment Algorithm (TDA)

Input: Server list, application list, y

Output: An optimal task deployment scheme

1 Initialize all parameters of TDA

2 Sort y applications by priority

3 for m = 1 to y do

4 Divide the tasks of application m into Am groups according to the number of structural layers, each
group is Gf, f∈ {1, 2, …, Am}

5 for f = 1 to Am do

6 if f = 1 then

7 Exploit formulation (19) to sort tasks in Gf

(Continued)
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8 for k = 1 to Gf do

9 Exploit formulation (20) to find a suitable virtual machine to process the task

10 end for

11 end if

12 if 2 =< f < Am then

13 Exploit formulation (21) to sort tasks in Gf

14 for k = 1 to Gf do

15 Exploit formulation (20) to find a suitable virtual machine to process the task

16 end for

17 end if

18 if f = Am then

19 Choose the virtual machine with the most processing power

20 end if

21 end for

22 for m = 1 to y do

23 Get the collection W of application completion paths

24 for γ = 1 to |W| do

25 Exploit formulation (10) to obtain Tmi

26 end for

27 end for

28 Calculate the average response time for all applications using formulation (10)

29 Exploit formulation (11) to calculate the resource utilization rate

30 return the optimal task deployment scheme

Then, the appropriate virtual machine is selected for placement by formulation (20). It comprehensively
considers two optimization goals of application completion time and resource utilization. First of all,
considering that the completion time of an application is related to the processing time of a single task
and the amount of data sent, when selecting a virtual machine, it is necessary to comprehensively
consider the processing capability cj and bandwidth bwi of the virtual machine, where ρ is an adjustable
trade-off factor. Secondly, the size of the resource utilization U depends on the location of the backup
virtual machine. When the backup virtual machine processing the task occupies a single slot, the resource
utilization is significantly reduced. Conversely, when multiple backup virtual machines occupy one slot,
the resource utilization increases. It is assumed that h = 0.1 when the backup virtual machine processing
the task occupies a single slot, and h = 0 otherwise.

B ¼ q
datamq
bwi

þ ð1� qÞ lmq
cj

þ h (20)

Algorithm 1 (continued)
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Lines 12–17 represent the deployment of middle-layer tasks. The priorities of middle-layer tasks are also
sorted in descending order according to formulation (19), and middle-layer tasks at the same level need to
select virtual machines with similar B values for deployment (i.e., because the completion time of the
application is determined by the longest path, and load balancing can be achieved when the path gap is
small). Lines 18–20 are the deployment of the underlying tasks, the underlying tasks are sorted according
to formulation (21), it is shown below.

Tr ¼
Xvj j
q2v

datamq
bwj

þ lmq
cj

(21)

Formulation (21) takes into account that the completion time of the application depends on the path with
the longest time. When deploying the bottom r tasks, the time Tr consumed by the path where the current task
is calculated (Tr consists of the processing time of the deployed task and the sending time of the data). Sort
the tasks that have calculated Tr in descending order, when selecting the virtual machine to be deployed, it is
consistent with the top-level task. Considering that the underlying task only receives tasks and does not need
to consider the bandwidth of the virtual machine, when the underlying task chooses to deploy a virtual
machine, the one with the largest virtual machine processing capability is prioritized for deployment.

Lines 22–29 comprehensively consider the optimization goal of the entire system. It takes into account
the average service response time and system resource utilization of all applications, and finally obtains an
optimal task deployment plan. The time complexity of TDA is O(n2).

6 Performance Evaluation

This chapter first describes the configuration information of the experimental environment, then
conducts simulation experiments, and compares the TDA with RFF and GA methods. Finally, the
performance of these methods is evaluated.

6.1 Experimental Setup

We implemented the experiments using Java 1.8, eclipse tools, source code to create a MEC simulation
environment in a machine with Intel Core i5-8250U@1.60 GHz and 8 GB of memory, the environment
consists of 50 edge clouds, 400 virtual machines, and 252 switches and edge servers. The edge clouds are
connected to each other through a full mesh optical network. Each server assumes 3 slots for placing
virtual machines. The bandwidth value of every virtual machine is randomly picked from the range of
[10, 50] Mbps, and their processing power is a value randomly selected from [0.5 × 106, 106] instructions
per second. The MTTR value is set to 50, and the values of MTBFED, MTBFSW and MTBFSE are
randomly picked from [5, 20], [5, 50], [5, 100], respectively. Each IoT application is a 4-layer directed
acyclic graph consisting of 7 tasks. The data size of each application is a randomly selected value from
the [100, 300] KB range. Assuming that the value of the transmit power of every device is 100 mW, the
channel gain between the IoT device and the edge cloud is 20−4, the channel bandwidth is 5 MHz, and
the noise power is 10−10 mW. The processing delay of each task is a value randomly selected from the
interval [2, 6] ms. The instruction length of every task is a value picked from [500, 5000]. The data size
of the sending task is a value randomly picked from [1, 2] Mb. The value of Pfmax is set to 0.8, the value
of Pmax is set to 0.1, the slots with fault rate greater than 0.5 are defined as high-risk slots, and the
overbooking rate e is assumed to be 2.

Through the above configuration of the experimental environment, TDA is compared with the other two
methods to evaluate its performance.
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RFF (Random First Fit): According to the order of tasks from top to bottom, randomly select virtual
machines that meet the constraints to deploy each task.

GA (Greedy Algorithm) [29]: According to the order of tasks from top to bottom, each time the
smallest virtual machine that can put down tasks is selected to deploy each task.

Then compare with RFF and GA in resource utilization, average service response time and algorithm
time complexity, and analyze the performance of TDA. In addition, the influence of parameters on the
experimental results is also very important. The parameters used in this paper include the number of
virtual machines and IoT applications. In order to study the influence of σ in TDA algorithm on the
optimization objective under different values, we set the values of the adjustable factor σ to 0.1, 0.5, and
0.9 (i.e., TDA1 (0. 1), TDA2 (0.5), and TDA3 (0.9)), respectively.

6.2 Experimental Results and Performance Evaluation

According to Fig. 4, with the increase of virtual machines, the average service response time of TDA
(including TDA1, TDA2 and TDA3) applications first decreases and then increases. As the number
increases, the types of virtual machines available also increase. The virtual machine with good processing
capability and large bandwidth is preferred to process tasks. In addition, the probability of tasks being
deployed on the same edge server will also increase, this effectively reduces task processing time and
communication time between tasks. When the number of virtual machines reaches 1000, the average
service response time of the application increases. This is because there are two optimization goals in this
paper, one is the average service response time of the application, and the other is resource utilization.
After the total number of virtual machines achieves 1000, this method starts to focus on optimizing
resource utilization, while the consideration of service response time is not so thoughtful, which will
increase the service response time.

After the total number of virtual machines achieves 1000, the growth rate of resource utilization is
significantly accelerated, this further validates the above statement. The average service response time of
RFF increases first and then decreases. This is because the number of virtual machines at the beginning is
limited, the processing power and bandwidth of virtual machines used to offload tasks may be small,
resulting in an ever increasing average service response time for an application and a decreasing resource
utilization. When the total number of virtual machines achieves 800, with the increase of virtual
machines, the types of virtual machines that can be selected also increase, and virtual machines with
good processing capability and large bandwidth are preferred to process tasks, so the average service
response time has been decreasing, and resource utilization has increased. The average service response

Figure 4: The effect of different number of virtual machines
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time of GA has been decreasing because a better virtual machine can always be found among the current
virtual machines to optimize the latency. The resource utilization of TDA is the largest and has been
increasing (only TDA1 is shown here because the resource utilization of TDA1, TDA2 and TDA3 are
consistent, TDA2 and TDA3 are covered by TDA1). As the number of virtual machines increases, the
opportunity to select a virtual machine sharing slot with other virtual machines through formulation (20)
will also increase, and the resource utilization will increase. Since GA only cares about the present and
not the long-term, it always chooses the best virtual machine at present, but it is not necessarily the best
among all virtual machines, so its resource utilization sometimes increases and sometimes decreases. In
general, with the increase of virtual machines, the TDA method is obviously better than the other two
methods in optimizing the resource utilization and the average service response time of the application.

According to Fig. 5, the average service response time of TDA (including TDA1, TDA2, TDA3) has
been rising slightly, this is due to the increase of IoT applications, the number of virtual machines to
choose from is getting smaller and smaller, and the remaining virtual machines may not have much
processing power and bandwidth, the average service response time of the application is getting larger
and larger, and the average service response time of the GA and RFF applications has been increasing
because of the above reasons.

The average service response time of the RFF application is the largest because it is randomly placed,
and its optimization effect on the service response time is not as good as the other two methods. The average
service response time of the GA is the smallest at the beginning, because it has just started to select the best
virtual machine at present to deploy the task. The virtual machine has well optimized the service response
time. With the increase of the number of IoT applications, more and more tasks need to be processed, and
the number of optimal virtual machines currently available for selection is becoming less and less. As a
result, the average service response time of GA has been increasing.

As can be seen from the figure, the average service response time of TDA is the smallest overall. The
resource utilization of TDA has been decreasing (only TDA1 is shown here because the resource utilization
of TDA1, TDA2 and TDA3 are consistent, TDA2 and TDA3 are covered by TDA1), this is because TDA
tends to select multiple virtual machines in the process of selecting virtual machines one slot is shared, but as
the number of IoT applications increases, there are fewer and fewer slots that meet the conditions, and some
tasks can only be offloaded to a virtual machine that occupies a single slot, this in turn leads to a reduction in
resource utilization. For RFF and GA, with the increase of Internet of Things applications, the virtual
machine resources remain unchanged, and the resource utilization rate will increase as the number of
virtual machines used for tasks increases. But on the whole, with the increase of IoT applications, the

Figure 5: The impact of the number of IoT applications
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TDA method is obviously better than the other two methods in optimizing resource utilization and average
service response time of applications.

According to Fig. 6, with the increase of virtual machines, the optimization goals of several methods
generally increase. This is because as the number of virtual machines increases, so does the number of
available virtual machines. The optimization target value of this method is also increasing. In addition,
with the increase of IoT applications, the optimization target value of TDA is decreasing (TDA1 is
covered by TDA2), while the other two methods are increasing. This is because with the increase of IoT
applications, there are fewer virtual machines for TDA to choose, which leads to a decrease in the
optimization target value. For the other two methods, with the increase of IoT applications, the virtual
machine resources remain unchanged, the virtual machines used by the task increase, and the probability
of the task being deployed on the same server increases, these in turn lead to a reduction in the
optimization target value. But whether it is with the increase of virtual machines or the increase of
Internet of Things applications, the optimization target value of TDA is higher than the other two
methods, because TDA fully considers how to maximize resource utilization while minimizing
applications average service response time. RFF does not consider these two optimization goals, so its
value is the smallest, while GA only considers the reduction of the average service response time of the
optimized application, and does not consider the optimization of resource utilization. The time complexity
of these three algorithms is O(n2).

7 Conclusions and Future Work

In this paper, we proposed the scheme of overbooking. Which firstly made a suitable overbooking of
some backup virtual machine and deployed it into the slot to increase resource utilization. We also
investigated how to offload the tasks reasonably to maximize the system’s resource utilization while
minimizing the application’s average service response time. In response to this problem, we designed a
TS, it can process IoT applications according to TDA method, and finally obtain an optimal task
deployment scheme. Finally, we conducted simulation experiments, and the results show that this method
is superior to other methods.

In future work, we will appropriately increase the overbooking rate within the availability range. In
addition, we will also consider computational migration, when a backup virtual machine in an
oversubscribed state is activated, the needs of other virtual machines located in the slot are migrated to
other slots.

Figure 6: The influence of three methods on the optimization objective function F
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