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Abstract: This paper proposes a hybrid feature selection sequence comple-
mented with filter and wrapper concepts to improve the accuracy of Machine
Learning (ML) based supervised classifiers for classifying the survivability of
breast cancer patients into classes, living and deceased using METABRIC and
Surveillance, Epidemiology and End Results (SEER) datasets. The ML-based
classifiers used in the analysis are: Multiple Logistic Regression, K-Nearest
Neighbors, Decision Tree, Random Forest, Support Vector Machine and
Multilayer Perceptron. The workflow of the proposed ML algorithm sequence
comprises the following stages: data cleaning, data balancing, feature selection
via a filter and wrapper sequence, cross validation-based training, testing and
performance evaluation. The results obtained are compared in terms of the
following classification metrics: Accuracy, Precision, F1 score, True Positive
Rate, True Negative Rate, False Positive Rate, False Negative Rate, Area
under the Receiver Operating Characteristics curve, Area under the Precision-
Recall curve and Mathews Correlation Coefficient. The comparison shows
that the proposed feature selection sequence produces better results from all
supervised classifiers than all other feature selection sequences considered in
the analysis.

Keywords: Accuracy; feature selection; filter methods; ML-based classifiers;
wrapper methods

1 Introduction

Breast cancer is a major cause of the increasing mortality rate among women aged less than 70
years in over 112 countries, as estimated by the World Health Organization in 2019 [1]. In India,
although 70% of deceased patients belong to a higher age group of over 50 years, several adverse
environmental conditions have further reduced the higher age limit to be affected by the disease
to less than 40 years [2]. Women with breast cancer have fewer survival rates when the tumors are
larger and at higher stages of growth. Tumor stage is directly related to the number of positive lymph
nodes. Abnormalities in tumor cells at higher stages also adversely affect the survival of breast cancer
patients. The cancer type also plays a decisive role in the survival of cancer patients [3]. The clinical
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features of breast cancer patients such as menopausal status, laterality of tumor origin and type of
breast surgery which are not directly obtained from MRI scan images or mammograms are also
responsible for the survival of breast cancer patients. Thus, by analyzing the correlation between these
associated features, patient age, tumor stage, tumor size, cancer type, number of positive lymph nodes
and tumor grade, the survivability of patients can be identified. Information regarding these features
can be found in the clinical breast cancer datasets METABRIC [4] and Surveillance, Epidemiology
and End Results (SEER). If the survivability of patients with breast cancer is predicted based on the
aforementioned independent features, a later course of treatment can be suitably decided. Patients
in a critical state of breast cancer experience serious side effects mental and physical trauma when
subjected to treatments involving heavy dose chemotherapy or radiotherapy [5]. If the criticality of
breast cancer for survivability can be determined, patients can be relieved from psychological and
physical trauma due to treatment by deciding whether to start or end second-line treatment. Second-
line palliative or hospice treatment can provide relief and improve the quality of later life [6]. So, this
paper analyzes the information in the independent and dependent feature values of the METABRIC
and SEER datasets to determine the survivability of breast cancer patients as living and deceased. This
paper also proposes a distinct feature selection sequence in the Machine Learning (ML) workflow for
a more accurate prediction of the survivability of breast cancer patients.

With the advent of big data computer technology and the availability of voluminous and
multidimensional clinical health records of breast cancer patients in digital form, Artificial Intelligence
systems based on Data Mining, ML and Deep Learning have evolved for accurate and efficient
solutions in breast cancer diagnosis, prognosis, patient management and survivability prediction [7,8].
Many multidimensional clinical datasets contain independent features that may not be relevant for
specific ML-based medical applications. Therefore, identifying more suitable independent features is
essential for improving the performance of ML-based medical applications [9]. Data preprocessing,
feature selection and feature extraction techniques are applied to large datasets to obtain more
important features before designing ML-based classifiers, such as Multiple Logistic Regression (MLR),
K-Nearest Neighbors (K-NN), Decision Tree (DT), Random Forest (RF), Support Vector Machine
(SVM) and Neural Networks (NN) to improve prediction accuracy [10–12]. Data preprocessing
techniques remove redundant, noisy and irrelevant features from datasets. Feature selection (FS)
techniques create a subset of independent features from the original dataset, such that they are more
correlated with the dependent feature. Feature extraction techniques create a new set of features from
the original features of a dataset using functional mappings that simultaneously preserve the original
data and maintain the relative distance between the features [13].

From the literature, it is observed that in ML papers [14–23], feature selection and extraction
techniques applied before the training stage improve data visualization, prediction accuracy, reduce
computing and storage requirements. Nilashi et al. [14] proposed a ML-based system combining
Expectation Maximization (EM), Principal Component Analysis (PCA), Classification and Regres-
sion Tree (CART) and Fuzzy Rule (FR) based methods to increase the predictive accuracy of breast
cancer classification using the Wisconsin Diagnostic Breast Cancer (WDBC) and Mammographic
mass dataset. Solanki et al. [15] proposed a wrapper-based feature selection approach using Particle
Swarm Optimization (PSO), Genetic Search (GS) and Greedy Stepwise methods with ML classifiers,
SVM, DT and Multilayer Perceptron (MLP) on the WDBC dataset. The results showed that an
accuracy of 98.83% was obtained when DT and RF are combined with GS for breast cancer prognosis.
Dhahri et al. [16] constructed a system to accurately differentiate benign and malignant breast tumors
based on Genetic Programming and classifiers such as SVM, K-NN, DT, Gradient Boosting classifier,
RF, LR, AdaBoost (AB), Gaussian Naive Bayes and Linear Discriminant Analysis (LDA) using the
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WDBC dataset. The feature selection techniques used are Univariate Feature Selection (UFS) and
Recursive Feature Elimination (RFE). The best accuracy, 98.24% was achieved using the AB classifier.
Prince et al. [17] proposed an efficient ensemble method for breast cancer detection using Wisconsin
Breast Cancer Database-Original (WBCD), WDBC and Wisconsin Lung Cancer Datasets (WLCD).
Feature selection methods such as PCA, Pearson Correlation Coefficient (PCC) and Chi-Square (CS)
are used to obtain common features from the feature sets using the set union operation. Classifiers such
as Naive Bayes (NB), K-NN, DT, RF and SVM are used for classification. RF produced an accuracy of
97.4% and SVM produced an accuracy of 97.8%. Fogliatto et al. [18] proposed a combination of PCA
and Bhattacharyya distance methods in the preprocessing stage to obtain a feature importance index.
The classification techniques used are K-NN, LDA and Probabilistic Neural Network for classification
of the WBCD dataset. K-NN produced higher accuracy.

Shukla et al. [19] predicted breast cancer survivability on the SEER dataset using unsupervised
data mining methods, Self-Organizing Maps and Density-Based Spatial Clustering. The cluster
patterns obtained are used to train the MLP model to improve the patient survivability. Informa-
tion Gain (IG) was computed for feature selection. The prediction accuracy was 86.96%. Sedighi-
Maman et al. [20] used Generalized Linear Model (GLM), Extreme Gradient Boosting, MLP
classifiers and regression techniques on the SEER dataset to predict the survival status. The Least
absolute shrinkage and selection operator and RF methods are used for the feature selection. The
highest Area under the curve (AUC) value obtained was 90% when predicting survival status.
Wang et al. [21] compared the performance of three classifiers, LR, DT and K-NN for the classification
of survivability in patients with breast cancer. The Synthetic Minority Oversampling Technique
(SMOTE) and PSO are used to solve the imbalance problem. The combination of SMOTE and PSO
with DT yielded a high accuracy of 94.26%. Jahanbazi et al. [22] used the Adaboost.M1 algorithm and
DT to predict breast cancer survival. SMOTE and IG are used for feature selection. The DT performed
better with an accuracy of 87.07%. Boughorbel et al. [23] compared the performance of eight predictive
models namely NN, SVM, RF, Boosted Trees, GLM, GLM-Elastic Net, K-NN and Partial Least
Squares to predict the survivability of breast cancer for different prognosis periods based on the Area
under the curve-Receiver operating characteristics (AUC-ROC) performance. RF performed with the
highest AUC of 77%.

Based on the literature review, it is observed that feature selection techniques improve the accuracy
of classifiers designed for the diagnosis of breast cancer and prediction of the survivability of breast
cancer patients. It is found that although the papers, [14–18] used WDBC and WBCD datasets with
data from MRI breast images and mammograms for the classification and diagnosis of breast cancer,
many other clinical features of the patient such as age, laterality of tumor origin, menopausal status and
type of breast surgery also play an important role in inducing breast cancer and thus in the prediction
of survival in breast cancer patients as has been reported in the literature [24–27]. The METABRIC and
SEER datasets have clinical independent features. Therefore, this paper proposes a novel hybrid feature
selection sequence using filter and wrapper techniques to identify relevant features to predict the
survivability of patients with breast cancer using the METABRIC and SEER datasets. The proposed
work focuses only on the new feature selection sequence and comparison of the performance of
supervised classifiers; thus, survival analysis models such as Cox proportional hazard models are not
within the scope of this research. The new feature selection sequence is proposed by referring to the
feature selection technique in the ML workflow of [17] which produced an accuracy of 97.8% while
diagnosing breast cancer using the features of WDBC, WBCD and WLCD. The proposed hybrid
approach also incorporates data balancing using the Synthetic Minority Oversampling Technique-
Edited Nearest Neighbor (SMOTE-ENN). The training set is subjected to filter techniques, Mutual
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Information (MI) and CS and the union of all independent features from MI and CS is further
optimized using the wrapper technique, RFE-DT. Six prominent ML classifiers, MLR, K-NN, DT,
RF, SVM and MLP are used to classify the preprocessed data for the prediction of survivability of
breast cancer patients and the results are compared in terms of the following classification metrics:
Accuracy (ACC), Precision (PR), F1 score (F1), Recall/True Positive Rate (TPR), True Negative Rate
(TNR), False Positive Rate (FPR), False Negative Rate (FNR), AUC-ROC, Area under the Precision-
Recall curve (AUC-PR) and Mathews Correlation Coefficient (MCC) [28,29]. The results obtained
with and without feature selection and after applying the filtering methods: MI and CS separately
are also used in the comparative analysis. The comparative analysis is also performed between the
results of the proposed feature selection sequence and those obtained from papers published by
Nilashi et al. [14], Dhahri et al. [16], Prince et al. [17], Shukla et al. [19], Wang et al. [21] and
Jahanbazi et al. [22] in terms of accuracy and Boughorbel et al. [23] in terms of AUC-ROC. The
comparative analysis shows that the proposed feature selection sequence produces higher performance
values than all other techniques and methods. The remainder of this paper is organized as follows:
Section.2 explains the proposed methodology, Section.3 presents the experimental results and analysis
and Section.4 summarizes the proposed work and future work plan.

2 Proposed Methodology

The paper proposes a distinct feature selection sequence for records of clinical breast cancer
datasets namely METABRIC and SEER to model classifiers for predicting the survivability of patients
with breast cancer. This feature selection sequence and its subsequent stages are illustrated in the block
diagram in Fig. 1. The data cleaning, data balancing steps of the data preprocessing stage and filter,
wrapper techniques of the proposed feature selection sequence used in the workflow of the system for
predicting the survivability of breast cancer patients are described in the following subsections.
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Figure 1: Work flow of the proposed feature selection sequence and later ML stages

2.1 Data Collection
In the proposed work, two clinical datasets, METABRIC and SEER are used for the experimental

analysis. The METABRIC dataset is downloaded from cbioportal.org in .tsv (tab separated value)
format. It has 2,509 data records with 38 features. The SEER dataset is an authentic source of cancer
statistics supported by the Surveillance Research Program (SRP) of Cancer Control and Population
Sciences (DCCPS), a division of the National Cancer Institute (NCI), USA and has been published
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on its website. The SEER registries are updated annually. It is downloaded in .slm (seer listing matrix)
format with 7,755,157 records and 258 features. The records containing only breast cancer information
are required for the analysis. All records corresponding to other types of cancer are removed from the
SEER dataset. Therefore, the SEER dataset used in this paper has only 1,048,575 breast cancer records
with 20 features. The features in the dataset have both numerical and categorical values.

2.2 Data Cleaning
Data cleaning is a significant step in preprocessing medical data in which data transformation

and data reduction steps are performed. Data transformation techniques transform the data into a
combined and uniform format. The downloaded METABRIC and SEER datasets are converted to
.csv (comma separated value) format as needed for working in Python. Python is used to program
the workflow of the proposed work. In the data reduction step, the relevant attributes are identified,
and the records corresponding to missing, irrelevant and noisy data values are removed to improve the
quality of the data [30]. During the data reduction step, records corresponding to the missing values of
the independent and dependent features are removed. Instead of removing the records corresponding
to null tumor stage values, considering the tumor size of the patients, the tumor stage values are
replaced with relevant tumor stage values ranging from 1 to 4 as mentioned in the paper authored
by Koh et al. [31] for the METABRIC dataset.

After applying these data cleaning steps to the METABRIC dataset, which originally had 2,509
records with 38 features, the dataset is reduced to 1,505 records with 12 independent features. Similarly,
for the SEER dataset, 1,048,575 records with 20 features are cleaned to obtain 10,838 records with 12
independent features. The independent features are selected from the METABRIC and SEER datasets
after consulting experts in the domain and are listed in Table 1. The dependent feature of the datasets
is the survival status. The nominal categorical feature values of the datasets used in this work are
converted into numerical values using the one-hot encoding technique [32]. After applying the one-
hot encoding technique to the METABRIC dataset, the dataset has 1,505 records with 28 independent
features and the SEER dataset has 10,838 records with 22 independent features. The increase in the
number of independent features is because of the labels created for different independent features with
categorical values as shown in Table 1. The second and fifth columns of Table 1. shows the independent
features, whereas the third and sixth columns show those obtained after applying the one-hot encoding
technique to the METABRIC and SEER datasets.

Table 1: List of independent features in METABRIC and SEER datasets

Independent features in METABRIC dataset

S. No. Before one-hot
encoding

After one-hot
encoding

S. No. Before one-hot
encoding

After one-hot
encoding

1. Age at diagnosis Age 7. Neoplasm histologic
grade

Grade-1
Grade-2
Grade-3

2. Type of breast
surgery

Breast surgery
type-breast
conserving
Breast surgery
type-mastectomy

3. Cancer type detailed Cancer type-breast 8. ER status ER status-positive
ER status-negative

(Continued)
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Table 1: Continued
Independent features in METABRIC dataset

S. No. Before one-hot
encoding

After one-hot
encoding

S. No. Before one-hot
encoding

After one-hot
encoding

Cancer type-breast
invasive ductal
carcinoma
Cancer type-breast
invasive lobular
carcinoma

9. PR status PR status-positive
PR status-negative

Cancer type-breast
invasive mixed
mucinous carcinoma
Cancer type-breast
mixed ductal and
lobular carcinoma
Cancer type-invasive
breast carcinoma

10. HER2 status HER2 status-positive
HER2 status-negative

4. Inferred menopausal
state

Menopausal
status-post

11. Tumor size Tumor size

Menopausal
status-pre

12. Tumor stage Tumor stage-1

5. Primary tumor
laterality

Laterality-left
Laterality-right

Tumor stage-2

Tumor stage-3
6. Lymph nodes

examined positive
Lymph nodes Tumor stage-4

Independent features in SEER dataset

1. Age recode with
single ages and 85+

Age 7. Grade (through 2017) Grade-1
Grade-2
Grade-3

2. Sex Sex-female
Sex-male

8. ER status recode
breast Cancer
(1990+)

ER status-positive
ER status-negative

3. Reason no
cancer-directed
surgery

Surgery-performed
Surgery-not
performed

9. PR status recode
breast cancer (1990+)

PR status-positive
PR status-negative

4. Primary tumor
laterality

Laterality-left
Laterality-right

10. Derived HER2 recode
(2010+)

HER2 status-positive
HER2 status-negative

5. Regional nodes
examined (1988+)

Nodes examined 11. Tumor size summary
(2016+)

Tumor size

6. Regional nodes
positive (1988+)

Nodes positive 12. Summary stage 2000
(1998–2017)

Summary
stage-Localized
distant regional

2.3 Data Balancing
The predictive accuracy of a classification model is significantly affected when the dataset is

imbalanced. The dataset is imbalanced when the number of records corresponding to different
dependent feature values in the dataset is uneven, that is, an unbalanced dataset contains both minority
and majority classes. Maximizing the overall accuracy is not the best approach with an imbalanced
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dataset, because the ML classifier focuses more on the majority class than on the minority class. This
accuracy produces only misleading information regarding the minority classes. Therefore, the dataset
must be balanced before it can be applied to classifiers [33,34]. In the proposed feature selection
sequence, the SMOTE-ENN technique as mentioned in [35], is applied to address the imbalance in
the dataset. It is a combination of two resampling techniques, SMOTE and ENN where SMOTE
is an oversampling technique that generates synthetic data of minority samples according to their
nearest neighbors. New samples are generated based on the difference between the feature vectors of
the sample and their nearest neighbors. However, SMOTE is likely to generate noisy samples in the
minority classes. Therefore, ENN is applied along with SMOTE where irrelevant noisy records are
removed by comparing the dependent feature value of the records under consideration and the labels
of their k-nearest neighbors. The records are removed if the dependent feature values are different [36].

In the METABRIC dataset, there are 868 records corresponding to the dependent feature
value, deceased and 637 records corresponding to the dependent feature value, living. In the SEER
dataset, there are 10,570 records corresponding to the dependent feature value, living and 268 records
corresponding to the dependent feature value, deceased. After applying the SMOTE-ENN technique
to both classes of METABRIC and SEER datasets, the imbalanced datasets are converted to balanced
datasets. After data balancing, 279 records corresponding to the majority class, deceased and 346
records corresponding to the minority class, living are obtained for the METABRIC dataset. Similarly,
8,769 records corresponding to the majority class, living and 10,233 records corresponding to the
minority class, deceased are obtained for the SEER dataset. The datasets are then split into 80%
training set and 20% testing set.

2.4 Filter Methods
When the datasets have a large number of independent features, associating all independent

features with the dependent feature only reduces the accuracy of the ML classifier because all
independent features of the training set are less associated with the dependent feature. Therefore, to
reduce the dimensionality of the training set, eliminating less significant independent features produces
more accurate classifiers. The selection of a few important independent features will also reduce the
computational and storage expenses required for ML modeling. From the training set, feature selection
techniques select a valuable feature subset to produce better classification results [37]. Feature selection
techniques used for optimal feature selection are classified as filter, wrapper and embedded methods
[38]. The ranking technique is the principal criterion of filter methods in which features are ranked
based on relevant statistical scores. The ranking method filters out irrelevant independent features that
have poor association with the dependent features from the dataset. Filter approaches are scalable and
independent of ML algorithms [39]. The filter methods used in the proposed ML workflow are the MI
and CS methods. These are implemented on the training sets of the METABRIC and SEER datasets
using the scikit-learn library in Python. The methods are detailed as follows:

2.4.1 Mutual Information

Mutual information [40] is a filtering method that helps to determine the dependency between
independent and dependent features. The training sets used in this paper consists of many clinical
features of breast cancer patients as independent features and the survival status of the patients as
the dependent feature. The different independent features in the training set are denoted by Bi and
the dependent features are denoted by C. In Bi, 1 ≤ i ≤ n, where n is the number of independent
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features in the balanced dataset. The MI between the independent feature Bi and dependent feature C
is represented as MI (Bi,C). The equation for calculating MI (Bi,C) is defined in Eq. (1).

MI(Bi, C) = H(Bi) + H(C) − H(Bi, C) (1)

In Eq. (1), H(Bi) is the information entropy of the independent feature, Bi, H(C) is the informa-
tion entropy of the dependent feature, C and H(Bi, C) is the joint information entropy of Bi and C.
According to the information theory [41], information entropy is a measure of the uncertainty of a
random variable. The entropy of Bi, H(Bi) is defined as follows:

H (Bi) = − ∑
bεSBi

p (b) log p (b) (2)

where p(b) is the probability of a value b of Bi. SBi
is the set of all values of independent feature,

Bi. Similar definition for the entropy of the dependent feature C is defined in Eq. (3). H(Bi, C) is the
joint information entropy [42] and is defined as in Eq. (4):

H(C) = −
∑

cεSC

p(c)log p(c) (3)

H(Bi, C) = −
∑

bεSBi

∑

cεSC

p(b, c)log p(b, c) (4)

Here, p(b, c) is the joint probability of a value b and the corresponding value c. SC is the set of all
values of the dependent feature, C. MI (Bi,C) can be calculated using the values from Eqs. (2)–(4). A
higher MI value indicates that the feature contains more information for classification. Therefore, the
k1 number of independent features with MI values greater than zero are selected to design the model
of the classifier.

2.4.2 Chi-Square

Chi-Square is a statistical measure [43,44] used to evaluate the relationship between two categor-
ical or nominal independent and dependent features, Bi and C, based on the actual frequency counts
of Bi and C. The steps involved in determining the CS test are explained sequentially. A contingency
table is initially created as a table showing the frequencies of occurrences of values of the specific
independent feature, Bi and dependent feature, C. For example, if the frequency values of the assumed,
independent feature, tumor stage and dependent feature, the survivability of breast cancer patients
in the training set of METABRIC used in the proposed work are recorded in the contingency table
as an intersection of their category values in the cells of Table 2; this indicates that the frequency
count of all categories of the independent feature, tumor stages from 1 to 4 and the corresponding
dependent feature values, living or deceased are marked in the cells. These frequency counts are called
the observed values and are denoted as Ok where k denotes the number of cells listed in Table 2 which
holds Ok. 1 ≤ k ≤ pr and pr is the product of the number of values NBi in the independent feature, Bi

and the number of values in the dependent feature NC. NBi and NC are the cardinalities of SBi and SC

respectively. The values of k are indicated in red in the bottom-right corner of the cells in columns 2
and 3 of Table 2. The last column and row of Table 2 show the row and column counts of the observed
values which are the sum of the frequencies of the different values of the rth independent feature, TrBi

and the sum of the frequencies of the different ‘t’ values of the dependent feature, TtC.



IASC, 2023, vol.37, no.1 351

Table 2: Illustration of contingency table

Independent feature,
tumor stage values (r)

Observed values, Ok Sum of the frequencies of the rth

independent feature value, TrBi
Dependent feature value

Living Deceased

1 264 1 242 5 T1Bi = 506
2 341 2 527 6 T2Bi = 868
3 31 3 88 7 T3Bi = 119
4 1 4 11 8 T4Bi= 12

Sum of the observed values
of each class value ‘t’ of the
dependent feature C, TtC

T1C = 637 T2C = 868 Sum of the records,
m =1505

The expected value, Ek is then determined as the expected frequency of the association between
the independent and dependent feature values of the kth cell. This is calculated using Eq. (5) as:

Ek = TrBi × TtC

m
(5)

Here, TrBi is the sum of the observed values in the individual rows corresponding to the rth

independent feature value of Bi, TtC is the sum of the observed values of each dependent feature
value, ‘t’ of the dependent feature, C and m is the total number of records in the training set. Once
the expected value is computed, the chi-squared statistic, CS is calculated using Eq. (6):

CS =
pr∑

k=1

(Ok−Ek)
2

Ek
(6)

The CS value is the sum of the squares of the differences between the observed and expected values
in each cell, divided by the corresponding expected value across all cells in the table. When the CS score
is higher than the chi-square value,χ2,determined from the chi-square distribution table corresponding
to the degrees of freedom, dof of the contingency table, the features are highly related. The degrees of
freedom are calculated using Eq. (7).

dof = (NBi − 1) × (NC − 1) (7)

If the CS score is lower than the χ2 score, then the features are less correlated. Independent features
with low CS scores are not included when modeling the classifier. Thus, the CS values of all features are
arranged in ranking order and the top k2 number of independent features with CS values greater than
zero are selected for modeling. The number of independent features selected from the filter methods,
MI and CS are presented in Section.3. In the proposed ML sequence, these two filters are individually
applied to the training set. The union of the independent feature sets, FSMI and FSCS obtained using
the filter methods is FSf . FSf as in Eq. (8) is a more informative set of independent features which is
more closely related to dependent feature, C. This informative set of independent features is provided
as input to the wrapper method.

FSf ← (
FSfMI ∪ FSfCS

)
(8)
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2.5 Wrapper Method
Wrapper techniques identify independent features that are more correlated with the dependent

feature by applying the independent features in the training set to simple classifiers and selecting the
features which produce better classification. If the dimensionality of a dataset is high, wrapper methods
are expensive in terms of time and computing resources because each feature set considered must be
evaluated using the classifier. There are fewer independent features in the datasets used in the proposed
work. Therefore, in the proposed feature selection sequence, the features detected by the filter method
are applied to the wrapper method to identify more informative independent features. RFE is a widely
used wrapper method for choosing independent features that are most related to the dependent feature
of a classification problem [45–47].

RFE applies a backward selection process to find the optimal combination of features by
analyzing the performance of classifiers such as RF, DT, SVM and LR [48]. In the proposed work,
RFE is combined with a DT classifier [49] and applied to the independent features obtained using
the filter method to identify more informative independent features. RFE with DT uses an iterative
approach as shown in Fig. 2.
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Input the values of new 
independent feature set 

combination from FSf and 
dependent feature values 

Initialize the number of features required 
from wrapper method, w
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Figure 2: Working of Recursive Feature Elimination

In this approach, the number of independent features, ‘w’ required from the wrapper method is
initialized. Different NFSf

−1 independent feature set combinations obtained from the NFSf
independent

features of the feature set, FSf are applied to the RFE with the DT wrapper method along with
their dependent feature values. RFE-DT determines the accuracy associated with each independent
feature set combination in FSf and the independent feature set corresponding to the highest accuracy
is identified. The method is executed iteratively with the independent feature set with highest accuracy
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obtained from the previous steps until the best feature set combination with ‘w’ independent features
is obtained. The final feature set with the highest accuracy is selected as the optimal subset of
independent features for modeling the classifier.

2.6 Cross Validation-Based Training and Testing of ML Classifiers
In the ML domain, classification algorithms learn from labeled training data and the obtained

model is used in the testing phase to determine the dependent feature value of the test record. The
size of the training set and the predictive performance are positively correlated. In addition, a more
accurate classification due to the empirical risk of overfitting can be reduced by cross-validation
(CV) [50,51]. In the proposed work, a 10-fold CV is used, where to find the best model, the training
set corresponding to the independent features obtained from the wrapper method is split into nine
different training sets and a validation set. This validation set is used to determine the training
accuracies of different classifiers produced after training. The training set is subjected to six ML
classifiers [15,16] in the literature, such as MLR, K-NN, DT, RF, SVM and MLP for the classification
of dependent feature values in METABRIC and SEER as living and deceased. In the following
subsections, the training and testing phases of the different ML algorithms used in the performance
analysis of the proposed feature selection sequence are presented.

2.6.1 Multiple Logistic Regression

Logistic Regression is used to solve binary classification problems when the dependent feature
is categorical. The logistic regression used in the proposed work is MLR [52] because there are
many independent features in the training set. As the name suggests, logistic regression has a logistic
function, also called the sigmoid function, to predict the probability of the values of the dependent
feature, living and deceased. The predictive function yields a probability value that ranges from zero
to one. To classify the dependent feature values, the algorithm determines the best set of coefficients
for the MLR model using different independent features identified in the proposed feature selection
sequence. The MLR model is used to determine the probability of any test record having independent
feature values. The class labels, living and deceased are identified as labels above or below a probability
of 0.5 [53].

2.6.2 K-Nearest Neighbor

The K-Nearest Neighbor algorithm [54] is a supervised ML algorithm that identifies the label of
a particular test record of independent features by finding its nearest neighbor class among the labels
of the training records. The closest class of the test record is determined as the mode of ‘K’ smallest
distance measures found between the incoming test record and all the records in the training set. The
distance between each training record and the test record is calculated using the Euclidean, Manhattan,
Chebyshev, Minkowski, or Hamming distances [55]. In the proposed work, the Manhattan distance
is used to classify the test records into living and deceased classes because it produces fewer False
Negative (FN) values.

2.6.3 Decision Tree

Decision Tree [56] is a supervised learning algorithm that computes the relationship between
independent and dependent features in a tree-like structure. The algorithm accounts for all records
of the training set in the root node of the decision tree. The root node branches to specific internal
nodes or terminal nodes based on the conditions to be satisfied for different values of independent



354 IASC, 2023, vol.37, no.1

features that are selected based on measurements of information content in the independent features:
Goodness of fit measure [57], Gini index or Entropy or IG [58]. The decision tree splits until no further
splitting of internal nodes is possible or when the decisions for the dependent feature values of all the
records in the training set are made. Different independent features with different branches and levels
of a decision tree provide a set of rules. These decision rules determine the dependent feature values
of the test records as living or deceased during the testing phase.

2.6.4 Random Forest

Random Forest [59] is an ensemble supervised learning technique that works on many decision
trees produced from different subsets of a given training set. The mode of prediction created by the
different decision trees is the label of the test record. The prediction made by RF has a higher accuracy
than that of decision trees. The more the number of decision trees in the forest, the greater the accuracy.
RF also prevents overfitting and facilitates parallel processing [60].

2.6.5 Support Vector Machine

Support Vector Machine [61] is a supervised learning algorithm whose training phase segregates
an n-dimensional space of independent features using a hyperplane into two classes of the dependent
feature by considering all training records. After the training phase, the coefficients of the best
hyperplane separating the two class labels are obtained, such that the distance between the support
vectors on either side of the best hyperplane provides the maximum margin. The extreme independent
data records closest to the hyperplane are support vectors [62]. The best hyperplane model produced in
the training phase for the clinical datasets METABRIC and SEER is used to classify the test records
as living or deceased.

2.6.6 Multilayer Perceptron

From literature [25], it is found that MLP is used to classify the survivability of patients with
breast cancer. MLP is a feed-forward network in which the input layer of neurons acts as a receiver,
one or more hidden layers of neurons compute intermediate inputs based on an activation function
and the output layer predicts the output [63]. The number of input neurons corresponds to the number
of independent features and the number of neurons in the output layer corresponds to the number of
dependent feature values or class labels. The hidden layer produces an output based on the sigmoid
function using the sum of the products of the inputs and the corresponding weights of the links from
the input neuron to the respective hidden neuron. The number of hidden layers is chosen as a trade-off
between performance and computational complexity. The weights of the links connecting the input
and hidden, hidden and output layers are optimized during back-propagation based training [64] to
obtain more accurate dependent feature values. The weights are updated during each training iteration
based on the error between the actual and predicted outputs. The learning coefficient is set to a suitable
value between zero and one for the convergence of the training phase. After training, the optimized
weight matrix is tested using the test data. The experimental results and performance analysis of ML
classifiers are discussed in the next section.

3 Experimental Results and Analysis

The proposed feature selection sequence is implemented in Python scikit-learn library on an
Intel i5, 10th generation laptop at 1.19 GHz with 8 GB RAM. In this proposed work, two datasets,
METABRIC and SEER are used for the experimental analysis. The datasets are subjected to a
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data preprocessing stage and the proposed feature selection sequence. In the data preprocessing step,
data reduction, data transformation and data balancing steps are performed and the details of the
preprocessed datasets are listed in Table 1. The filter techniques of the proposed feature selection
sequence, MI and CS are applied to the preprocessed training sets. The more relevant independent
features identified from the filter stage are subjected to the RFE-DT based wrapper technique to
obtain the optimal set of independent features. The METABRIC and SEER datasets with independent
features obtained after these filter and wrapper stages along with dependent feature, survival status
are subjected to the ML algorithms mentioned in subsection 2.6 of Section.2 for obtaining the
classification models to classify the test records in the test set into the class labels: living or deceased.
The performance of the respective classifiers is analyzed in this section in terms of the following
evaluation metrics: ACC, PR, F1, TPR, TNR, FPR, FNR, AUC-ROC, AUC-PR and MCC.

The performance of the classifiers is evaluated on the basis of their correct and incorrect
predictions made by them. The confusion matrix for the classifier as shown in Table 3. is a report
of correctly and incorrectly predicted labels in terms of True positive (TP), True negative (TN), False
positive (FP) and False negative (FN). TP is the count of ‘living’ predicted by the classifier correctly
while FP is the count of ‘deceased’ incorrectly predicted as ‘living’. TN is the count of ‘deceased’
predicted by the classifier correctly and FN is the count of ‘living’ predicted incorrectly as ‘deceased’.
The objective metrics used in the analysis namely ACC, PR, F1, TPR, TNR, FPR, FNR, AUC-ROC,
AUC-PR and MCC are defined in [28,35,45] based on these elements in the confusion matrix.

Table 3: Confusion matrix

Predicted

Actual Deceased Living

Deceased True negative (TN) False positive
(FP)

Living False negative (FN) True positive (TP)

The results obtained from the different stages of the proposed feature selection sequence are
presented below. To select 10 and 15 relevant independent features for the experimental analysis, the
k1 and k2 values for the filter methods, MI and CS values are set to be greater than zero. The MI
and CS values obtained from the filter methods are shown in Figs. 3–6 respectively. In Figs. 3 and 4,
the selected k1 number of independent features are shown on the y-axis and the corresponding MI
values are shown along the x-axis for the METABRIC and SEER datasets respectively. As shown in
Fig. 3, the independent feature, Age, has the strongest correlation with the dependent feature, survival
status with an MI value of 0.3063. Similarly, Tumor size, Lymph nodes and Menopausal status-post
have higher correlation with MI values of 0.1808, 0.1511 and 0.0919 respectively. Fig. 4 shows the
21 independent features identified by the MI filter from the SEER dataset. The independent feature,
Summary stage- localized has the highest correlation with the dependent feature, survival status with
an MI value of 0.09858. Similarly, Age, Tumor size and ER status-positive are highly correlated with
MI values of 0.09641, 0.08866 and 0.07998 respectively. The MI values of other independent features
are marked at the ends of the respective bars.

The CS values produced by the CS filter from the independent and dependent features of the
METABRIC and SEER datasets are shown in Figs. 5 and 6 respectively. The y-axis shows the selected
k2 number of independent features and the x-axis shows the corresponding CS values. As shown in
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Fig. 5, the CS values of the 28 independent features from the METABRIC dataset are greater than
zero. Tumor size is the independent feature with the highest CS value of 810.2. Similarly, Age and
Lymph nodes have higher CS values, 700.9 and 544.5 respectively. Similarly, the independent features
corresponding to CS values greater than zero for the SEER dataset are shown in Fig. 6. Tumor size has
the strongest relationship with the dependent feature, survival status of the patients with a CS value
of 28,640. Similarly, the CS values for Nodes positive and Age are 8,186 and 5,189 respectively. The
CS values of other independent features are marked at the ends of the respective bars.

Figure 3: Mutual Information values for selected independent features for METABRIC dataset

Figure 4: Mutual Information values for selected independent features for SEER dataset



IASC, 2023, vol.37, no.1 357

Figure 5: Chi-Square values for selected independent features for METABRIC dataset

Figure 6: Chi-Square values for selected independent features for SEER dataset
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The two filter methods identified age, tumor size, number of positive lymph nodes, menopausal
status, type of breast surgery and laterality of tumor origin as common and significant independent
features in the proposed feature selection sequence for classifying patients with breast cancer from
the METABRIC and SEER datasets. However, the different independent features that are highly
correlated with the dependent feature, as identified by the MI and CS filters of the proposed feature
selection sequence and the clinical features of breast cancer patients such as age, menopausal status,
type of breast surgery and laterality of tumor origin, cannot be directly obtained from MRI scan
images or mammograms. Therefore, analysis of clinical breast cancer data is important for predicting
the survival of patients with breast cancer.

The informative set of independent features obtained from the two filter methods, MI and CS are
applied to the RFE-DT wrapper method to obtain the optimal set of features. The top-ranking 10
and 15 independent features obtained after applying the RFE-DT wrapper method to the proposed
feature selection sequence are listed in Table 4. for the METABRIC and SEER datasets, respectively.

Table 4: Independent features selected based on RFE from METABRIC and SEER datasets

METABRIC SEER
Independent features Independent features

HER2 status-positive Summary stage-regional
Tumor stage-1 Tumor size
Breast surgery type-mastectomy ER status-positive
Age Grade-3
Menopausal status-pre ER status-negative
ER status-negative Laterality-right
Cancer type-breast invasive lobular carcinoma Grade-2
PR status-positive HER2 status-positive
Grade-3 Age
Laterality-right PR status-negative
Lymph nodes Laterality-left
Tumor size PR status-positive
Cancer type-breast invasive ductal carcinoma Grade-1
ER status-positive Summary stage-localized
Menopausal status-post Nodes examined

The training set corresponding to the independent features selected from the RFE-DT wrapper
method is subjected to the training phase of six ML algorithms, MLR, K-NN, DT, RF, SVM and
MLP. Of the independent features listed in Table 4, two optimal independent feature sets with 10 and
15 features each are assigned to the six ML algorithms along with their dependent feature values, living
and deceased, to model the classifier and analyze the test performance of each classifier in terms of
the evaluation metrics: ACC, PR, F1, TPR, TNR, FPR, FNR, AUC-ROC, AUC-PR and MCC. The
values of the metrics obtained from the various ML classifiers used in the comparative analysis of the
METABRIC and SEER test sets are listed in Table 5.
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Table 5: Comparative analysis on the values of different evaluation metrics using METABRIC and
SEER datasets
Classifiers
& filters

Features METABRIC SEER

ACC PR F1 TPR TNR FPR FNR AUC-
ROC

MCCACC PR F1 TPR TNR FPR FNR AUC-
ROC

MCC

MLR-MI 10 91.2 90.8 91.5 92.2 90.2 0.098 0.078 96.1 0.82 90 88.7 89.6 90.6 89.4 0.106 0.094 97 0.80
15 91.3 90.9 91.6 92.3 90.2 0.098 0.077 96.6 0.83 90.4 88.7 90.2 91.7 89.2 0.108 0.083 97.5 0.81

MLR-CS 10 92.1 91 92.4 93.8 90.2 0.098 0.062 96.4 0.84 90 88.7 89.6 90.6 89.4 0.106 0.094 97 0.80
15 92.9 93.8 93 92.3 93.4 0.066 0.077 96.9 0.86 93.9 91.1 93.9 96.9 91.3 0.087 0.031 98.7 0.88

MLR-
without
FS

All 92.3 90.9 93.3 95.9 87.7 0.123 0.041 97 0.84 93.3 90.2 93.2 96.4 90.6 0.094 0.036 97.5 0.87

Proposed
FS

10 92.8 92.3 93 93.8 91.8 0.082 0.062 95.2 0.86 92.7 89.4 92.7 96.2 89.5 0.105 0.038 98.1 0.86

15 93.6 93.8 93.8 93.8 93.4 0.066 0.062 98.5 0.87 94.6 91.5 94.5 97.7 91.6 0.084 0.023 98.6 0.89

K-NN-
MI

10 93.6 100 93.3 87.5 100 0 0.125 99.4 0.88 95.4 100 95 90.5 100 0 0.095 99.7 0.91

15 94.4 95.3 94.6 93.8 95.1 0.049 0.062 97.4 0.89 97.8 99.9 97.7 95.6 99.9 0.001 0.044 99.8 0.96
K-NN-
CS

10 93.7 93.8 93.8 93.8 93.4 0.066 0.062 97.7 0.87 95.7 100 95.3 90.9 100 0 0.091 99.7 0.92

15 93.7 93.8 93.8 93.8 93.4 0.066 0.062 97.7 0.87 96.7 100 96.4 93.1 100 0 0.069 99.8 0.94
K-NN
without
FS

All 94.6 92.3 95.4 98.6 89.5 0.105 0.014 99.6 0.89 93.1 98.1 92.2 87 98.5 0.015 0.130 99.1 0.87

Proposed
FS

10 97.6 96.9 97.7 98.4 96.7 0.033 0.016 99.9 0.95 96.8 99.8 96.6 93.5 99.8 0.002 0.065 99.5 0.94

15 98.4 97 98.5 100 96.7 0.033 0 100 0.97 98.6 100 98.5 97 100 0 0.030 99.6 0.97

DT-MI 10 91.2 87.3 91.9 96.9 85.2 0.148 0.031 97.1 0.83 95.5 97.4 95.2 93.2 97.7 0.023 0.068 97.5 0.91
15 92.1 92.3 92.3 92.3 91.8 0.082 0.077 95 0.84 96.7 98.1 96.5 94.9 98.3 0.017 0.051 98.5 0.93

DT-CS 10 91.3 93.5 91.3 89.2 93.4 0.066 0.108 94.7 0.83 93.5 96 93 90.2 96.6 0.034 0.098 97.5 0.87
15 92.9 93.8 93 92.3 93.4 0.066 0.077 95.2 0.86 95.8 96.5 95.5 94.6 96.9 0.031 0.054 98.8 0.92

DT-
without
FS

All 91.5 89.7 92.7 95.9 86 0.140 0.041 93.6 0.83 95.2 95.5 94.9 94.4 96 0.040 0.056 99 0.91

Proposed
FS

10 93.6 93.8 93.8 93.8 93.4 0.066 0.062 96.7 0.87 96.6 97.4 96.5 95.5 97.7 0.023 0.045 98.6 0.93

15 94.4 95.2 94.5 93.8 95.1 0.049 0.062 97.1 0.89 97.8 98.4 97.7 97 98.5 0.015 0.030 99.1 0.96

RF-MI 10 91.2 87.3 91.9 96.9 85.2 0.148 0.031 97.7 0.83 95.2 97.6 94.8 92.2 97.9 0.021 0.078 98.8 0.91
15 94.4 92.6 94.7 96.9 91.8 0.082 0.031 96.8 0.89 96.8 97.5 96.7 95.8 97.8 0.022 0.042 99.5 0.94

RF-CS 10 93.7 92.5 93.9 95.4 91.8 0.082 0.046 97 0.87 95.3 97.7 94.9 92.3 98 0.020 0.077 98.8 0.91
15 94.4 92.6 94.7 96.9 91.8 0.082 0.031 96.9 0.89 97.9 97.8 97.8 97.9 98 0.020 0.021 99.7 0.96

RF-
without
FS

All 92.3 88.9 93.5 98.6 84.2 0.158 0.014 99.6 0.85 98.3 98.5 98.2 97.9 98.6 0.014 0.021 99.9 0.97

Proposed
FS

10 94.4 93.8 94.6 95.3 93.4 0.066 0.047 98.4 0.89 97.3 97.1 97.1 97.1 97.4 0.026 0.029 99.7 0.95

15 95.2 92.6 95.5 98.4 91.8 0.082 0.016 99.7 0.91 99 98.7 98.9 99.2 98.8 0.012 0.008 99.9 0.98

SVM-MI 10 92 90.9 92.3 93.8 90.2 0.098 0.062 96.6 0.84 95.1 91 95.1 99.6 90.9 0.091 0.004 99.9 0.91
15 92.1 91 92.4 93.8 90.2 0.098 0.062 96.7 0.84 90.8 90.4 90.4 90.5 91.1 0.089 0.095 97 0.82

SVM-CS 10 92.9 92.4 93.1 93.8 91.8 0.082 0.062 96.8 0.86 95.1 91 95.1 99.6 90.9 0.091 0.004 99.9 0.91
15 92.9 93.8 93 92.3 93.4 0.066 0.077 97 0.86 94.1 89.8 94.1 98.8 89.7 0.103 0.012 98.5 0.89

SVM-
without
FS

All 93.1 91 94 97.3 87.7 0.123 0.027 99.1 0.86 97.6 96.4 97.5 98.6 96.7 0.033 0.014 99.6 0.95

(Continued)
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Table 5: Continued
Classifiers
& filters

Features METABRIC SEER

ACC PR F1 TPR TNR FPR FNR AUC-
ROC

MCCACC PR F1 TPR TNR FPR FNR AUC-
ROC

MCC

Proposed
FS

10 94.4 93.8 94.6 95.3 93.4 0.066 0.047 99.8 0.89 99.1 99.4 99 98.7 99.4 0.006 0.013 100 0.98

15 96 95.4 96.1 96.9 95.1 0.049 0.031 99.9 0.92 99.3 99.4 99.3 99.1 99.5 0.005 0.009 100 0.99
MLP-MI 10 90.4 89.4 90.8 92.2 88.5 0.115 0.078 94.3 0.81 91.2 92.1 90.7 89.3 92.9 0.071 0.107 96.8 0.82

15 91.3 90.9 91.6 92.3 90.2 0.098 0.077 96.8 0.83 94.6 94.4 94.3 94.2 94.9 0.051 0.058 98.8 0.89
MLP-CS 10 91.3 87.5 92 96.9 85.2 0.148 0.031 97 0.83 90.8 93.4 90 86.8 94.4 0.056 0.132 96.9 0.82

15 92.1 92.3 92.3 92.3 91.8 0.082 0.077 96 0.84 90 89.3 89.5 89.7 90.1 0.099 0.103 96.9 0.80
MLP-
without
FS

All 90 95.5 90.6 86.3 94.7 0.053 0.137 98.9 0.80 89.6 92.6 88.4 84.7 93.9 0.061 0.153 97.4 0.79

Proposed
FS

10 92 92.2 92.2 92.2 91.8 0.082 0.078 94.9 0.84 92.9 90.8 92.8 94.9 91.1 0.089 0.051 97.8 0.86

15 92.8 93.7 92.9 92.2 93.4 0.066 0.078 98.6 0.86 96.6 96.1 96.4 96.8 96.4 0.036 0.032 99.5 0.93

As shown in Table 5, when the proposed feature selection sequence is used, all the ML classifiers
used in the comparative analysis produced higher values for ACC, PR, F1, TPR, TNR, FPR, FNR,
AUC-ROC, AUC-PR and MCC than when the filter techniques, MI or CS were applied separately.
When compared to all other ML classifiers used in the analysis, K-NN produced higher values
for all evaluation metrics from the METABRIC test set when using the proposed feature selection
sequence. SVM with the proposed feature selection sequence obtained the highest values for all the
evaluation metrics from the SEER test set. The comparison shows a clear increase in accuracy for
the METABRIC dataset from 0.7% to 4.7% and an increase in accuracy for the SEER dataset from
1.1% to 8.5%. A comparison is also made with the results produced by the ML classifiers without
feature selection, as shown in Table 5. There is a clear increase in accuracy from 0.5% to 3.8% for the
METABRIC dataset and an increase in accuracy from 1% to 7% for the SEER dataset.

The ROC and PR curves are drawn between FPR, TPR and Recall/TPR, Precision respectively.
When the model predicts the probability of belonging to different classes, curves are plotted for
different thresholds of the ML models under comparison. The ROC curves are plotted between
FPR and TPR for the classifiers, MLR, K-NN, DT, RF, SVM and MLP corresponding to the
proposed feature selection sequence for 15 independent features from the METABRIC and SEER
datasets, respectively, as shown in Figs. 7a and 7b. The Area under ROC curves are higher for the ML
classifiers when 15 independent features identified from the proposed feature selection sequence are
used. According to Figs. 7a and 7b, the Area under the ROC curve of the K-NN and SVM classifiers
is larger for the METABRIC and SEER datasets, respectively. The PR curves as shown in Figs. 8a
and 8b are plotted between Recall and Precision for the classifiers, MLR, K-NN, DT, RF, SVM
and MLP corresponding to the proposed feature selection sequence for 15 independent features from
the METABRIC and SEER datasets respectively. The Area under PR curves are higher for the ML
classifiers when 15 independent features identified from the proposed feature selection sequence are
used. According to Figs. 8a and 8b, the Area under the PR curve of the SVM classifier is higher for
both the METABRIC and SEER datasets.
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Figure 7: ROC curves for the proposed feature selection sequence with 15 independent features (a)
METABRIC (b) SEER dataset

Figure 8: PR curves for the proposed feature selection sequence with 15 independent features (a)
METABRIC (b) SEER dataset

The PR curves shown in Figs. 9a and 9b are plotted between Recall and Precision for the
classifier, SVM, corresponding to the two filter methods, MI and CS applied separately, without
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feature selection, and the proposed feature selection sequence for 15 independent features from the
METABRIC and SEER datasets, respectively. When 15 independent features identified from the
proposed feature selection sequence are used, the SVM classifier has a higher Area under the PR
curve.

Figure 9: PR curves for all the comparative methods using SVM with 15 independent features (a)
METABRIC (b) SEER dataset

In addition, the proposed feature selection sequence results are compared with the results obtained
in previous studies [14,16,17,19,21–23] which used the respective feature selection sequences as listed
in Table 6. The accuracy produced by the feature selection techniques in [19,21] and [22] based on
SEER is less than the results produced by the proposed feature selection sequence. Prince et al. [17]
used PCC and CS in a feature selection sequence along with PCA for WDBC and WBCD datasets.
The accuracies obtained were 97.4% for RF and 97.8% for SVM when compared to the accuracies
produced by the proposed feature selection sequence which are 98.4% for K-NN and 99.3% for SVM
from the METABRIC and SEER datasets, respectively. Thus, the proposed feature selection sequence
outperformed all other feature selection sequences used in the comparative analysis when predicting
the survivability of breast cancer patients using the ML algorithms, MLR, K-NN, DT, RF, SVM and
MLP for the METABRIC and SEER datasets.

Table 6: Comparison with results from other feature selection techniques

References Datasets Feature selection
techniques

ML which produces
highest ACC & AUC (%)

Nilashi et al. [14] WDBC EM-PCA CART- FR based ML
algorithm-93.2

(Continued)
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Table 6: Continued
References Datasets Feature selection

techniques
ML which produces
highest ACC & AUC (%)

Dhahri et al. [16] WDBC UFS, RFE AB-98.24
Prince et al. [17] WBCD, WDBC PCA, PCC, CS RF-97.4, SVM-97.8
Shukla et al. [19] SEER IG MLP-86.96
Wang et al. [21] SEER SMOTE, PSO DT-94.26
Jahanbazi et al. [22] SEER SMOTE, IG DT-87.07
Boughorbel et al. [23] METABRIC Normalized average

relative variable method
RF-77- AUC

Proposed method METABRIC MI, CS, RFE K-NN-98.4
SEER SVM-99.3

4 Conclusion

A new hybrid feature selection sequence is proposed to predict the survivability of breast cancer
patients using the METABRIC and SEER datasets. The filter methods MI and CS are used along
with the wrapper method, RFE-DT in the proposed feature selection sequence. The performance of
the proposed feature selection sequence is analyzed for ML classifiers such as MLR, K-NN, DT, RF,
SVM and MLP using the evaluation metrics, ACC, PR, F1, TPR, TNR, FPR, FNR, AUC-ROC,
AUC-PR and MCC. The optimal features obtained from the proposed feature selection sequence are
applied to the ML algorithms under analysis for training, and the test results obtained are compared
with those obtained when ML classifiers are applied without any feature selection sequence and after
applying the filtering methods, MI and CS separately. In addition, the results are compared with
those obtained using other feature selection techniques. It is found that the proposed feature selection
sequence produced higher values for all evaluation metrics when compared to other feature selection
techniques in the comparative study while predicting the survivability of breast cancer patients. The few
exceptional values of the metrics are to be explored in the later part of the research. This work can be
extended to analyze the performance of other filter-wrapper combinations and ensemble techniques.
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