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Abstract: Traffic characterization (e.g., chat, video) and application identifi-
cation (e.g., FTP, Facebook) are two of the more crucial jobs in encrypted
network traffic classification. These two activities are typically carried out
separately by existing systems using separate models, significantly adding
to the difficulty of network administration. Convolutional Neural Network
(CNN) and Transformer are deep learning-based approaches for network traf-
fic classification. CNN is good at extracting local features while ignoring long-
distance information from the network traffic sequence, and Transformer
can capture long-distance feature dependencies while ignoring local details.
Based on these characteristics, a multi-task learning model that combines
Transformer and 1D-CNN for encrypted traffic classification is proposed
(MTC). In order to make up for the Transformer’s lack of local detail
feature extraction capability and the | D-CNN’s shortcoming of ignoring long-
distance correlation information when processing traffic sequences, the model
uses a parallel structure to fuse the features generated by the Transformer
block and the 1D-CNN block with each other using a feature fusion block.
This structure improved the representation of traffic features by both blocks
and allows the model to perform well with both long and short length
sequences. The model simultaneously handles multiple tasks, which lowers the
cost of training. Experiments reveal that on the ISCX VPN-nonVPN dataset,
the model achieves an average F1 score of 98.25% and an average recall of
98.30% for the task of identifying applications, and an average F1 score of
97.94%, and an average recall of 97.54% for the task of traffic characterization.
When advanced models on the same dataset are chosen for comparison, the
model produces the best results. To prove the generalization, we applied MTC
to CICIDS2017 dataset, and our model also achieved good results.
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1 Introduction

Experts and academics have been drawn to research network traffic characteristics and classifica-
tion techniques in past years due to the rising demand for high-speed network transmission. Global
Internet traffic will reach 396 EB per month in 2022, according to the Cisco Visual Networking Index
2017-2022, [1]. This indicates that effective network management and the performance of services like
network survivability, differential quality of service (QoS) assurances, and dynamic access control can
both be significantly enhanced by adequate network traffic processing, [2]. As technology evolves,
encrypted traffic is becoming a heavier portion of all traffic, which means that research into the
classification of encrypted traffic is urgent.

There are different classification tasks for network traffic classification in different application
scenarios, such as attack traffic detection, [3], video traffic classification, [4], etc. Application identi-
fication and traffic characterization are two of the more significant duties. Application identification
refers to identifying traffic based on the particular application that generated that traffic, such as FTP,
Facebook, etc., whereas traffic characterization refers to classifying traffic based on protocol families,
such as chat, voice, etc. For these two duties independently, the majority of current solutions adopt a
single-task approach, adding to the complexity of network management.

It has become more challenging for traditional port-based and payload-based methods to achieve
good results as time has gone on, [5], and some applications have started to use non-standard ports
for transmission. Additionally, because traditional machine learning techniques require a lot of labor
to extract features, deep learning-based traffic classification methods are more efficient.

CNN and Transformer [6] has demonstrated improved performance in the wide area of artificial
intelligence, including computer vision [7-9], natural language processing [10], as well as traffic
classification in recent years. Compared to 2D-CNN, 1D-CNN is more suited to traffic classification
tasks, because traffic may be thought of as sequential data, [11]. However, CNN has the issue of a
small receptive field because of the computational properties of the convolution operator, which makes
it challenging to find long-distance correlation information when working with extended sequences.
With better outcomes, Transformer has also been used in the field of traffic classification, [12,13].
Studies have revealed, however, that Transformer processes lengthy sequences with excellent efficiency
while processing short sequences does not significantly improve and it struggles to uncover detailed
features while processing short sequences, [14].

As we can see from the above, both Transformer and 1D-CNN have weaknesses when it comes
to handling traffic sequences, and we have reason to believe that the lack of local detailed or global
representation of traffic features will reduce the effectiveness of the classifier. However, if we combine
their strengths, we can make them work together to their full potential. Therefore, we assume that
Transformer and 1D-CNN have some complementarity. The feature information obtained by 1D-
CNN can optimize the local detailed features missing from Transformer, while the feature information
obtained by Transformer can make up for the long-distance correlation information lacking by
ID-CNN, enhancing the feature representation of traffic sequences. In the model proposed in this
paper, the features of both are combined by a parallel network structure, and on ISCX VPN-
nonVON dataset, application identification and traffic characterization are carried out concurrently
using multi-task learning, which enhances traffic classification performance. And on another dataset
CICIDS2017, MTC performed both the attack type classification and malicious traffic identification
tasks, also achieving excellent results.
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The main contributions of this paper are as follows:

(1) In order to extract both local detail features and acquire more long-distant correlation
information in the network traffic, a new classification model for encrypted traffic is proposed.
It combines Transformer and 1D-CNN to classify encrypted network traffic, uses a parallel
structure to learn multiple tasks simultaneously and improves the classification effect.

(2) On the benign traffic dataset encrypted using VPN and Tor, ISCX VPN-nonVPN, and
the malicious traffic dataset encrypted by SSH and HTTPS, CICIDS2017, the average F1
score and recall attained by MTC exceeded those of the multi-task Transformer, the multi-
task 1D-CNN model and other state-of-the-art methods, showing good performance and
generalization of MTC,

(3) We designed a feature fusion block to fuse the features generated by Transformer and 1D-
CNN blocks with one another. This block compensates for the shortcomings of Transformer
in dealing with short sequences and 1D-CNN in dealing with long sequences, allowing our
model to perform well on both long or short sequence datasets, indicating that our model has
great potential for application.

2 Related Works

Network traffic classification is a multi-classification problem, which refers to the classification
and identification of the types to which a network traffic packet or flow belongs according to certain
characteristics. Port-based, payload-based and machine-learning methods are the most often used
technical methods for traffic classification. The first two approaches are no longer effective due to
development of network encryption technology, and the prevailing current methods are built using
conventional machine learning and deep learning methods. The motivation for the research in this
paper will be derived from the related work in the area of traffic classification.

Traditional machine learning methods have achieved good results in traffic classification. A
network model based on Naive Bayes is suggested to identify video traffic in real-time, [4], which
enhances the covariance matrix of characteristics and transforms it into a positively defined symmetric
matrix to improve classification accuracy. Reference [15] suggests a simple methodology that uses the
TCP protocol and the K-means clustering technique to identify the application traffic and achieves
superior results. Although machine learning techniques have some advantages, both models are limited
to video traffic or TCP applications and have poor generalization capabilities. They also largely rely
on manually extracted features.

Deep learning techniques are widely utilized in the field of traffic classification as a solution to the
issues mentioned, and can be used to get greater outcomes while spending less on labor. CNN networks
stand out among them in terms of traffic classification. Reference [1 1] proposes an end-to-end traffic
classification approach and experimentally shows that 1D-CNN outperforms 2D-CNN in traffic
classification tasks because 1 D-CNN is better suited to sequential or language input, whereas traffic is
fundamentally a sequence of bytes. A similar CNN-based deep neural network model was made, and
the PCA approach was used, which significantly reduced memory cost and improved performance,
[16]. Another method using CNN methods is to turn raw data into grayscale maps. Reference [17]
slices the raw traffic data into flows and transforms them into image format for classification using a
2D-CNN-based model. This method increases classification accuracy but is more expensive because
it consumes a lot of time and memory during the data preprocessing stage.

With the advent of Transformer, traffic classification jobs began to see an increase in the number
of methods based on the attention mechanism and Transformer. Reference [1 8] proposes a lightweight
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model that lowers the training cost while increasing accuracy by fusing an attention mechanism with
a long short-term memory network (LSTM). An ET-BERT network is proposed and is based on the
Transformer-based natural language processing pre-training model, Bert, [10]. This network increases
classification accuracy on numerous datasets and exhibits high generalization, [12]. All these models
mentioned above employ the single-task model, while multi-task learning also performs better in the
area of traffic classification.

In contrast to single-task models, multi-task learning enables the simultaneous training of multiple
tasks, which reduces the training cost. Since the multiple tasks are not independent of one another and
the learning of one task can improve the results of another, it is possible to simultaneously produce
better results for multiple tasks, [19]. A proposed 1D-CNN-based multi-task traffic classification
model allows for the simultaneous performance of three tasks, bandwidth demand, flow length,
and traffic type classification, while reducing the need for labeled data [19]. MTT is a multi-
task traffic classification model based on Transformer, which eliminates a significant number of
training parameters and increases classification accuracy compared to the 1D-CNN model, [13]. The
experiments in this reference demonstrate that when the input data length is changed from 1500 bytes
to 150 and 100 bytes, the F1 score obtained by Transformer decrease by 0.58% while the F1 score
obtained by 1D-CNN increase by 0.62%, illustrating the benefits and drawbacks of these two models
in handling long and short traffic sequences. The above models all use 1D-CNN or Transformer alone,
but as we have discussed, 1D-CNN and Transformer have some disadvantages when dealing with
sequences of different lengths. This is because the ID-CNN has a smaller receptive field and is more
suitable for extracting local features, while the Transformer is the opposite, so this point leads to our
research motivation. We propose a conjecture that if we can fuse the local features extracted by 1D-
CNN and the global extracted by Transformer, then we can compensate for the disadvantages of both,
so that the model can be trained with both local and global features, and the results must be better
than using 1D-CNN and Transformer alone, which has been proved by experiments. Based on the
foregoing research, this work offers a multi-task encrypted traffic classification model, MTC, with a
parallel structure that combines the features produced by Transformer and 1D-CNN to address each
method’s processing limitations and increase classification performance.

3 Methodology
3.1 Dataset
3.1.1 ISCX VPN-nonVPN

In this paper, we analyze the model performance using the publicly available dataset ISCX VPN-
nonVPN. The original dataset was split into 14 categories, including 7 categories for ordinary traffic
and 7 categories for traffic that was encrypted using VPN techniques including chat, VPN-chat,
browsing, VPN-browsing, etc. The dataset covers 17 different application traffic, [20]. This dataset is
excellent for testing the traffic classification model in this paper because it is real rather than produced
manually and has a wide variety of data types. Given that the labels “Browsing” and “VPN-Browsing”
could be mistaken for others, we follow other studies’ methodology, [11,13,18,21,22], and eliminate this
label before reclassifying the dataset into 12 traffic type labels and 17 application labels, as shown in
Table 1. Reference [11] provides information about the traffic type labels comprised of the application
traffic.
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Table 1: Traffic type labels, application labels, and auxiliary task labels

Traffic type labels Application labels Auxiliary task labels
Chat, Email, File Transfer, AIM Chat, Email, Facebook, All_Chat, All_Email,
Streaming, Torrent, Voip, VPN: FTPS, ICQ, Gmail, Hangouts, All_File Transfer,
Chat, VPN: Email, VPN: File Netflix, SCP, SFTP, Skype, All_Streaming,
Transfer, VPN: Streaming, VPN: Spotify, Torrent, Tor, Vimeo, All_Torrent, All_Voip
Torrent, VPN: Voip Voipbuster, Youtube

3.1.2 CICIDS2017

To validate the generalization and application potential of our proposed model, we apply the
publicly encrypted malicious traffic dataset CICIDS2017 to the experiments. This dataset contains
benign and multiple types of common attack traffic, and consists of 78 figures representing extracted
traffic features, which are short sequences compared to VPN-nonVPN, so these two datasets were also
selected to be used in our experiments to verify the model’s ability to handle long or short sequences.

3.2 Data Pre-processing
3.2.1 Pre-processing

The input forms of traffic can be broadly categorized into four groups in the traffic classification
model: flow-based, [23], session-based, [11], packet-based, [13,21], and mixed input forms, [24].
Typically, flow-based, session-based, and mixed input forms contain more feature information.
However, to decrease the data pre-processing burden, as well as computational and storage resources,
we select a single packet as the input to our model on ISCX VPN-nonVPN dataset.

For VPN-nonVPN, the original packets contain some redundant information, such as MAC
addresses and IP addresses, that affects the outcomes of traffic classification, the data must be pre-
processed, as illustrated in Fig. 1.

(1) The Ethernet header with the physical layer information was first eliminated because it is
useless for traffic classification and will cause the model to overfit.

(2) Second, the IP address in the IP header was changed to 0.0.0.0 for the same reason.

(3) Third, the size of the transport layer protocol headers was standardized by reducing the size
of the TCP header to 20 bytes and padding the UDP header, which is typically 8 bytes, to 20
bytes with 0 bytes.

(4) Additionally, we eliminated the packets used mostly for service protocols like DNS, ACK,
SYN, and FIN packets, which implement the three TCP handshakes and don’t include any
actual information.

(5) Finally, since the input to the model requires the same size data, each packet is then padded at
the end with 0 bytes up to 1500 bytes, and all bytes are divided by 255 to normalization. This
1500-byte traffic sequence is the initial input data format.

For CICIDS2017, we removed ten features with less difference and 17 features with redundant
information, and cleaned outliers like NaN values, and finally used the quantile transformation
method to normalization. Therefore, the final data is a sequence containing 49 figures of [0—1]. Due
to length issues of paper, we do not show the names of the 49 features that were specifically preserved.
Reference [25] shows the detailed description of pre-processing process on this dataset.
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Figure 1: Data preprocessing

3.2.2 Labeling

Since our model is a multi-task learning model and each input dataset has several labels, the
following step is to label the data. According to Table 1, we will first categorize the VPN-nonVPN
data with application labels (there are a total of 17 categories) and traffic type labels (there are a total
of 12 categories). Based on the hard parameter sharing property of the multitask model, a simpler
auxiliary task that is closely related to the complex task can improve the classification accuracy of
the complex task while performing the complex classification task, [26], therefore, we introduce an
auxiliary task, which does not distinguish between encrypted and regular traffic but only classifies
them by type, i.e., reducing the 12 labels to 6 labels, [13], as shown in Table 1.

On the dataset CICIDS2017, we designed two classification tasks that attack type classification
(Attack.) which means classifying multiple attack types contained in malicious samples from all
samples including benign and malicious, and malicious traffic identification (Mal.) which is a binary
classification that refers to identifying whether a certain sample is benign or malicious from the entire
dataset. That is, we tag this dataset with two types of labels, an Attack. label (7 categories before
balancing) and a Mal. label (2 categories), as shown in Table 2.
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Table 2: Class distribution of CICIDS2017 dataset

Attack. label

Mal. label Imbalanced Balanced

Benign Benign 2035505 1330000
DoS/DDoS 320269 350000
PortScan 57305 75500
Brute force Malicious 8551 66000
Web attack 2118 65500
Botnet ARES 1943 65000
Infiltration 36

625

3.2.3 Processing Class Imbalance

Additionally, Fig. 2 displays the histogram of the sample number of packets for 12 different traffic
types and 17 different application traffic types. It is clear from these graphs that there is a serious class
imbalance issue in ISCX VPN-non VPN, which, if used directly, will negatively impact the classification
performance of the model. In order to tackle this issue, 50,000 samples from each of the 17 types of
application traffic packets—selected equally from the ordinary and encrypted traffic—are taken using
random sampling. If the total number of samples is less than 50,000, all samples are taken to achieve

relative balance.
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Figure 2: The number of sample packets for application traffic and traffic type

As shown in Table 2, the class imbalance problem is more severe at CICIDS2017, for example,
the Infiltration class sample only accounts for approximately 0.00001 of the total sample size. We
therefore removed the infiltration class samples from the data and resampled the samples from other
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classes using the RandomUnderSampler and oversampling SMOTE techniques, the balanced data
distribution are presented in Table 2 and the final Attack. labels have six classes.

3.3 Architecture
3.3.1 Overview

We developed a parallel multi-task encrypted network traffic classification model, MTC, the
general architecture of which is depicted in Fig. 3, to improve 1D-CNN’s capacity to extract long-
distance correlation information, make up for Transformer’s weakness in local feature extraction when
processing traffic sequences, and achieve the purpose of complementing each other’s strengths and
weakness.
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Figure 3: The overall framework of the model

The MTC comprises a feature fusion block, a classification layer, a Transformer branch, and
a 1D-CNN branch, each of which has three small blocks called Transformer Blocks and 1D-CNN
Blocks. The pre-processed data is first input to the Transformer branch and the 1D-CNN branch.
Next, the features produced by the Transformer branch are input to the CNN branch through the
feature fusion block to allow the CNN branch to obtain more long-distance correlation information,
and similarly, the features produced by the CNN are also input to the Transformer through to
enhance the Transformer branch’s ability to perceive local detailed features, so that the two branches
can complement each other’s extracted features to achieve the effect of complementing each other’s
strengths and weaknesses, thus optimizing the feature representation of encrypted traffic sequences
and improving the classification performance. Due to the lack of a feature output in the first block,
feature fusion is not done; nevertheless, it is conducted in the second and third blocks. The classification
layer is reached after receiving the output of the third blocks, and classifies them using the softmax
function.

3.3.2 Transformer Block

The Transformer block is shown in Fig. 4a, which is based on the encoder part of Transformer,
[6]. It is important to alter the dimensionality of the input data before putting it into the Transformer
block since the data input format for the Transformer branch is different from the one for the ID-CNN
branch. Using dataset VPN-nonVPN as an example, the Embedding function converts the 1500-byte
traffic sequence into n d-dimensional tokens, where n x d equals 1500. The 1D-CNN model already
contains the location information of each “traffic token” in the traffic sequence, therefore this step
does not involve extracting the positional information from the traffic sequence. Next, the data is
merged with the local detail features extracted by the 1D-CNN block and normalized into an encoder
with m repetitions, after which the data is fed into H multi-head attention layers, which are computed
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as follows:

Q=ZW%K =ZW* vV =ZW" ()

Attention (Q, K, V') = softmax (QKT) V 2)
Vd,

where Z € R™“ represents the input to the encoder, W2, W* € R*>« W" € R* is the parameter

learned by the self-attentive mechanism, set dy = d, = d/H. The multi-headed attention layer

computes the self-attention outputs of the H heads simultaneously, integrating the results according
to the following equation:

MultiHead (Z) = Concat (H,, H,, ... Hg) W" 3)

where H,,i € 1,2,...6is each self-attention output and W € R”>? is the learned parameter, the
result is input to the feedforward layer after residual connection and normalization, which consists
of two fully connected layers, and the dropout function is added to each layer with the parameter
set to 0.1, and the final output of the Transformer branch is obtained after residual connection and
normalization once more. Table 3 displays the basic parameters involved in the Transformer branch.
In the three layers of the overall model, the number of repetitions m of the Transformer block at each
layer is 1, 5, and 6, respectively, and the parameters H is 6, n is 30, and d is 50. The output dimensions
of the two fully connected layers are 1024 and 50, respectively.
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Figure 4: The specific structure of each branch module: (a) Transformer block; (b) Fusion block;
(c) 1D-CNN block
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Table 3: The basic parameters of each block in each layer on ISCX VPN-nonVPN

Layer Transformer Fusion block 1D-CNN
[ H:6,30 x 50 ] [1x 1,50 |

1 I x1,1024 | x1 1 x 3,50
1 x1,50 1 x1,100
[1x1,50 ]

[ H:6,30 x 50 ] 1 x 3,50
2 1 x1,1024 | x5 <~ [1 x 1,50] _1 X 1,100_
[ 1x 1,50 [1 x 1,50] — 1% 1,50 |

1 x 3,50
1 x 1,100
[1x1,100 |
H:6,30 x 50 1 x 3,100
3 I x1,1024 | x6 <« [1x1,50] _1 X 1,200_
1x1,50 [ L1001 =7y 100
1 x 3,100
1 x 1,200

3.3.3 ID-CNN Block

As seen in Fig. 4c, the 1D-CNN block is made up of one or two bottleneck convolutional
structures, which are employed to lessen the computational load and the number of parameters, hence
increasing the depth of the model layers, [27]. Each bottleneck consists of three convolutional layers
of 1 x1,1x 3,and | x 1, where each convolutional layer has a stride size of 1. A residual connection
follows every bottleneck structure. Because feature fusion is not necessary yet, the initial ID-CNN
block is the only one with a bottleneck structure. There are two bottlenecks in the second and third 1D-
CNN blocks. The local detail features of the traffic sequence produced by the 1D-CNN are fed to the
feature fusion block after the first bottleneck block’s 1 x 3 convolutional layer, and the long-distance
correlation features produced by the Transformer block are received after the second bottleneck block’s
first 1 x 1 convolutional layer, after which the traffic sequence features of the 1D-CNN block are
obtained. Table 3 shows the output dimension of the bottleneck structure for each 1D-CNN block.
To avoid overfitting, a dropout layer is applied after each convolutional layer with a parameter value
of 0.07.

3.3.4 Feature Fusion Block

The feature fusion block must be used to communicate the features produced by the aforemen-
tioned two blocks to fully fuse the local detail features of the traffic sequences produced by the
1D-CNN block and the Transformer block with the long-distance correlation information features.
It is required to match the dimensionality of the traffic sequence feature information supplied by
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both sides because the aforementioned two blocks output different feature dimensions, making it
impossible for the features of the two blocks to receive and fuse with one another. The features from
the 1D-CNN block are down-sampled using the average pooling function, while the features from the
Transformer block are up-sampled using the interpolation function to achieve the goal of aligning the
dimensionality, as shown in Fig. 4b. First, an 1 x 1 convolutional layer is required to raise or lower
the dimensionality. Another normalization is required to complete the feature fusion process after the
up-and-down sampling is finished. Table 3 displays the output dimensions of the feature fusion block’s
1 x 1 convolutional layer.

3.3.5 Classification Layer

The classification layer of the multi-task learning model outputs multiple classification results.
The MTC model has three outputs on VPN-nonVPN: traffic characterization (Tra.), application
identification (App.) and auxiliary classification task (Aux.), and two outputs on CICIDS2017: attack
type classification and malicious identification. Softmax and cross-entropy loss functions are used for
classification. The final loss values are the weighted average of the loss values of each classification
task by a certain ratio, where the App. task is based on the features generated by the Transformer
branch for 17 classes, and the Tra. task and the Aux. task are based on the features generated by the
1D-CNN branch for 12 and 6 classes, respectively, and the weight ratio is 6:2:1. On CICIDS2017, the
Attack. task is based on Transformer branch for 6 classes and Mal. Task is based on CNN branch for
2 classes, and the weight ratio is 2:1.

4 Experimental Results and Comparison
4.1 Experimental Setup
4.1.1 Experiment Environment

The experimental hardware environment for this experimental training and testing is Intel(R)
Core(TM) 19-10980XE CPU@ 3.00 GHz, 18 cores, 36 threads, and 64 GB of RAM running on
Ubuntu 20.04 LTS. The classification models were implemented using PyTorch 1.10 on NVIDIA RTX
3090 GPU card with 24 GB RAM, and using the CUDA 11.4 development toolkit with python 3.7.

4.1.2 Experiment Dataset

The encrypted traffic dataset ISCX VPN-nonVPN was used as the experimental dataset, and
another dataset CICIDS2017 was also employed to validate the generalizability and to discuss the
performance of the MTC when dealing with data of different lengths. The pre-processing process for
these two datasets is detailed in Section 3.2. All experimental data was divided into training, validation,
and test sets in the ratio of 64%, 16%, and 20%.

4.1.3 Model Parameters

On dataset VPN-non VPN, the model is trained for a total of 100 epochs, with a batch size of 128,
and the optimization Adam is applied to speed up the learning process, the initial learning rate is 0.
001, and the learning rate is updated dynamically using ReduceLROnPlateau with a factor of 0.1 and
patience of 10, and regularization is performed using weight decay with a factor of 0.0001, and the
model is prevented from overfitting using the early stopping technique with the patience of 20. The
ReLU function is selected as the activation function.
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4.2 Evaluation Metrics
For a better evaluation of the classification performance of the model, we use the F1 score (F1)
and recall (Rc) as the model evaluation metrics. These metrics are calculated as shown below:

TP

Pr=—— 4)

TP + FP
TP

Re=—— (5)
TP + FN
2R P

Fl = e X (6)
R.+P,

where Pr is the precision, and TP, FP, TN, and FN stand for the true positive, false positive, true
negative, and false negative rates, respectively.

4.3 Comparison Models

Using the same dataset and two advanced models, two comparison models were created to
compare with MTC. The first comparison model, called multi-task transformer, is to design a traffic
classification model with multi-task learning using only Transformer based on the MTT, [13]. The
second comparison model, referred to as multi-task 1D-CNN, is built on the deep packet, [21], with
multi-task learning using just 1D-CNN. Results of comparison experiments demonstrate how MTC
can fully merge the local detail features extracted by 1D-CNN and the long-distance correlation
information features extracted by Transformer to have an improved classification performance of
encrypted data. The experiment environment, experiment dataset, experiment parameters (Section
4.1.3), and evaluation metrics used in the comparison experimental model are all consistent with MTC.

4.3.1 Multi-Task Transformer Model

Fig. 5 depicts the organizational layout of the first comparison model, where input embedding
fulfills the same role as the Embedding function in Section 3.3.2. Because the positional information
of each byte in the encrypted traffic sequence is crucial for the Transformer model’s classification,
[13], this model differs from the Transformer branch of MTC in that positional encoding module
must needs to be added before entering the multi-head attention layer. The calculation process for the
positional encoding is specifically illustrated in the following equation.

2i
PE (pos, 2i) = sin | pos x 10000 d (7)
2i
PE (pos, 2i + 1) = cos | pos x 10000 d 8)

After adding the positional encoding information, the data enters the encoder and performs
the same operation as the encoder in Section 3.3.2, with an encoder repetition number of 7. In the
classification layer, the multi-task Transformer model needs to output the classification results for
multiple tasks simultaneously. Their respective loss weight ratios are 4:2:1 [13], on VPN-nonVPN, and
3:1 on CICIDS2017.
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Figure 5: Multi-task transformer model

4.3.2 Multi-Task 1D-CNN Model

The specific structure of the multi-task 1D-CNN model is shown in Fig. 6, which contains two
one-dimensional convolutional layers, a max pooling layer, and three full connection layers. The kernel
size of the first convolutional layer is 4 and the stride is 3, the kernel size of the second convolutional
layer is 5 and the stride is 1, the kernel size of the max pooling layer is 2 and the stride is 2, and
the output dimensions of the three full connection layers are 200, 100, and 50, respectively. The
BatchNorm is used for normalization and the dropout is added to the fully connected layer to prevent
overfitting with a factor of 0.05. Finally, Softmax is still used to classify the multiple tasks with a loss
weight ratio of 2:2:1 [13] on VPN-nonVPN and 3:1 on CICIDS2017.
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Figure 6: Multi-task 1D-CNN model

4.4 Results and Comparison
Table 4 compares the experimental outcomes of MTC developed in this paper with the advanced
models Multi-task Transformer and Multi-task 1D-CNN using the same datasets ISCX VPN-

nonVPN and CICIDS2017.

Table 4: Experimental results of F1 score (%) and recall rate (%) on MTC, multi-task transformer,
multi-task 1D-CNN, and MTC-2task

Model ISCX VPN-nonVPN CICIDS2017
App. Tra. Aux. Attack. Mal.
F1 Rc F1 Rc F1 Rc F1 Rc F1 Rc
MTC 98.25 9830 9794 9754 9797 9781 9947 99.66 99.71 99.75

Transformer 97.27 97.18 9590 9544 96.86 96.50 99.30 99.52 99.66 99.70
ID-CNN 96.13 9591 89.36 88.95 9556 9523 9945 99.63 99.70 99.74
MTC-2task  95.60 9524 9246 91.53
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4.4.1 Results on ISCX VPN-nonVPN

Table 4 shows that the MTC outperforms the Multi-task Transformer and Multi-task 1D-CNN in
terms of average F1 score and average recall for the three sub-tasks of application identification, traffic
characterization, and auxiliary classification task. The average F1 score of the App. task is higher
than the Multi-task Transformer and Multi-task 1D-CNN by 0.98% and 2.12%, respectively, and the
average recall is 1.12% and 2.39% higher. For Tra. task, the average F1 is 2.04% and 8.58% higher
than Multi-task Transformer and Multi-task 1D-CNN, respectively, and the average recall is 2.10%
and 8.59% higher, respectively. The average F1 of Aux. task is 1.11% and 2.41% higher than Multi-task
Transformer and Multi-task 1D-CNN, respectively, and the average recall is 1.31% and 2.58% higher,
respectively. These results demonstrate that MTC can fully utilize the features of both Transformer
and 1D-CNN blocks to extract long-distance correlation information and local detail information
from the traffic sequences, which proves the conjecture we presented in Section 2. By doing so, MTC
improves its ability to represent the features of the traffic sequences and thus outperforms Transformer
and 1D-CNN in terms of performance.

Fig. 7 displays the line graphs of the detail experimental findings for each type of traffic, along
with the F1 score and recall. MTC outperforms the results of the comparison models in terms of F1
score for each type of traffic in each subtask, except for All File Transfer in the Aux. task, and in terms
of recall, except All_Streaming and All_Voip in the Aux. task, each of them having the best results.
Additionally, when compared to the reference model, MTC outperforms it in traffic types with small
sample numbers, such as AIM chat, ICQ, and chat, proving that our suggested model can be trained
with unbalanced data and fewer labels.

4.4.2 Results on CICIDS2017

On the CICIDS2017 dataset, we replace the parameters n, d, H in the MTC model’s Transformer
block and Multi-task Transformer with 7, 7 and 7, respectively, because the data input length is
different (from 1500 to 49). The other hyperparameters are unchanged. The experimental results of
the attack type classification and malicious traffic identification tasks are shown in Table 4. As you
can see, MTC achieves the best results, showing the good generalization. 1D-CNN, however, also
achieves very excellent results, displaying its power in handling short sequences. Another point worth
noting is that on the long sequence dataset, Transformer outperforms 1D-CNN, but when it comes to
the short sequence dataset, ID-CNN outperforms Transformer. Our model achieves optimal results
for sequences of different lengths, again providing strong evidence that MTC can compensate for the
shortcomings of Transformer and 1D-CNN and take full advantage of the strengths of both methods
to improve performance in classification and identification tasks.

4.4.3 Comparison with Other State-of-the-Art Methods

In order to compare with the model MTC proposed in our paper, we selected several state-of-the-
art methods on the same datasets in recent years, and the results are shown in Table 5. On the ISCX
dataset, our model performs the best on both tasks. On the CICIDS2017, MTC performs the best on
both tasks, except that the recall of malicious traffic identification is worse than LUCID [29]. For the
recall of the Attack. task, we believe that the MTC model is also optimal in this item compared with
DBN [25], because the recall of this task only provides the percentage value of one decimal point in
the reference. These comparisons fully prove the progressiveness of MTC.
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Figure 7: Various classes of traffic F1 score and recall including MTC, multi-task transformer and
multi-task 1D-CNN on application identification, traffic characterization, and auxiliary classification

Table 5: Comparison with other state-of-the-art methods on ISCX VPN-nonVPN and CICIDS2017

Methods on ISCX App. Tra. Methods on CICIDS2017 Attack. Mal.
VPN-nonVPN F1 (%) Rc(%) F1(%) Re (%) F1 (%) Rc(%) F1(%) Rc (%)
1D-CNN [21], 2020 98.00 98.00 93.00 93.00 MLP[25],2022 873 995 - -

SAE [21], 2020 9500 9500 92.00 92.00 DBN[25], 2022 940 997 - -
PERT [28], 2020 69.92 7173 93.68 9349 LUCID [29], 2020 - - 99.66  99.94
TSCRNN [30], 2021 - - 92.60 92.60 LSTM[31],2019 - - 93.97  89.89
CNN+GRU [37], 2020 96.08 - - - CNN-LSTM [33],2022 - - 99.60  99.70
RBRN [34], 2020 9721 9733 - - AE + DNN [35], 2020 - - 97.12  98.57
MTC 98.25 9830 97.94 9754 MTC 9947 99.66 99.71 99.75

Note: The symbol “—” means that the task or metric was not provided in the reference.



634 IASC, 2023, vol.37, no.1

5 Discussion
5.1 Hyperparameter Selection

The selection of hyperparameters has a significant impact on the outcomes of the experiments, and
choosing the right ones can significantly boost the model’s classification performance. This section

primarily goes into detail about how we chose a few important hyperparameters on ISCX VPN-
nonVPN.

5.1.1 Number of Repetitions of Encoder

We believe that the number of encoder repetitions is the key to the classification effect of the model,
so we first determine the number of encoder repetitions in the second and third Transformer blocks
of the model, according to the computational resources, we choose a total of four combinations in the
experiments, as shown in Table 6, where m2, m3, represent the number of encoder repetitions in the
second and third blocks of the model, respectively, the factor of dropout layers in the ID-CNN block
is 0.05, and the loss weight ratio of App., Tra. and Aux. are set to 4:2:1. And Table 6 shows that the
model produces the best classification results when the number of encoder repetitions in the second
Transformer block is 5 and in the third is 6.

Table 6: Experimental results of different numbers of encoders in the transformer block

m2, m3 App. Tra.

F1 (%) Rc (%) F1 (%) Rc (%)
55 9745 9746 97.17 97.07
5,6 97.75 97.68 97.73  97.26
6,5 97.50  97.19  95.57 94.82
6,6 96.70  96.48 9546  96.17

5.1.2 Weight Ratio for Loss Function

When calculating the loss values of the model, the multi-task classification model must take a
weighted average of the individual loss values of each subtask. Appropriately allocating the weights
of each subtask’s loss value plays a significant role in the classification performance of the model,
and figuring out the weight ratio of the loss values is a crucial task for us, [36]. Table 7 displays
the experimental results for various loss value weight ratios for the three subtasks. Due to the high
correlation between the Tra. task and the Aux. task and the 2:1 ratio of the number of classifications
for these two tasks, we fixed the loss weight ratios of the above two subtasks to 2:1 and changed only
the loss value weights of the App. task. The results show that the outcomes are better when the loss
weight ratio of the App, Tra, and Aux tasks is 4:2:1 and 6:2:1, and just one result of the F1 score of
the Tra. task is 0.27% higher when the loss weight of the App. task is 4. So, the final loss value weight
ratio we settle on is 6:2:1. The 1D-CNN blocks’ dropout layer factor in the experiments is 0.05.
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Table 7: Experimental results of different weight ratios of loss values for the three subtasks

Weight App. Tra.
Ratio F1 (%) Rc (%) F1(%) Rc (%)
3:2:1 9328 9193 92.04 91.79
4:2:1 97.75 97.68 97.73  97.26
5:2:1 95.71 9553 9238 91.44

6:2:1 9782 9778 9746  97.48
7:2:1 97.70  97.53  97.26  96.95

5.1.3 Factor of Dropout Layers in ID-CNN Blocks

The MTC model adds dropout layers after each convolutional layer of the 1D-CNN blocks in
order to avoid overfitting and improve generalization, therefore we must choose the right dropout
factor through experimentation. Table & displays the experimental findings. As can be seen, the model
performs best for classification when the factor is set to 0.07, thus we decided to use that value for
each dropout layer in the 1D-CNN blocks.

Table 8: Experimental results of different dropout parameter values in the 1D-CNN block

Dropout rates App. Tra.

F1 (0/0) Rc (0/0) F1 (0/0) Rc (0/0)
0.05 9782 97.78 9746  97.48
0.07 98.25 98.30 9794 97.54
0.09 94.69 9443 88.18  89.56

5.1.4 Different Number of Epochs

The number of epochs is also important for the results of the model. If the number is too small,
the model may not have time to fit the data, and if the number is too large, the problem of over fitting
may occur, which will make the effect of the model on the testing set worse. We finally selected 100
epochs according to the results in Table 9.

Table 9: Experimental results of different number of epochs

Number of epochs App. Tra.

F1 (%) Rc (%) F1 (%) Rc (%)
50 96.87 96.74 9599  96.85
80 97.71 97.56  97.25  97.50
100 98.25 98.30 97.94 97.54

120 9793 9799 9725 97.21
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5.2 Impact of Auxiliary Classification Tasks

Finally, in order to verify the effect of auxiliary tasks on the classification performance of the
model, we design a set of two-task models (MTC-2task), i.e., the model proposed in this paper is
removed in the output layer of the ID-CNN block to remove the auxiliary tasks for 6 classes of
classification, keeping only the App. task of the Transformer block, and the Tra. task of the ID-CNN
block. Table 4 displays the experimental results, which clearly demonstrate how the auxiliary task can
help improve classification performance. When the auxiliary task is removed, the model’s classification
performance declines significantly, as shown by the average F1 values of the App. task, which decrease
by 2.65% and the average recall, which decrease by 3.06%; the average F1 value of the Tra. task, which
decreases by 5.48% and the average recall, which decreases by 6.01%.

5.3 Limitations of This Work and Future Works

In the experiment, although the number of parameters is between Transformer and 1D-CNN, we
feel that the training time of our model on the ISCX dataset is relatively long, which is the biggest
shortcoming of our model. We guess that this is mainly because we use more encoder layers and the
data length is long, which increases the training time undoubtedly. Next, we consider optimizing the
model structure to reduce the training time on long sequences. The second disadvantage is that the
interpretability of our model is still insufficient, which is known as a common issue with deep learning
methods at the current stage. Although the experiments have yielded good results and proved our
previous conjecture, it is difficult for us to describe how the model specifically features traffic data
and represents the local and global features that be obtained by 1D-CNN and Transformer methods
learning automatically in the potential space, which is also the focus of our future research work.

6 Conclusion

In this paper, we provide a Transformer and 1D-CNN-based multi-task encrypted traffic classifi-
cation model. Multiple tasks are all simultaneously classified by the model using a parallel architecture.
Through the feature fusion block, the model fuses the features produced by Transformer and 1D-
CNN. This allows the model to fully utilize the local detail features and long-distance correlation
information features produced by both methods, respectively, to improve the model’s feature extraction
capabilities and, as a result, the classification performance of encrypted traffic. The model delivers
optimal results and can produce superior outcomes in the situation of data imbalance through
comparison experiments with advanced ones on the two datasets, which shows good performance
and generalization of our model.
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