
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScience

DOI: 10.32604/iasc.2023.036102
Article

NewBee: Context-Free Grammar (CFG) of a New Programming Language for
Novice Programmers

Muhammad Aasim Qureshi1,*, Muhammad Asif2 and Saira Anwar3

1Department of Computer Science, Bahria University Lahore, 54000, Pakistan
2Department of Law, Science and Technology, University of Bologna, 40126, Italy

3Department of Multidisciplinary Engineering, Texas A & M University, College Station, 77843, USA
*Corresponding Author: Muhammad Aasim Qureshi. Email: maasimq@hotmail.com

Received: 17 September 2022; Accepted: 23 November 2022

Abstract: Learning programming and using programming languages are the
essential aspects of computer science education. Students use programming
languages to write their programs. These computer programs (students or
practitioners written) make computers artificially intelligent and perform
the tasks needed by the users. Without these programs, the computer may
be visioned as a pointless machine. As the premise of writing programs is
situated with specific programming languages, enormous efforts have been
made to develop and create programming languages. However, each program-
ming language is domain-specific and has its nuances, syntax and seman-
tics, with specific pros and cons. These language-specific details, including
syntax and semantics, are significant hurdles for novice programmers. Also,
the instructors of introductory programming courses find these language
specificities as the biggest hurdle in students learning, where more focus is
on syntax than logic development and actual implementation of the program.
Considering the conceptual difficulty of programming languages and novice
students’ struggles with the language syntax, this paper describes the design
and development of a Context-Free Grammar (CFG) of a programming
language for the novice, newcomers and students who do not have computer
science as their major. Due to its syntax proximity to daily conversations,
this paper hypothesizes that this language will be easy to use and understand
by novice programmers. This paper systematically designed the language by
identifying themes from various existing programming languages (e.g., C,
Python). Additionally, this paper surveyed computer science experts from
industry and academia, where experts self-reported their satisfaction with the
newly designed language. The results indicate that 93% of the experts reported
satisfaction with the NewBee for novice, newcomer and non-Computer Sci-
ence (CS) major students.

Keywords: Programming language; formal language; computer language;
language grammar; simple syntax programming language; novice
programmer

https://www.techscience.com/journal/iasc
https://www.techscience.com/
http://dx.doi.org/10.32604/iasc.2023.036102
https://www.techscience.com/doi/10.32604/iasc.2023.036102
mailto:maasimq@hotmail.com

440 IASC, 2023, vol.37, no.1

1 Introduction

A structured communication system between humans, computers or their intersection (i.e., human
to human, computer to computer and human to computer or computer to human) is known as
language [1]. In communications and computer science, the role of two types of languages is pre-
dominant: natural and formal languages. Natural language is the mode of communication between
humans. This communication has different forms in natural languages, e.g., spoken, written and
symbolic (i.e., signs, gestures). However, formal languages are inherent languages extracted from the
natural languages with a specific set of rules. In computer science, formal languages serve as the basis
for defining the grammar and syntactical aspects of computer programming languages.

Computer Programming Languages (CPL) (languages needed to write software programs) are
formal languages that provide an interface between computer-to-human, computer-to-computer, or
human-to-computer interactions. Besides interface, CPL expresses computing-specific logic according
to language rules and syntax [2].

In computing, programming languages are a central component [3]. These languages are designed
to bridge the gap between the machine and the human who want to perform some specific tasks
on the machine [4]. In today’s era, learning programming and the ability to program are essential
skills as reflected by various international policy documents for pre-college [5] and undergraduate [6]
students. Considering the importance of computing and computational thinking, skills and abilities to
understand computer languages are fundamental skills. The knowledge and ability to program allow
the students to get the maximum benefit from computers as it helps in problem-solving, computational
thinking and simulations. Through these programming languages, one can guide computers to perform
some specific tasks. Programming knowledge is the fundamental and central component of computing,
computational thinking, and computer science education [7]. Over the time, many programming
languages have emerged, highlighting varying aspects of programming mechanisms, including low-
level, structured, object-oriented and high-level programming languages. However, choosing which
language to use is critical as every language has its specifications, limitations and affordances [8].

The existence of many programming languages raises another critical question; why do we build
another language? [9]. Futhermore, what fundamental variation the new language actually provides
viable tool to write programs in relation to others. Literature suggests that every new language
overcomes the weakness of the existing ones or meets the new specific goals [10]. For example, some
languages have exceptionally rigid language structures (syntactic), while others enforce indentations.
It becomes a nightmare for new developers, novice programmers and non-CS major students to
remember such superficial punctuations and constraints [11], primarily when they work on relatively
large and complex projects. Literature suggests that the right way of learning programming is to shift
programming students’ attention to logic instead of worrying over the sentence structure of the code
[12]. For example, a Java developer would be consuming their energies over the brackets and blocks,
while a python coder will be stressing over the indentation. Similarly, the developer of C and C++
must stress over the semi-colon for the termination of the instructions [12]. Furthermore, sometimes
programmers must consider the data types while writing the code, which leads to fatal errors if handled
incorrectly [13].

Given these language nuances, present programming languages can be summed up in two signifi-
cant classes, i.e., firmly bound and approximately bound dialects [14]. The firmly bound languages
are early dialects in which developers must deal with each detail like proper blocks, indentation,
semi-colons and different keywords. C, C++ and Java are examples of early dialect languages [15].
Approximately bound languages have relatively less stress over such structural aspects. However,

IASC, 2023, vol.37, no.1 441

developers have to follow some sentence structure level constraints in these languages—examples of
such languages include PHP and Python [16].

This study aims to introduce a context-free grammar of a programming language for new
developers, novice programmers and non-CS major students. This paper hypothesizes that using
features, this language “NewBee” will help students in learning the language in a more relaxed way.
The premise of NewBee is to shift students’ focus from syntax to logic building. Consequently, students
will be learning to remove logical errors and will have less focus on syntactical errors.

The rest of the paper is organized into seven sections. Section 2 focuses on the previous related
research on the grammar of different programming languages. Section 3 discusses the approach which
is adopted to hypothesise the design of a language including the steps involved. Section 4 focuses on
the grammar of the language. Section 5 list the limitation of the language. In Section 6 some sample
programs are given. Finally, Section 7 concludes the paper.

2 Literature Review

A program is a set of instructions given to any computing machine to perform some specific
tasks to achieve a predefined target. Programming languages are characterized into two types—
Domain-Specific Languages (DSLs) and General-Purpose Languages (GPLs) [16]. DSL deals with
the specific class of problems that belong to a specific domain, including databases, web applications,
etc. Examples of these languages are HyperText Markup Language (HTML), Cascading Style Sheets
(CSS) and Structured Query Language (SQL) [17].

GPLs are used for building software in various application domains. C, C++, C#, Python and
Java are examples of General-Purpose Languages [18].

DSLs can be implemented as External Domain Specific Language (EDSL) and Internal Domain
Specific Language (IDSL) [19]. IDSL is the domain-specific language that is implanted into a general-
purpose language that is limited with the grammar of the host language [20].

Few practices were carried out in the past in domain-specific languages. For example, Van
Deursen et al. [21] listed the practices for the attainment approach at the aspect level only for semantics.
Similarly, Oliveira and colleagues [10] surveyed Domain-Specific Language where the attainment
details were not given. Furthermore, authors of [22,23] focused on the composability aspects of
language and provided details on how they can cover different language workbenches.

Prior research studies have used various strategies to propose new languages. For example, in
[23], a new language was presented to evaluate the DSL attainment approaches based on the unified
state machine. The authors claimed that no single approach is valid for all scenarios. Similarly, prior
literature studies [24–27] have used systematic mapping of existing languages. For example, in [24],
authors surveyed to examine the methods and techniques of the existing DSL. They evaluated the
domains and tools used in the creation of DSL. The authors concluded that external DSL for various
domains were gaining a lot of attraction and described them as invaluable and relevant across domains.

Various literature studies [25,26,28] conducted their examination based on systematic mapping
and captured the DSL field’s research space and trends over a given period. The authors concluded
that DSLs would be the primary programming language for the foreseeable future. Furthermore, one
of the unresolved issues in the DSL field is how to make DSL development easier for domain experts.
Additionally, the authors examined current approaches to resolve the issue mentioned above through
the survey.

442 IASC, 2023, vol.37, no.1

Similarly, in the Language Workbench Challenge 2013, studies [29,30] proposed a feature model
for language workbenches and categorized them using the model. The authors presented a uniform
challenge (i.e., a DSL for surveys) implemented by ten workbenches. The study examined the
properties of various workbenches in several ways. It showed that no single language workbench could
deliver all the required features. The authors are more concerned with the available features of the
workbench than with the methods employed to obtain them.

Motivation: Although these studies used various methods to examine the methods and techniques
of existing DSL, they highlighted unresolved issues. It is noteworthy that these unresolved issues and
heavy grammatical rules can be very confusing for novice programmers which provides the motivation
to conduct this study.

When novice programmers, newcomers to computing majors and non-cs major students start
learning logic development, using some programming language, they face many issues and difficulties.
Many of these issues are related to the intrinsic hard nature of programming [31] Also, some issues
are associated with the complexities of logic building, syntax and sentence structure [32]. The most
hazardous thing in writing the code for a complicated program is not always logical, but it is syntax
or sentence structure [33]. To our surprise, the lack of even a single semi-colon or bracket in the
complicated code is one of the worst nightmares of a programmer, while in some cases, the data type
parsing issues are one of the major concerns for programmers [34]. This study presents a context-free
grammar for a programming language for novice programmers, newcomers to CS majors and students
with non-cs major backgrounds. This language supports these learners in logic building and provides
an easy way to comprehend the language’s syntax.

3 Language Design Approach

The programming language, i.e., NewBee, addresses the sentence structure level issues raised by
the programmers. It makes the syntax simple and allows novice students to concentrate on the logic.
The significant goal is to develop a language for which new students don’t need to struggle to remember
or memorize the syntax. Along with ease, a few language constraints are added to the language. The
premise of these constraints is rooted in the need and level of novice programmers. This paper used
a systematic approach to accomplish such a degree of facilitation. The methodology of this paper
handpicked language rules that concentrate on straightforwardness for the programmers. This paper
chose these rules from previous languages and combined them into one language. We believe that the
language built from straightforward rules and emphasizing less structure will provide the necessary
ease to novice programmers for learning and implementation in the NewBee. The methodology of the
proposed language is shown in Fig. 1.

For instance, in the proposed language, novice programmers don’t have to end the statement with
a semi-colon as is required in C++ or Java. Similarly, the NewBee is not space touchy as Python.
Additionally, the proposed language facilitates the programmers on sections stress to begin a block.
They need to begin a block with a mark which is an idea preoccupied with the low-level computing
construct.

In this article, a new language is being proposed to give syntax-level ease to the novice, new-
comers and non-CS major students. By keeping the syntax close to students’ daily language, syntax
requirements may be least bothersome causing fewer syntax errors. The following section explains our
proposed language sentence structure and introduces the syntax of the language.

IASC, 2023, vol.37, no.1 443

Figure 1: Methodology

3.1 Language Feature Identification
To identify the ideal features, this paper conducted a short survey including a sample of industry

developers, students and instructors NInstructor = 7; NStudents = 23; and NDevelopers = 11. The survey results
indicate that the following features of the NewBee are a necessary component for the novice,
newcomers and students who do not have computer science as their major:

1) Program Execution Sequence
2) Statements Termination
3) Decision-making Structure
4) Loop Structures
5) Functions
6) Type Specifier
7) Operators
8) Comments
9) Reversed Words

3.2 Feature of “NewBee”
Following are the key features of the proposed language.

3.2.1 Program Execution Sequence

The program Execution sequence in NewBee Language begins with the keyword “Start of
Program” to let the compiler know that the program has Started. In the same way, the program will

444 IASC, 2023, vol.37, no.1

end with “End of Program” Anything that was written after “End of Program” will not execute and a
developer can write their notes/explanations here.

Code Example:

Start of Program

<Your program code goes here>

End of Program

3.2.2 Statement Termination

The termination of the statement will be without any visible terminator; instead, it will be
terminated just with the next line.

Code Example:

a = 10

Display a

3.2.3 Decision-making Structure

If then structure:

Decision-Making Statement in NewBee will start with the keyword “If” and the block termination
will be with “End of If”. The language provides braces-free syntax so there will be no brackets for
decision-making structure.

Code Example:

If a<=10

Display a

End of If

If then Else structure:

The If Else statements are again the block statements. These statements will also be written in the
same way. This means starting with a keyword i.e., “If”. Followed by the then-part statements. The
else part will start with “Else” and will end at “End of Else”.

Code Example:

If a > b

Display “a is larger”

Else

Display “b is larger”

End of Else

3.2.4 Loop Structure

The language provides three different types of looping structures:

i. “from till” loop structure
ii. “while” loop structure

iii. “do while” loop structure

IASC, 2023, vol.37, no.1 445

From-Till loop

The language provides “from-till” which iterates from the given value till the condition is true. It
has two versions one is with an auto-increment of 1 and the other one will increment the loop counter
with the value mentioned after the keyword “with”. Termination of the structure is with the key work
“End of Loop”.

Code Example:

From i = 0 till i<=5

Display “Hello World”

End of Loop

While loop

The language provides the “While” keyword as the start of the loop and the block will terminate
with the keyword “End of Loop”.

Code Example:

a = 0

While a<=10

Display a

a++/

End of Loop

Do While:

do

a= a+1

Display “a”

While a < 5

End of Loop

3.2.5 Functions

All functions will be written at the end of the main program. It will start with the keyword
“Function” and will end at “End of Function”.

Code Example:

Start of Program

add (10 20)

Function add (a b)

c=a+b

Display c

End of Function

446 IASC, 2023, vol.37, no.1

3.2.6 Types of Specifier

This language is free of data type i.e., there is no need to write any data type keyword to declare
the identifier. The data type will be automatically cased at the time of assignment means if the value
is an integer the identifier will become an integer if it is a float then the identifier will become afloat.

Code Example:

a = 1

b = 2.5

c = abc

d = a

Code Example:

From i = 0 till i<=5 with x

Display “Hello World”

End of Loop

3.2.7 Operators

Operators being used in NewBee can be seen in Table 1.

Table 1: Operators of “NewBee”

Arithmetic Conditional Relational

+ > And
− < Or
∗ >= Not
/ <=
%

=
3.2.8 Comments

The language supports single and multi-line comments.

Single Line Comments:

Single line comments are written with the double slash (//) sign.

Code Example:

//this is a single line comment

Multiline Comment:

A multiline comment starts with the single forward slash in the beginning (/) and a single forward
slash (/) at the end of the comment.

Code Example:

/ this is a multiline comment, us to

Start and end with the backslash/

IASC, 2023, vol.37, no.1 447

3.2.9 Reserved Keywords

Following Table 2. provides the list of reserved words/strings. All words will be case-insensitive so
that students need not bother with the case-sensitivity of keywords and do not face such errors. The
reflection of making these words case-insensitive is not present (but only “If” is made case-insensitive)
in the CFG (due to the page limitations).

Table 2: List of reserved words

Start End If

of Function Else
Program Loop While
From Till Do
Input Display With
And Not
Return

4 Grammar of the Language

The grammar of the language is as bellow: The words written in Cap-Bold are the Terminals and
the others are the non-terminals.

START Start of Program nl STMT nl End of program |
Start of program nl STMT nl Function FUN_STMT End of program

STMT → INPUT_STMT nl STMT |
OUTPUT_STMT nl STMT |
EXP_STMT nl STMT |
ASS_STMT nl STMT |
SEL_STMT nl STMT |
LOOP_ STMT nl STMT |
FUN_CAL_STMT nl STMT |
FUN_DEC_STMT nl STMT |
break |
(nl used for the new-line)

IDENTIFIER → ALPHABET IDENTIFIER | ALPHABET
ALPHABET → a | b | c| d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u| v | w | x | y

| z | A | B| C| D| E| | F | G | H | | I | J | K | L | M | N | O | P | Q | R | S |
T | U | V | W | X | Y | Z | _

CONSTANT → DIGIT CONSTANT | DIGIT

(Continued)

448 IASC, 2023, vol.37, no.1

DIGIT → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0
STRING → CHARACTER STRING | STRING
CHARACTER all character
INPUT_STMT → Input IDENTIFIER | Input STRING
OUTPUT_STMT → Display IDENTIFIER | Display STRING
ASS_STMP → IDENTIFIER = FUN_CALL_STMT |

EXP-STMT |
IDENTIFIER = EXP-STMT |
IDENTIFIER = ALPHABET |
IDENTIFIER = CONSTANT

EXP-STMT → EXP-STMT + EXP-STMT |
EXP-STMT - EXP-STMT |
EP-STMT ∗ EP-STMT |
EP-STMT/EP-STMT |
(EXP-STMT) |
IDENTIFIER |
CONSTANT

SEL_STMT → IF LOG_STMT nl STMT nl End of If |
IF LOG_STMT nl STMT nl ELSE_STMT nl End of If

IF → If | IF | if | iF
ELSE_STMT → ELSE nl STMT
LOG_STMT → COND_STMT LOG_OP COND_STMT LOG_STMT |

COND_STMT LOG_OP COND_STMT |
LOG_STMT

LOOP_STMP → WHILE_LOOP | DO-WHILE_LOOP | FROM-TILL_LOOP
COND_STMT → EXP-STMT COND_OP EXP_STMT |

EXP-STMT COND_OP EXP_STMT |
EXP-STMT COND_OP EXP_STMT |
EXP-STMT |
IDENTIFIER |
CONSTANT

COND_OP → < | > | >= | <= | = |<>
LOG_OP → And | Or | Not
FROM-
TILL_LOOP

→ From ASS_STMT till LOG_STMT |
From ASS_STMT till LOG_STMT with CONSTANT |
From ASS_STMT till LOG_STMT with IDENTIFIER

WHILE_LOOP → While LOG_STMT nl STMT nl End of Loop |
While COND_STMT nl STMT nl End of Loop

DO-WHILE_LOOP → Do nl LOG_STMT nl While EXP_STMT nl End of Loop |
Do nl STMT nl While COND_STMT nl End of Loop

FUN_CALL_STMT → IDENTIFIER (ARG_LIST) nl |
IDENTIFIER () nl

ARG_LIST → ARG , ARG_LIST |
ARG

(Continued)

IASC, 2023, vol.37, no.1 449

ARG → EXP_STMT |
IDENTIFIER |
CONSTANT

FUN_DEC_STMT → Function FUN_DECL End of Function FUN_DEC_STMT
FUN_DECL → IDENTIFIER (PARA_LIST) nl STMT nl Return IDENTIFIER |

IDENTIFIER (PARA_LIST) nl STMT nl Return CONSTANT |
IDENTIFIER () nl STMT nl Return IDENTIFIER |
IDENTIFIER () nl STMT nl Return CONSTANT

PARA_LIST → IDENTIFIER , PARA_LIST |
IDENTIFIER

5 Language Limitations

In order to keep language simple and easy to understand for the newbies, few leverages are
restricted. Details can be seen as follows:

• It is a procedural language and doesn’t support Object-Oriented Programming (OOP) features
like Inheritance, Encapsulation, and Polymorphism

• Only alphabets—lower case and upper case and “_” is allowed for identifiers
• An identifier with the name of keywords should not be created (the compiler can apply this

restriction)
• Function call passing in function arguments is restricted
• Every building block, like loops and if-else structures, start and end with keywords that are close

to common sense and English
• Language does not support Arrays and Switch statements
• Language does not support any external libraries.

6 Sample Program

Some sample programs are given below:

6.1 Program to Add Two Numbers
Start of program

Display “Enter value:”

Input a

Display “enter the value:”

Input b

c=a+b

Display “Result”: ”

Display c

End of program

Output:

Enter value: 5

450 IASC, 2023, vol.37, no.1

Enter the value: 5

Result: 10

6.2 Program to Find Factorial of a Number
Start of program

fact = l

Display “Enter Number: ”

Input num

From a=l till a<=num

fact=fact∗a

End of Loop

Display “Factorial of Given Number is =”

Display fact

End of program

Output:

Enter Number: 3

The Factorial of the Given Number is = 6

6.3 Program to Find Prime Numbers
Start of program

Display “Enter a positive integer: ”

Input n

flag = 0

From i = 2 till i<= n And flag = 0 with 1

If n%i = 0

flag = 1

End of If

End of Loop

If n = 1

Display “1 is neither prime nor composite.”

Else

If flag = 0

Display “given number is a prime.”

Else

Display “given number is composite.”

End of If

End of program

IASC, 2023, vol.37, no.1 451

Output:

Enter a positive integer: 7

the given number is a prime.

7 Results and Conclusion

This study has presented a grammar for a language for beginners, novice programmers, and the
non-cs major student called NewBee. The language proposes a simple and close English sentence
structure and syntax to provide ease and comprehension to the beginners and novice programmers.
The language is proposed using a systematic approach with feature identification, context-free
grammar, and sample programs. Additionally, this paper conducted a short survey and examined the
satisfaction of the experts. In this survey, 17 experts (with a minimum of 5 years of industrial experience
or teaching experience in multiple languages) were given forms containing the programs (elaborating
syntax) and their satisfaction on a 10-Likert scale (1 to 10) was recorded, where one indicated lowest
satisfaction and ten indicated the highest satisfaction. The average satisfaction appeared to be 93%
among different users of the language (Keeping in mind that this language is for the novice, newcomers
and students who do not have computer science as their major).

8 Future Work

This study can further be extended by incorporating more new and old language to make things
more and more simple for the programmers

Acknowledgement: The authors would like to express their most profound gratitude towards, Mr Rana
Muhammad Ijaz and Mr Sikandar Hayyat for their valuable time and efforts in helping us.

Funding Statement: This material is based upon the work supported by the startup fund provided to Dr.
Saira Anwar by Texas A&M University, College Station, USA. Any opinions, findings, conclusion, or
recommendations expressed in this material do not necessarily reflect those of Texas A&M University.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] A. L. Guzman, “What is human-machine communication, anyway,” in Human-machine Communication

Rethinking: Communication Technology and Ourselves, Peter Lang, Book, New York, USA, vol. 1, pp. 1–
28, 2018.

[2] M. Soeken, T. Haener and M. Roetteler, “Programming quantum computers using design automation,” in
2018 Design, Automation & Test in Europe Conf. & Exhibition (DATE), Dresden, Germany, pp. 137–146,
2018.

[3] D. Johnson and M. Ketel, “IoT: Application protocols and security,” International Journal of Computer
Network & Information Security, vol. 11, no. 4, pp. 1–8, 2019.

[4] K. Vinall and E. A. Hellmich, “Down the rabbit hole: Machine translation, metaphor and instructor
identity and agency,” Second Language Research & Practice, vol. 2, no. 1, pp. 99–118, 2021.

[5] N. G. S. S. L. States, “Next generation science standards: For states, by states,” Washington, DC, USA,
Book, 2013.

[6] S. Olson, “Grand Challenges for Engineering: Imperatives, Prospects and Priorities: Summary of a Forum,”
National Academies Press, Washington, DC, USA, 2016.

452 IASC, 2023, vol.37, no.1

[7] A. Juškevičiene, G. Stupuriene and T. Jevsikova, “Computational thinking development through physical
computing activities in STEAM education,” Computer Applications in Engineering Education, vol. 29, no.
1, pp. 175–190, 2021.

[8] D. Proctor, “The social production of internet space: Affordance, programming and virtuality,” Communi-
cation Theory, vol. 31, no. 4, pp. 593–612, 2021.

[9] R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Cunha et al., “Ranking programming languages by energy
efficiency,” Science of Computer Programming, vol. 205, pp. 102609–102639, 2021.

[10] O. Grljević and Z. Bošnjak, “Sentiment analysis of customer data,” Strategic Management, vol. 23, no. 3,
pp. 38–49, 2018.

[11] F. Del Bonifro, M. Gabbrielli, A. Lategano and S. Zacchiroli, “Image-based many-language programming
language identification,” PeerJ Computer Science, vol. 7, pp. e631–655, 2021.

[12] A. M. Abubakar and A. A. Mustapha, “Newton’s method cubic equation of state C++ source code for
iterative volume computation,” International Journal of Recent Engineering Science, vol. 8, no. 3, pp. 12–22,
2021.

[13] J. -S. Lee, Y. -W. Su and C. -C. Shen, “A comparative study of wireless protocols: Bluetooth, UWB, ZigBee
and Wi-Fi,” in IECON 2007–33rd Annual Conf. of the IEEE Industrial Electronics Society, Teipei, Taiwan,
pp. 46–51, 2007.

[14] J. Peterson, “Speaking ability progress of language learners in online and face-to-face courses,” Foreign
Language Annals, vol. 54, no. 1, pp. 27–49, 2021.

[15] S. G. Kochan, “Programming in C Third Edition,” Book, Developer’s Library, Indianapolis, Indiana, 2021.
[16] X. Chen, D. Song and Y. Tian, “Latent execution for neural program synthesis beyond domain-specific

languages,” Advance in Neural Information Processing Systems, vol. 34, pp. 1–13, 2021.
[17] D. Pollak, V. Layka and A. Sacco, “DSL and Parser Combinator,” in Beginning Scala 3, Berkeley,

California: Springer, pp. 237–245, 2022.
[18] S. Höppner, T. Kehrer and M. Tichy, “Contrasting dedicated model transformation languages versus

general purpose languages: A historical perspective on ATL versus java based on complexity and size,”
Software and Systems Modelling, vol. 21, pp. 1–33, 2021.

[19] K. Faldu, A. Sheth, P. Kikani and H. Akbari, “KI-BERT: Infusing knowledge context for better language
and domain understanding,” arXiv Prepr. arXiv2104.08145, vol. 2, pp. 1–10, 2021.

[20] R. Liu, M. Gao, S. Ye and J. Zhang, “IGScript: An interaction grammar for scientific data presentation,”
in Proc. of the 2021 CHI Conf. on Human Factors in Computing Systems, Yokohama, Japan, pp. 1–13, 2021.

[21] A. Van Deursen, P. Klint and J. Visser, “Domain-specific languages: An annotated bibliography,” ACM
Sigplan Notices, vol. 35, no. 6, pp. 26–36, 2000.

[22] S. Erdweg, P. G. Giarrusso and T. Rendel, “Language composition untangled,” in Proc. of the Twelfth
Workshop on Language Descriptions, Tools and Applications, New York, USA, pp. 1–8, 2012.

[23] N. Vasudevan and L. Tratt, “Comparative study of DSL tools,” Electronic Notes Theoretical Computer
Science, vol. 264, no. 5, pp. 103–121, 2011.

[24] L. M. do Nascimento, D. L. Viana, P. A. S. Neto, D. A. Martins, V. C. Garcia et al., “A systematic mapping
study on domain-specific languages,” in the Seventh Int. Conf. on Software Engineering Advances (ICSEA
2012), Lisbon, Portugal, pp. 179–187, 2012.

[25] M. Mernik, “Domain-specific languages: A systematic mapping study,” in Int. Conf. on Current Trends in
Theory and Practice of Informatics, Limassol, Cyprus, pp. 464–472, 2017.

[26] T. Kosar, S. Bohra and M. Mernik, “Domain-specific languages: A systematic mapping study,” Information
and Software Technology, vol. 71, pp. 77–91, 2016.

[27] J. Tanha, Y. Abdi, N. Samadi, N. Razzaghi and M. Asadpour, “Boosting methods for multi-class imbal-
anced data classification: An experimental review,” Journal of Big Data, vol. 7, no. 1, pp. 1–47, 2020.

[28] M. Mernik, J. Heering and A. M. Sloane, “When and how to develop domain-specific languages,” ACM
Computing Surveys, vol. 37, no. 4, pp. 316–344, 2005.

[29] S. Erdweg, T. V. D. Storm, M. Volter, R. Bosman, W. R. Cook et al., “The state of the art in language
workbenches,” in Int. Conf. on Software Language Engineering, Indianapolis, USA, pp. 197–217, 2013.

IASC, 2023, vol.37, no.1 453

[30] S. Erdweg, T. V. D. Storm, M. Volter, R. Bosman, W. R. Cook et al., “Evaluating and comparing language
workbenches: Existing results and benchmarks for the future,” Computer Languages, Systems & Structure,
vol. 44, pp. 24–47, 2015.

[31] P. N. Johnson-Laird, M. Bucciarelli, R. Mackiewicz and S. S. Khemlani, “Recursion in programs, thought,
and language,” Psychonomic Bulletin & Review, vol. 29, pp. 430–454, 2022.

[32] S. Olson, “Grand Challenges for Engineering,” Washington, D.C.: National Academies Press, Book, 2016.
[33] J. Hartmann, J. Huppertz, C. Schamp and M. Heitmann, “Comparing automated text classification

methods,” International Journal of Research in Marketing, vol. 36, no. 1, pp. 20–38, 2019.
[34] H. M. Gualandi, “The Pallene Programming Language,” Ph. D. Dissertation. Pontifcia Universidade

Católica do Rio de Janeiro, 2020.

	NewBee: Context-Free Grammar CFG of a New Programming Language for Novice Programmers
	1 Introduction
	2 Literature Review
	3 Language Design Approach
	4 Grammar of the Language
	5 Language Limitations
	6 Sample Program
	7 Results and Conclusion
	8 Future Work
	References

