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Abstract: It is widely acknowledged that navigation is a significant source
of between sites. The Global Positioning System (GPS) has numerous navi-
gational advancements, and hence it is used widely. GPS navigation can be
compromised at any level between position, location, and estimation, to the
detriment of the user. Consequently, a navigation system requires the precise
location and underpinning tracking of an object without signal loss. The
objective of a hybrid environment prediction system is to foresee the location
of the user and their territory by employing a variety of sensors for position
estimation and monitoring navigation. This article presents a state estimation
of the relative position for indoor and outdoor activity solved with a state
estimation algorithm utilizing Kalman filter. Also, a comparative study of
variants of the Kalman filter, where linearizing current mean and covariance
with nonlinear state estimation as an approach of Extended Kalman Filter
(EFK) is applied to the collected data. The third comparative aspect uses
probability distribution for the selected points with a Sigma Point Kalman
Filter (SPKF) for evaluating an accelerometer, gyroscope, and GPS data in
hybrid environments for various activities for different data collection scenar-
ios from users. The findings of the presented model demonstrate the robust
performance of all forms of the Kalman filter algorithm for diverse user-
performed activities in totally contaminated indoor and outdoor environ-
ments. Experimental findings with various patterns and data, conducted by
different subjects using multiple modes of navigation, show that the approach
can indeed lead to the intelligent development of sensor-based navigation and
monitoring. State estimation and prediction is extraordinarily beneficial for
mining applications, autonomous vehicle localization/tracking, and location-
based services. This research work demonstrates both EKF-based and SPKF-
based sensor fusion to provide an appropriate estimation.
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1 Introduction
Monitoring and managing the position of an object is a major task in navigation.

In recent years, navigation has been conducted using a variety of devices, techniques and
methodologies, including compass, coastal navigation, dead reckoning, and charts. The most common
types of navigational methods are position fixing and dead reckoning. In order to execute position
fixing, one must first determine the navigation states with a predetermined collection of already known
places. The use of global navigation satellite systems is an illustration of the positioning technique
known as position fixing with Global Navigation Satellite System (GNSS). On the other hand, dead
reckoning is a method that determines the navigation states of a moving platform by measuring the
progression of such navigation states recursively their initial values. In contrast, live reckoning uses
only the initial values of the navigation states.

Despite being the most widely used navigation technology, the Global Positioning System (GPS)
suffers from the following limitations: signal degradation due to the environment; signal loss due to
barriers; trilateration to determine the exact point of intersection obtained from satellite signals; and
signal inaccuracy due to multipath [1]. Although, GPS navigation requires a clear sky to receive precise
signals, errors are still possible. As a result, filtering is required for navigation in specific environmental
settings so that the environment does not impact GPS receiver signals. GPS receiver signals must be free
of interference in order to locate an object’s precise location. Due to disturbance in GPS satellite signal
reception, keeping track of these things during surveillance becomes difficult. Continuous reception
of noise-free signals is more important for navigation in such applications. [2,3]. Differential Global
Positioning System (DGPS) is promoted to overcome the GPS navigation constraint of an object’s
erroneous location [4]. DGPS is a part of the GPS that fixes GPS signals positions and eliminates
pseudo range errors, which are signal delays and distance differences between a satellite and a GNSS
receiver. With this change, GPS receivers can get better information about their location. However,
this method is limited because the base station and the user station must look at the same set of
satellites. The pseudo range correction has been transformed to World Geodetic System 1984 (WGS84)
coordinates and is only applicable when four or more satellites are observed. It is simple to use, but the
positioning accuracy will decrease as the distance between the base station and the user station grows
[5,6].

A further method combines information from the Global Positioning System with the Inertial
Measurement Sensor (INS). However, it has been noticed that the utilization of subject motion
limitations was studied to prevent INS error degradation in real-time applications when GPS was
unavailable. The main advantage of choosing this approach is that it eliminates the need for an external
auxiliary sensor, which helps to keep the system’s cost minimum. The key benefit of taking such an
approach is to eliminate the need for an external auxiliary sensor, which helps to keep the cost of the
system to a minimum. The INS errors are considerably controlled by the constraints, which improve
measurement redundancy, velocity and attitude estimations [7].

Another category for navigation approach is dead reckoning. The need for dead-reckoning
navigation arises from the limitations of typical position fixing techniques which require a direct line
of sight between the platform, to be navigated, and the well-known fixed positions. With the aid of
motion sensors, rotation sensors, state estimator, with inertial navigation system continually calculate
the position, orientation, and velocity of a moving object using dead reckoning, without any external
references. The inertial measurement unit (IMU) and the processing unit comprise INS [8]. Sensor
based navigation will eliminate the need of navigation platform. It is impossible to measure all of
a system’s states directly, or some measurements may be unreliable because of measurement errors
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introduced by the sensors. A real physical quantity the state is detected by a sensor, which then delivers
measurement data in the form of an electrical signal output. There are inaccuracies introduced by the
converting procedure. Drift error and measurement noise are examples of such inaccuracies. Drift
error is eliminated by the sensor’s correction, but measurement noise cannot be eliminated without
changing the sensor’s fundamental design.

A state estimation is a method that estimates the internal state of a given actual system, based on
measurements of its inputs and outputs. This estimate can predict how the real system will behave in
the future. Dynamic state estimation is of tremendous interest to those who investigate state predictors.
It allows the system to predict the future by primarily considering the current state of the system as
determined by past measurements. Preventative analysis relies on predictive analysis when examining
past observations or fixing past mistakes. Data processing is essential to some applications, the data
noisy and therefore potentially erroneous. In the case of object tracking, estimation and perdition
may lead in the wrong direction due to these incorrect data values [9].This technique of estimating
and forecasting is employed in navigation. Typically, regardless of the error covariance, the state
estimator should have estimated consistency; if this covariance is inconsistent, it quickly shows system
performance issues. A tracking estimator frequently resembles a dynamic state estimator, but with a
primary difference of in forecast. This forecast is omitted in state estimation. Without any physical
modelling of the system’s time-varying nature, tracking state estimates offer a quick real-time update
on its status. Dynamic state estimation simulates the system’s time-altering characteristics, enabling it
to anticipate the state vector [10].

A three-axis accelerometer is used for the localization and tracking of a person [1 1]. The prediction
system provides control, preventive and corrective data analysis [12]. This estimation and prediction
method is used to process the data from a 3-axis accelerometer and gyroscope, which is then used
for navigation without a GPS based on the accelerometer and gyroscope’s raw data. In the Kalman
filter, continuous data is monitored with respect to time to provide estimates containing noise and data
imperfections. This filter is referred to as the state estimator. The Kalman filter (KF) has a technique
based on estimation and prediction implemented for linear time-variant or invariant systems. This
filter’s estimation stage is based on measurements that include noise. The prediction phase forecasts
the data based on the prior data conditions and current measurement without memory storage, using
the previous state as a point of reference. If the values match the expected state, the gain of the Kalman
filter will decrease; otherwise, the gain will increase. The Kalman filter is applied since data in a
dynamic system is not fixed and is constantly changing. This is the most challenging aspect of the
tracking and navigation application. Because of object orientation changes, both the prediction and
estimation phases of the Kalman filter become unreliable for navigational purposes [13].

To solve the non-linear estimation problem, the state is linearized using measurement equations,
and the resulting linear estimation problem is then solved using the standard Kalman filter formulae.
Linearizing a system is as simple as selecting an operational point and approximating the nonlinear
function using sensor data. For nonlinear examples of the system beneath each point, the Extended
Kalman Filter (EKF) achieves this transformation by linearizing estimates of the mean and covariance
of random variables that can be propagated in a nonlinear system. Although it is unstable and appears
to have several problems with its convergence capabilities [14], it describes the transformation of mean
and covariance estimates. EKF, an extended Kalman filter, is an alternative method for nonlinear
Kalman filtering to reduce uncertainty and improve estimation [15].

For the measurement of an estimate, each sensor takes some relative states, and these states of
the measurement are biased [16]. These types of estimation can be coordinated with the accelerometer
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and gyroscope and be fused with the state estimator filters [17,18]. Accelerometer and gyroscope data
are fused for state estimation and prediction, regardless of whether the data obtained from them is
influenced by noise in linear or nonlinear situation [19,20]. For localization Sigma Point Kalman
Filter (SPKF), is applied to nonlinear systems [21]. In this research, the KF, EKF, and SPKF on 3-
axis accelerometer and gyroscope data are utilized to determine sensor data patterns under this state
estimation model. Table | displays a comparison of the three filter variants.

Table 1: Comparison of KF, EKF, SPKF

Filter KF EKF SPKF

Specifications of the Gaussian white noise,  Gaussian white noise, = Gaussian white noise,

system linear model non-linear model non-linear model

Precision of a practical Low Medium Medium

system

Calculation cost Low Low Medium

Description High precision in the Nonlinear problems can SPKF outperforms
actual application be solved with the EKF in terms of
system is challenging to extended Kalman filter performance; however
attain due to the (EKF) SPKF Nonlinear
stringent requirements calculations require
of the system. somewhat more input

data.

The key contributions of this work are as follows:

e Sensor data from a 3-axis accelerometer and 3-axis gyroscope are analyzed for localization,
estimation, and prediction utilizing a linear and non-linear technique of KF, EKF, and SPKF.

e Sensor data is the backbone of navigation, and this work will support the sensor data prediction
in navigation.

This research paper is divided into sections. Section 2 discusses the fundamental concept of
accelerometers and gyroscopes applied to the KF, while Sections 3 and 4 explain the accelerometer and
gyroscope testing on the EKF and SPKEF, respectively, as well as other considerations for estimating
the state of any dynamic system. Section 5 provides an overview of the data set and the experimental
setup for data collecting. Section 6 examines the performance of the KF, EKF, and SPKF filters on
variant data sets, and Section 7 concludes.

2 Formulation of Dynamic State Estimate Model using Kalman Filter for Accelerometer and Gyroscope

In this section, a dynamic state estimate model based on a Kalman filter is proposed for
predicting the activity based on accelerometer and gyroscope estimation. The accelerometer sensor
is the primary component that handles acceleration forces with variable velocity. The Kalman filter,
is processing a sequence of measurements recorded over time, and while doing so, the environmental
and measurement noise affects the data statistics. When an object is in motion, its velocity varies with
time. In a precise manner, time is defined in terms of the prior value to calculate the current value, i.¢.,
if suppose the velocity decreases by 3% per time unit, then the current time is 97% of the prior time’s
potential.
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2.1 Proposed Block Diagram for Accelerometer and Gyroscope Estimation with Kalman Filter
Fig. 1 demonstrates the estimation and prediction of sensor data over time using Kalman filter
with accelerometer or gyroscope.
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Figure 1: Raw sensor data state estimation and prediction using Kalman filter

Two phases of Kalman filter are estimation and prediction. First stage is the estimating stage,
which relies on measurement samples collected in constant time intervals. The nature of the filter is
recursive, which means that prediction of the future value is dependent on the present acceleration
and location of the sensor. The second stage of Kalman filters is to predict the future values with
estimation. This is implemented by taking measurements from sensors and then adjusting an estimate
of the state based on both predictions and measured data.

Such measurements are considered as observation values. The following mathematical expressions
using the three axes of the accelerometer and constant ‘a’ are used to measure the state of the system.

X = axXi_; + wy (1)
Zy = X+ W (2)
where,

x — Current State of the System,
Xi_; — Previous State,

z, — Current Observation,

vi — Noise Measurement,

w, — Process Noise,

a — Constant.

The equations Egs. (1) and (2) give the Kalman filter state estimate for measuring state x from
observations but the noise in the current measurement is unpredictable. Therefore, it is advised to
utilize both current and prior measurements and Eq. (1) is re-stated as in Eq. (3).

And the prediction phase is stated using the scaling of the preceding state and can be multiplied
by the distribution by a matrix
P/c - apk_l dT (4)
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These estimated values are the result of constant state transitions between the previous and present
states. To settle the measurement, a relative weight must be added to the current measurement and the
previous measurement as given in Eq. (5).

X=X+ 6 (20— %) 5)
where,

¢ = gain.

2.2 Kalman Filter Gain for Estimation

As the gain is added to the estimation, it changes depending on two conditions as given in Eqs. (6)
and (7).

Case 1: When the gain is 0, then the estimation is the same as that of the previous estimation and
represented as,

X=X (6)

Case 2: When the gain is 1, then the current estimation state is the current observation and
represented as,

X = (7

For each observation, the estimation of the state is dependent on the current observations, the
previous estimate, and gain. In current observation measurements, noise is used to determine the filter’s
gain. The accuracy of the accelerometer is dependent on the current measurements, with the gain being
calculated based on prediction error and noisy output. With current measurement, previous estimate,
and current observation, the state estimate is displayed. So, the gain is represented as in Eq. (8),

€1

(= 2 (®)

€1+ m
where,
ex_; — Prediction error in the previous state
m — Noisy output from the sensor.

As noise is injected throughout the filter’s prediction stages, the noise variances are permitted to
fluctuate with time. This is the covariance of a process estimate and is typically a stochastic variable.
It is the average square error prediction. From Eq. (9), the forecast error is calculated as follows:

D = (1- Ci) D (9)

Consequently, if the gain is 1, the prediction error is calculated from the previous value. The first
is referred to as a prior estimation, while the second is referred to as an a posteriori estimation [22].
Calculation of time and distance from acceleration must be considered from the acceleration prior to
computing the estimation. When velocity is introduced into the system, the current state is calculated
as the sum of the preceding velocity and distance at each time step. For several practical equations
in the application of accelerometer and gyroscope data for navigation, the Kalman filter has a nearly
constant system velocity. As a result, if velocity and distance change over time, the current state of
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the system can be expressed in terms of the state vector of distance and velocity. Consequently, the
prediction and update state equations are denoted from Eqs. (10) to (17).

= [Pl <w>
So the prediction and update state equation is represented as,
X, = Ax, + Bw, (11)
zr = Cxp 4 v (12)
Xy = AX + Bw, (13)
P, =Ap,_, A" (14)
G, = P.C"(CP.C"+ R)™" (15)
N = X + Gz — CXy) (16)
P,=U-GCOC)P, (17)

In Egs. (11)and (12) A, B and C are matrices for the prediction state and R is taken as the matrix
containing covariance between multiple sensor values in the observation z,.

3 Formulation of Dynamic State Estimate Model Using Extended Kalman filter for Accelerometer and
Gyroscope

In the non-linear variant of the Kalman filter, a sequence of measurements is recorded over time,
and while doing so, noise affects the data statistics. The accelerometer sensor is the primary component
that handles acceleration forces with variable velocity. When an object is in motion, its velocity
varies with time. Time is precisely specified in a nonlinear state dynamics system; the probability
condition density produces the least mean square error with no Gaussian distribution since the output
is Gaussian when the Gaussian is fed into a linear system [23]. The Kalman filter always operates
with a linear function and numerous sensors whose real-time measurement tends toward non-linearity,
resulting in nonlinear sensor readings. As sensor data is not linear and constantly changing, the bulk
of sensor values are perturbed, with mean and variance computations being the most affected [24,25]
see Fig. 2 below.
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Figure 2: Raw sensor data state estimation and prediction in extended Kalman filter
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Kalman filter equation gets modified as the non-linearity is introduced in it. With system
dynamics, observations and states are nonlinear. Eqs. (18) and (19) represent the dynamics of a
nonlinear system.

X = Xjy + Wy (18)

In an extended Kalman filter, the measurement can also be a nonlinear function of the state and
the measurement noise. When the noise is added to the measurement equation, these functions can be
written as:

Ze = h(x2) + v (19)

The current state and the prediction state in this filter is as of the Kalman filter given in
following as:

X = X (20)

Pk =Di1+ ¢ (21)

The Kalman gain is the amount of weight given to recent measurements and the current state
estimate. If the gain is close to one, the estimated trajectory will be jittery, while a gain close to zero
will smooth out noise but make the system less responsive. This gain is represented in the Eq. (22).
And the estimated and predicted value is mentioned in the Eqs. (23) and (24).

g = prc(pici + 1) (22)
T= %+ g — ho) (23)
D = (1 — cg)pr (24)

In a nonlinear variant of the KF, the prediction state is identical to the Kalman filter’s prediction
state except for the update state [26]. The actual signal, sequential difference subtraction, approxima-
tion of the signal’s first derivative with time step, and multiple observation space values all influence
the update state. Moreover, in cases where the update state is applied, the single-valued nonlinear state
is transformed into a multi-valued system with two states and three states in observational space. This
matrix referred to as the Jacobian matrix [27,28], contains the current value of the first sensor’s state-
value-related first derivative for a nonlinear model.

Due to this state transition model in nonlinear function, the present state estimate and prediction
are represented in equations Eqgs. (25) to (31).

X = f (X, ) + Wi (25)
z = h(x,) + v (26)
Xo=f (o) 27)
P.=F_P_F' +0. (28)
G, = P.H! (H.P,H +R)" (29)

% =5+ Gz — h(x) (30)
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P, = (1 - G/ch)Pk (31)
where

f — state transition function

R — Covariance matrix of sensors

P — Process estimation

G — Gain

H — Jacobian matrix

h — Observation function

Q — Covariance of process noise.

4 Nonlinear Filtering Using Sigma Point Kalman Filter

The Sigma-Point Kalman filter is an alternative method for nonlinear and continuously changing
data that uses nonlinear probability distribution functions. This filter functions similarly to the state
estimate carried out by EKF in SPKF minus the Jacobian function. In this filter, the estimation
approximation of the probability distribution is straight forward than that of any arbitrary nonlinear
function [29].

Proposed Block Diagram for Accelerometer and Gyroscope Estimation Using SPKF

The SPKF predicts and updates the stage in a manner comparable to the Kalman filter. The SPKF
procedure is depicted in Fig. 3:
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Figure 3: Nonlinear estimation and prediction in sigma point Kalman filter

This filter has three primary steps, with the first step selecting sample points from the input
distribution. There may be deterministic values and a certain amount of standard deviation in these
random samples [30]. These are known as sigma points, and the corresponding filter is called the
sigma point filter. In this algorithm’s second stage, after picking points, the picked sigma points must
be processed through a nonlinear function to generate a new output distribution. Moreover finally,
these outputs are used to calculate the output’s mean and standard deviation. For an N-dimensional
distribution, the sigma points must be chosen as [31],

Sigma points = 2N + 1 (32)

After passing the points through some nonlinear functions, some points from the source Gaussian
are mapped to the target Gaussian. It can be very difficult to transform the whole state distribution,
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but it is easy to transform some individual points of the state distribution as mentioned in the Eqs. (33)
and (34).

Now consider the weighted sigma points represented with their approximate mean and covariance,

W= oligx[i (33)
D= ol - 1) @& - 1) (34)
where

' — Predicted Mean

o — Sigma points weight
g — Nonlinear function

3’ — Predicted Covarience

n — Dimention Space.
2n

P=>wl(Zx[)-2) (Z&[)-2) +0) (35)
T=>> ol -u) (2 -2) (36)
K=TS" (37)

The data is coming from the sensor and it is essential to map it with the measurement space,
denoted by Z. In the prediction phase of the filter, the covariance calculation is done, in which process
noise is added. In the update phase, the difference between predicted mean and covariance and actual
mean and covariance is evaluated [32]. In the filter gain calculation, there has to be a cross-correlation
between the sigma points in state space and the sigma points in measurement space. For the precise
operation of this filter, it transforms value from the distribution of a single point’s state distribution
via a nonlinear function rather than whole state distribution [33].

5 Methodology

5.1 Dataset Description

The state estimation approach has received data from sensors which has captured the labelled
dataset for the indoor and outdoor environment for activities like walking, climbing up a staircase,
climbing down a staircase, seating, cycling, and underground basement walk. It uses a pre-processed
feature set of 23 features, to evaluate the performance of the localization and tracking. Each record
consists of the following attributes: total acceleration, from the three axis of the accelerometer and the
estimated body acceleration.

In Fig. 4a, hardware used to capture the data and activities is shown and Figs. 4b and 4c shows the
subjects wearing the designed device above the ankle to ensure the position of placing and capturing
the various patterns. For training, estimation and navigation patterns I & I1, the feature data is gathered
from the accelerometer, gyroscope, and GPS. For estimation and prediction, gathered from different
environment I (indoor) and environment—II (outdoor), Table 2 shows number of data samples used
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as training cases for different subjects, captured for duration ranging from 10 to 40 min based on
volunteers’ comfort. The trade-off between prediction and estimate is required for systems operating
in moving scenarios in indoor and outdoor locations, which are based on dynamic state estimation of
the filters as needed in real-time situations and for which prediction accuracy is the ideal goal.

{b)

Figure 4: (a) Hardware used to capture data (b) and (c) Different subjects wearing the hardware for
generation of indoor/outdoor navigation for labeled activities

Table 2: Samples collected for various subjects in different environment/activities

Environment 1 11 I I I II
Users Walking Sitting Staircase (down) Staircase (up) Cycling Underground walk
1 2107 3088 1368 2138 982 342
2 665 1433 1276 2133 934 667
3 2570 493 1356 645 816 545
4 1088 1349 983 572 930 660
5 - 1990 2341 1109 - -

6 628 609 1289 1363 2022 322
7 1076 2281 1299 1893 1099 234
8 2081 1129 1021 1043 1032 669
9 1035 1876 1033 1022 1102 1022
10 2301 398 1678 1011 1345 1034

5.2 Experimental Conditions for Information Collection
The monitoring of the accelerometer and gyroscope conditions is required either for environment
navigation or activity analysis, which requires the reliable assessment of the spectra encountered by the
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subject, either as a final result or intermediate step for the measurement of the relevant sensor-based-
motion parameters. The data collected for the two base classes, indoor and outdoor, for the various
activities listed in Table 2 is currently being analysed. For the captured data of indoor and outdoor
activity, the exhaustive time-domain analysis and frequency-domain analysis carried are carried out
to show that a sensor signal changes over time and the signal’s energy is distributed over a range of
frequencies.

Figs. 5a and 5b show the accelerometer and gyroscope raw data for the activity done by the subject
for the 3 axis accelerometer and gyroscope. Figs. 6a and 6b show the acceleration plot for the activity
using a set of sensor data with different lengths, and environments, followed by Figs. 7a and 7b which
show the Welch method and other spectrum estimation methods.
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Figure 5: Raw sensor data samples for two classes for different activity environment
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Figure 6: Acceleration for the activity for indoor and outdoor environment

Spectrum reconstruction techniques were used to discover the key sensor state parameters,
including significant noise impacts and more accurate power measurements, the mean sensor data
value period, and the spectrum peak enhancement factor. Both spectrum analysis and sensor-based
state reconstruction methods are explored to provide useful recommendations.

As observed in the preceding graph, the periodogram displays a number of frequency peaks
that are unrelated to the signal of interest. Multiple repetitions of the experiment and averaging
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would eliminate the erroneous spectral peaks and produce more precise power measurements. This
is accomplished using the Welch function for averaging.
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Figure 7: Acceleration for the activity for indoor and outdoor environment

5.3 Experimental Conditions for Information Collection

The experiments were carried out on a group of ten participants ranging in age from 21 to
40 years. Each subject pursued six activities in a hybrid environment, including walking, climbing
upstairs, climbing downstairs, sitting, cycling, and underground walking while wearing an embedded
circuit on the subject’s leg, which consists of NEO 6M GPS and MPU6050 sensor with built-in 3-axis
accelerometer and gyroscope. The specifications of the sensors used to capture data are mentioned in
Table 3. Furthermore, performance of KF, EKF and SPKF need to be taken into consideration for
the choice of the best-fitted filter for indoor and outdoor activity for object tracking and localization.

Table 3: MPUG6050 and Neo-6M specification for data collection

MPU6050 and GPS parameters for data collection

Accelerometer Three axis accelerometer +8¢g LPF filter response —5 Hz min, 260 Hz
full scale range max

Gyroscope Three axis Gyroscope full scale £500 LPF filter response —5 Hz min, 256 Hz
range max

Neo-6M GPS  Sensitivity —161 dB Position updating rate 1-5 Hz

To capture the activities, one prototype module is tied to the ankle of the subject. This significantly
improves the capturing of each activity pattern. The experiments are conducted on a sensor-based
approach for the subject with different patterns of navigation. Features selected for the database are
captured from the raw sensor values of the 3-axis accelerometer and gyroscope for linear acceleration
and angular movement.

Performance of state estimator filters carried out by numerical simulation is done using MATLAB
19a tool. The task is tested for the acceleration on the posture for the various environments for different
patterns on which the raw accelerometer data is collected by the MPUG6050 sensor for state estimation
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and prediction using the three forms of the Kalman filter, viz., normal KF, EKF and SPKF. The
linearity and nonlinearity of the accelerometer and gyroscope are analyzed for three variants of the
filter for more accurate state estimation. The first set of experiments is carried out on the accelerometer
data, and the Kalman filter is used for the estimation. The purpose of the estimation is to carry out
the performance analysis for three experiments based on the different versions of the KF, EKF, and
SPKEF filters.

6 Evaluation Results

Experiments are carried out in two different environments, indoor and outdoor modes with
subject in six different activities i.e., (1) Walking, (ii) Sitting, (iii) Staircase (up), (iv) Staircase (down),
(v) Cycling, and (vi) Underground walk.

The accelerometer data is applied to various filters, and the respective performance parameters
are shown. Based on the state estimate and computing covariance, the application’s state estimation
and prediction are evaluated. The experimental results for the Kalman filter, the Extended Kalman
filter, and the Sigma Point Kalman filter, as well as their sensor-based estimation for accelerometer data
utilizing diverse subjects and patterns, are shown in Figs. §, and 9.This data collected from a gyroscope
will be analyzed using a non-linear approach as the subject moves for actual gyroscope data with an
estimated sensor data value. The proposed system’s accuracy was determined by calculating the root-
mean-square (RMS) difference between the three-axis estimated accelerometer values derived from
actual sensor readings and the three projected angles received from the sensors.
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Figure 8: (a—c) Indoor underground activity for estimated and actual sensor data for KF, EKF and
SPKEF, (d—f) Velocity actual and error for sitting activity on KF, EKF and SPKF
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Figure 9: (a—c) Outdoor cycling activity for estimated and actual sensor data on KF, EKF, SPKF
(d-f) velocity and position of the error activity on KF, EKF and SPKF

6.1 Indoor Condition for Sitting and Under-ground Activity

The experiment in indoor conditions is carried out for 30-45 min in both sitting and underground
walking modes of the subject to calculate the acceleration and sensor predicted values on acceleration
rate. The indoor prediction performance of the three variations of the Kalman filter on the accelerom-
eter data is depicted in Figs. 8a—8c. This graph also demonstrates the performance of the Extended
Kalman filter, Sigma point Kalman filter on sensor-based activities.

These figures also show the difference between the measured and the real position, as well as
the difference between the KF, EKF and SPKF estimate and the real position. The number of data
points is used to normalize the error in measuring and estimating the position. The estimation error of
position and velocity is shown in the Figs. 8d—8f. The Kalman filter velocity estimates accurately the
actual velocity trends. As the subject travels at high speeds, the noise level lowers. This is consistent with
the covariance matrix’s design. The filter estimates catch up with the actual velocity after a few time
steps. To depict the indoor activity outcome for the extended Kalman filter, and it was observed that the
velocity error’s has decreased considerably. The fundamental concept underlying the SPKF algorithm
is to apply unscented transformations to a set of sigma points representing a random variable in order
to estimate the state in the subsequent step, or the output of the system, i.e., a measurement update.
Figs. 8c and 8f depict the indoor activity outcome for the sigma point Kalman filter.
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6.2 Outdoor Condition for Walking, Staircase-Down, Cycling and Staircase-Up Activity

The experiment is carried out in the subject’s walking, cycling, and staircase up and staircase down
climbing modes for 30-45 min in order to calculate the acceleration and sensor predicted values on
acceleration rate in the outdoor condition. The sample estimation plots for the cycling activity carried
on the three estimators KF, EKF and SPKF is shown in Fig. 9

6.3 Comparisons of Sensor Value with Expected and Estimated Values with Variance

As the item is in motion, this gyroscope data will be analyzed using a non-linear method to
compare actual gyroscope data with estimated sensor data values. The proposed system’s accuracy
was estimated by calculating the root-mean-square (RMS) difference between the three-axis estimated
accelerometer values from actual sensor values and the three projected angles obtained from the sensor
MPU6050. The accelerometer and gyroscope data applied to the three variants, KF, EKF, and SPKF
are displayed along with their real values, estimated values and variance in Table 4.

Table 4: Data collected for various subjects in different environment

Filter variant Accelerometer Gyroscope

Actual data Estimated Variance Actual data  Estimated Variance
data data

Kalman filter

walking —3500 —5341.2898  1841.29 —22634.0000 —22227.8653 —406.1347
216 —1486.8925 1702.893  —22153.0000 —22175.5248 22.5248
2564 1321.1380  1242.862  —14536.0000 —16880.4786 2344.4786
2700 22772049  422.7951  —10647.0000 —12560.6921 1913.6921
2092 2150.6545  —58.6545  —13286.0000 —13062.1028 —223.8972

Extended 2.02260 2.27242 —0.24981  2.245191594 2.149561532 0.0956301

Kalman filter 3 60215 2.60524 —0.00309  4.164202836 5.176598142 —1.012395

cycling 2.24748 2.34536 —0.09787  1.393952714 2.201710888 —0.807758
3.61198 4.01165 —0.39967  1.873857794 2.034384926 —0.160527
4.33955 4.98340 —0.64385  1.124885425 1.786971429 —0.662086
3.45592 3.62477 —0.168851  1.792587941 2.139163836 —0.346576
3.34763 3.29375 0.05387 2.070669041 2.143535939 —0.072867

Sigma point  1.77307 1.945628 —0.17254  2.205304683 2.050731063 0.1545736

Kalman filter 2 44001 2.177243 0.26276 3.877200259 3.720241708 0.1569586

seating 3.28339 2.897742 0.38565 1.71382666  2.096134696 —0.382308
1.34539 1.930952 —0.58555  0.954658619 1.792224715 —0.837566
1.10323 1.758992 —0.65575  3.268604186 2.90600066  0.3626035
2.05922 2.052629 0.006592  0.966273171 1.961331022 —0.995058

The root mean Square (RMS) values have been widely employed in the literature to evaluate the
accuracy of the estimator by measuring the difference between the estimated values and the true values
as shown in Table 5. To evaluate the efficacy of the proposed estimating setup, certain related and
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current research comparable with analogous system is used. Unlike the work presented in [34,35],
which is carried out only in the regular operation mode of just an accelerometer and gyroscope with
single data condition and estimation of values for IMU respectively, the suggested technique adapt
both the sensor-based system and GPS-based. The proposed work has been tested for six exercise
or tasks, for indoor and outdoor navigation with adequate set of samples, but only few are being
displayed here.

Table 5: Performance estimation with the real sensors as RMS accuracy indices

Activity KF EKF SPKF
Accelerometer Gyroscope Accelerometer Gyroscope Accelerometer Gyroscope
Walking 0.7253 0.510 0.348 0.831 0.493 0.393
Sitting 1.467 1.954 0.187 0.325 0.391 0.2961
Staircase (down) 1.003 2.001 0.185 0.156 0.362 0.515
Staircase (up) 1.285 1.434 0.712 0.703 0.379 0.311
Cycling 1.095 0.477 0.361 0.188 0.563 0.247
Underground 1.596 0.482 0.283 0.367 0.507 0.423
walk

It can be seen that the values of the accuracy indices as RMS values confirm the effectiveness
of the estimator. To test the performance of the proposed estimation setup, some related and recent
works are chosen for comparison with an equivalent system and setup. The methods reported in Refs.
[10,13] are based on a technique that is equally effective in the normal operation mode of a GPS/INS
integration with a Kalman filter for the navigation applications. The work reported in the Refs. [13,29]
is related to the activity trajectory accounting with the SPKF and EKF to accommodate nonlinearities
and asynchronous and lagging sensor measurements for the walking activity. The proposed work states
the components of the KF, EKF, and SPKF for the subject activity in various navigation environments
and it outperforms in accuracy.

7 Conclusions and Future Plan

Equipment, environment, and mistakes can all have an impact on navigation performance, but
these factors are not the only ones to consider. It is not immediately possible to measure these
contact forces and related dynamics; hence, it is necessary to infer these time-varying dynamics
using the sensors already present in the system, using cutting-edge methods. This research focuses on
understanding real-time dynamics of the sensor values and their influence on state estimator filters.
The experimental results from this set up, analyze the performance of the Kalman filter, the Extended
Kalman filter, and the Sigma Point Kalman filter. During the investigation, it was discovered that the
Kalman filter has an accurate estimation and prediction of the state for non-linear indoor localization
and tracking application, even though the sensor data comes from real-time sensors.

Experiments conducted on Kalman filtering indicate that when data is noiseless or trusted,
estimation for prediction of data is more accurate, but the accelerometer is susceptible to noise, which
causes estimation to fluctuate. The accelerometer itself provides a nonlinear, noisy reading. This
nonlinearity may result in a loss of precision and hence an approach using randomness is proposed.
In addressing it, process noise and sensor noise for state estimation are considered, resulting in a more
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accurate state estimate and improved covariance. Specifically, the EKF has an implied approximation
at a single point, in contrast to the SPKF, which approximates at several places for greater precision.
These sigma points have the same weighted mean and covariance as the random variables. The
performance of the different versions of the Kalman filter is evaluated using accuracy indices and
compared to other pertinent and recent studies. The sigma point state estimator not only validated the
individual’s performance in conventional indoor ‘underground walking’ activity and outdoor ‘cycling’
activity, which also exhibited durability in rapidly-changing physical activities. SPKF is anticipated to
perform better than KF and EKF.

This work contributes to the overall performance of linear and nonlinear filtering by introducing
a sensor with high sensitivity at moderate level and an analysis of its drift over time. Sigma filter-based
prediction and estimate techniques are numerical rather than analytical, which has many benefits:

1. They provide a superior covariance approximation for state estimation.

2. They are portable.

3. Their computing cost is lower than that of the EKF, so there is no need for a fully trained
model to execute and evaluate them.

Additional study would require converting the data prediction and estimation method to embed-
ded hardware using an appropriate implementation procedure so that it can be implemented using a
machine learning-based methodology. Additionally, new active and novel supervised and unsupervised
learning methodologies must be investigated to create novel models for real-time prediction on
hardware.
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