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Abstract: The non-invasive evaluation of the heart through EectroCardioG-
raphy (ECG) has played a key role in detecting heart disease. The analysis
of ECG signals requires years of learning and experience to interpret and
extract useful information from them. Thus, a computerized system is needed
to classify ECG signals with more accurate results effectively. Abnormal heart
rhythms are called arrhythmias and cause sudden cardiac deaths. In this work,
a Computerized Abnormal Heart Rhythms Detection (CAHRD) system is
developed using ECG signals. It consists of four stages; preprocessing, feature
extraction, feature optimization and classifier. At first, Pan and Tompkins
algorithm is employed to detect the envelope of Q, R and S waves in the
preprocessing stage. It uses a recursive filter to eliminate muscle noise, T-
wave interference and baseline wander. As the analysis of ECG signal in the
spatial domain does not provide a complete description of the signal, the
feature extraction involves using frequency contents obtained from multiple
wavelet filters; bi-orthogonal, Symlet and Daubechies at different resolution
levels in the feature extraction stage. Then, Black Widow Optimization (BWO)
is applied to optimize the hybrid wavelet features in the feature optimization
stage. Finally, a kernel based Support Vector Machine (SVM) is employed to
classify heartbeats into five classes. In SVM, Radial Basis Function (RBF),
polynomial and linear kernels are used. A total of ∼15000 ECG signals
are obtained from the Massachusetts Institute of Technology-Beth Israel
Hospital (MIT-BIH) arrhythmia database for performance evaluation of the
proposed CAHRD system. Results show that the proposed CAHRD system
proved to be a powerful tool for ECG analysis. It correctly classifies five
classes of heartbeats with 99.91% accuracy using an RBF kernel with 2nd level
wavelet coefficients. The CAHRD system achieves an improvement of ∼6%
over random projections with the ensemble SVM approach and ∼2% over
morphological and ECG segment based features with the RBF classifier.
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1 Introduction

An abnormal heart rhythm is called an arrhythmia and is due to a disturbance in the heart’s
system. The heart rhythm is measured by EectroCardioGraphy (ECG) from the human body surface.
The most common symptoms are tiredness, dizziness, loss of consciousness, breathlessness and
palpitations in the chest region. A rapid and effective assessment of ECG signal is required to
avoid sudden cardiac death due to arrhythmia. A fast machine learning model is described in [1]
for arrhythmia classification. Before feature extraction, a series of preprocessing steps, re-sampling,
filtering, heartbeat detection, and two successive R (RR) waves calculation are performed. The
logarithm of the raw RR interval is fed to a combination of ensembles for the classification using
an echo state network.

A simple and efficient approach using statistical features for ECG signal classification is described
in [2]. From the de-noised ECG signal, statistical features such as mean, skewness, variance and stan-
dard deviation are extracted and given to the Support Vector Machine (SVM) for normal/abnormal
classification. The entire ECG signal is used for the classification. A Generalized Discriminant Anal-
ysis (GDA) based feature reduction is applied in [3] for arrhythmia classification. After preprocessing,
fifteen linear and non-linear features are extracted from the interval of RR waves. These features are
optimized using GDA, and an SVM classifier is used for the classification.

Wavelet transform based features are discussed in [4] for arrhythmia classification. The extracted
wavelet features from the preprocessed signals are reduced by linear discriminant analysis and an
SVM classifier is employed for the classification. Probabilistic Neural Network (PNN) based heartbeat
classification is discussed in [5]. Features such as the power of the original and wavelet decomposed
signals; coherence and morphological characteristics of each wavelet sub-band are extracted from the
2nd level wavelet decomposition. The extracted features are normalized before classification by PNN.
The Independent Component Analysis (ICA) is integrated with the Back Propagation Neural Network
(BPNN) for heartbeat classification in [6]. The combination of RR interval and ICA is used as features,
with classifiers such as BPNN and PNN for classifying heartbeats in ECG signals.

A knowledge representation system is designed in [7] for arrhythmia classification. It encodes the
ECG signal with two knowledge parts; hand encoding and machine encoding by an autoencoder, and
then a Convolution Neural Network (CNN) is employed for the classification. The ECG signals are
normalized by min-max normalization before encoding. A combination of morphological and ECG
segment based features is utilized in [8] for arrhythmia classification. The morphological features such
as amplitude, duration, heartbeat interval and ECG segment features from dynamic time wrapping
and principal component analysis are extracted and an SVM classifier is used as a classifier.

A combination of CNN and Long Term Short Memory (LSTM) for arrhythmia classification
is discussed in [9]. It has three convolution layers coupled with a max pooling layer to extract the
features. The last layer is LSTM and a fully connected layer is employed for the classification. An
ensemble SVM system is described in [10] for heartbeat classification. Before feature extraction,
the segmented heartbeats are normalized. It uses RR intervals and random projections for the
classification. Incremental broad learning is discussed in [11] for arrhythmia classification using the
biased dropout technique. First, the ECG signals are de-noised and then morphological rhythm
features are extracted.
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Visual pattern features and morphological features are utilized for arrhythmia classification
in [12]. A clustering based approach is used to extract the visual pattern features. Three different
classification algorithms, SVM, BPNN and K-Nearest Neighbour (KNN) classifier, are employed
for the classification. A kernelized fuzzy rough set is employed in [13] for heartbeat classification in a
multi-label classification approach. The different heartbeats are mapped with the ECG features and
optimized using a multi-objective optimization model. Log-linear and neural network models demand
a lot of training data and effort, restricting their transfer to new interactions and domains.

Different frequency domain representations and their applications in the medical domain have
been studied well recently. Though the frequency domain representation captures more information
than the spatial domain, it also provides redundant information. Most systems directly use the infor-
mation with the redundant data from the representation systems affecting the system’s performance.
To overcome this drawback, feature optimization is employed and hybridization is performed to
increase efficiency. This paper provides hybrid wavelet features for arrhythmia classification using
ECG signals. The primary goal of this work is to provide a high degree of accuracy between different
heartbeats. The secondary goal is to combine spectral features other different wavelet filters to improve
the discriminating power.

The rest of the paper is organized as follows: Section 2 provides details of the pattern recognition
system; the CAHRD system applied to ECG signal classification. The clinical data used in this
work are obtained from the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH)
database [14–16] and the CAHRD system’s performance in this database is discussed in Section 3.
Finally, a conclusion about using the CAHRD system for arrhythmia classification is provided in
Section 4.

2 Methods and Materials

An ECG signal may be represented by the feature set f = (f1, f2, . . . fN). The aim of the CAHRD
system is to assign this set to one of the discrete heartbeats Ck. For the classes C1 to Ck are to be
disjoint, such that the feature set f belongs to only one type of heartbeat. Therefore, the form of
any classification algorithm is y(x). This function outputs a value (1 to k) to which the feature set is
assigned. Using the known feature set from k classes of heartbeat signals, the function y(x) is optimized
during a training phase. Then, the performance of the classification algorithm is assessed in terms of
sensitivity, accuracy and specificity using test data. In this work, only the case of k = 5 is considered.
Fig. 1 shows the stages of the CAHRD system.
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Figure 1: Stages of the CAHRD system
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2.1 Preprocessing
To make the classification more accurate, the raw ECG signals obtained in a clinical environment

need to be de-noised as they are mixed with much interference, such as baseline drift, power frequency
and electromyography. The CAHRD system uses the well-known Q-wave, R-wave and S-wave (QRS)
detection algorithm by Pan et al. [17]. At first, ECG signal’s interference noises (60 Hz) are removed
by a band pass filter algorithm composed of cascaded low and high pass filters. It is a recursive filter
that eliminates muscle noise, removes T-wave interference and baseline wander. The transfer functions
of the low-pass (Eq. (1)) and high pass (Eq. (2)) filters are defined in [17]

H (z) = (1 − z−6)2

(1 − z−1)2
(1)

H (z) = (−1 + 32z−16 + z−32)

(1 + z−1)
(2)

After filtration, the QRS slope information is obtained from the differentiated filtered signal. The
transfer function [17] used for this purpose is

H (z) = 1
8T

(−z−2 − 2z−1 + 2z1 + z2
)

(3)

In order to get nonlinear amplification of the derivative filter’s output from Eq. (3), the signal is
squared. It is defined by [17]

y(nT) = [x(nT)]2 (4)

To obtain the waveform feature information and R wave’s slope, moving window integration is
performed on the squared signal. Finally, the QRS signal is identified by adjusting the thresholds and
RR interval limits. More information about the preprocessing steps can be obtained from [17]. Fig. 2
shows the preprocessing outputs from a sample ECG signal.

It is noted that all diagnostic information’s available around the ECG signal’s R peak. Thus, a
portion of the signal before and after the R point is cropped for processing. The total length of
the cropped signal is 200 points with 0.556 s. The cropped signal is then normalized to reduce the
possibility of false decisions. The normalized ECG segment has a unit standard deviation and zero
mean. The unit norm normalization for a signal (S) is defined as

S′ = S − μ

σ
(5)

where μ and σ are the mean and standard deviation of signal S. The proposed hybrid features are
extracted in the next stage of the CAHRD’s system from the normalized ECG signal only.
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Figure 2: Preprocessing outputs of CAHRD system
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2.2 Feature Extraction
This stage facilitates the combination of spectral features from different wavelet families. The raw

ECG signal is a temporal signal consisting of many frequency components. To get these components,
the temporal ECG signal will be converted into a frequency domain via wavelets. A wavelet is viewed
as a high and low pass filter that gives a low and high pass detail image [18]. What makes the wavelet
unique from other spectral techniques is the aspect ratio of the window (support) which changes while
the area under the window remains constant. Additionally, the wavelet is computationally inexpensive
and less complex than other wavelet forms. The relation of a wavelet is [18]:

f (x) =
∑
vfinite

∑
k

finiteCvψvk (x) (6)

where ψvk (x) = 2
ψ
2 ψ (2vx − k). This alters the window size and the function is translated over integer

values k which in turn shifts the energy localization to the next point on the signal. This integer
translation defines the family of basis functions. The scaling of the variable x helps to increase the
limited space spanned by the wavelet equation. The 2

ψ
2 is for normalizing the basis. All the basis

functions in ψi are scaled and translated versions of the mother wavelet (ψi) and the translation over
the image in steps of size 2vk. A linear combination of all these step sizes gives a wavelet decomposition
of the signal.

The scaling factor v in ψ(2vx) is a power of 2 which gives the desired cascaded octave bandwidth
filter structure since the bandwidths of the frequency of the decomposed signal and centre frequencies
must vary by octaves. Cvk are the coefficients computed by the wavelet transform. The proposed system
uses three filters from different wavelet families such as ‘db8’, ‘sym8’ and ‘bior3.3’ [19] and their wavelet
and scaling functions are shown in Figs. 3 and 4 respectively.

Figure 3: (Continued)
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Figure 3: Wavelet functions

Figure 4: Scaling functions
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2.3 Feature Optimization
The hybrid wavelet features contain hundreds of wavelet coefficients. The excessively large feature

vectors degrade the system’s performance. Thus, feature optimization is required. The goal of feature
optimization applied to the CAHRD system is to select the best features that maximize the prediction
accuracy of the classified ECG signals. In this work, the hybrid features are optimized using Black
Widow Optimization (BWO) [20]. Fig. 5 shows the BWO procedure to optimize hybrid wavelet
features.
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Figure 5: BWO procedure to optimize hybrid wavelet features

In BWO, the structure of the solution of selecting features is called as widow. It is defined as

widow = [f1, f2, f3, . . . fN] (7)

where fi is the ith selected features of N dimensional space and fi is represented as either 0 (not
selected) or 1 (selected). As the CAHRD system is a 5-class problem, the fitness function with control
parameters α and β is

f (x) = α · EG − mean + β

(
−|S|

N

)
(8)

where the number of features in the subset is |S| and the G-mean’s extension (EG) criterion is used. It
is defined by

EG − mean =
(

n∏
k=1

Ak

)1/n

(9)
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where the accuracy of kth class is AK. If the fitness function in Eq. (8) is not terminated, then the parents
are randomly selected. Then procreating is performed by mating in parallel. In cannibalism, the best
individuals are identified and mutepop number of individuals is selected from the population. The
termination conditions may be no change in the fitness value and a predefined number of iterations.
The CAHRD system uses (0.8, 0.2) corresponding to (α, β) as it provides better performance.

2.4 Classifier Design
The CAHRD classifier system uses the training samples labeled by their actual rhythms. These

labels are then used to guide the classifier during the learning process. Several methodologies have been
developed for carrying out ECG classification based on the optimized features. Though there are many
existing classifiers, KNN, BPNN, and PNN, SVM is the best choice for ECG classification due to its
good generalization performance, robustness in high dimensions and computation efficiency [21].

Let us consider the acquired l observations (optimized wavelet features) (xi, yi), i = 1, . . . , l where
xi ∈ �n is a pattern and yi ∈ {−1, +1} is the corresponding label. The objective function of the SVM
algorithm is [22],

1
2

||w||2 + C

(∑
i

ξi

)k

(10)

where C is a factor controlling the cost of misclassification, w is the weight vector, and ξ i is the positive
slack variable in the constraints [22],

xi · w + b ≥ +1 − ξi for yi = +1 (11)

xi · w + b ≤ +1 + ξi for yi = −1 (12)

where ξi ≥ 0 ∀i. The objective function in Eq. (10) is a quadratic programming problem for different
k values. In the training phase, the patterns only appear in the form of dot products xi · xj. To map
these patterns in a high dimensional space where they are linearly separable, special kernel functions
are designed. The kernel functions are defined by [22],

K(xi, xj) = φ(xi) · φ(xj) (13)

The proposed CAHRD system uses kernel SVMs to identify normalized ECG signal patterns
using the optimized feature space. It uses linear (Eq. (14)), polynomial (Eq. (15)) and radial basis
function (Eq. (16)) kernels defined in [22]

K(xi, xj) = xi · xj (14)

K(xi, xj) = (xi · xj + 1)d (15)

K
(
xi, xj

) = e− 1
2σ2 ||xi−xj||2

(16)

where d and σ are the user-controlled parameters. The performance assessment of the CAHRD system
with a polynomial kernel in Eq. (15) uses a 3-degree polynomial. For the RBF kernel, a grid search
method finds the ideal parameters from 10 distinct values of C: [2−5, 2−4, . . . , 23, 24] (Eq. (10)) and
σ [2−7, 2−5, . . . , 21, 22] (Eq. (16)). The best results of the CAHRD system is discussed in the next section.
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3 Results and Discussions

This section evaluates the major components of the CAHRD systems which have been applied to
classify the ECG signals. Also, the evaluation of the CAHRD system using the concept of sensitivity
and specificity is provided.

3.1 MIT-BIH Database
The proposed CAHRD system is evaluated using a benchmark database; MIT-BIH arrhythmia

[14–16]. The digitized (11-bit resolution) ECG signals in MIT-BIH have been sampled at 360 Hz and a
total of 48 half-hours of records are available. Fig. 6 shows the sample ECG signal in the LightWAVE
Plot. The normal beats ‘N’ are represented by blue coloured dots. Table 1 shows the annotations of
the MIT-BIH database and the available samples in the entire database.

Figure 6: Sample ECG signal in the MIT-BIH database

Table 1: MIT-BIH database-beat annotations

Annotations Type Available samples

N Normal 75052
A Atrial (Premature) 2546
V Ventricular contraction (Premature) 7130
R Right bundle branch block 7259
L Left bundle branch block 8075
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It can be seen from Table 1 that there is a significant imbalance in the dataset. Though many
approaches are available to overcome the class imbalance problem and to avoid computational
complexity, stratification (stratified sampling) is employed in this study. In conventional k-fold
cross-validation, the training samples are randomly partitioned. Hence, it has a uniform probability
distribution which is inappropriate for the imbalanced database. To fix this problem, the same class
distribution is maintained in each subset. Also, approximately ten times more samples are available for
normal beats; only 10000 normal beats are randomly selected from the entire samples and all samples
from other beats are used for performance evaluation.

3.2 Experimental Set-Up
The classifier’s parameters are optimized in any pattern recognition system based on the training

data. Therefore, an independent test set is required to make a reliable estimation of the classifier’s
applicability to new data. When no such test data is available, k-fold cross-validation (10-fold) is
performed to measure the generalization performance of the CAHRD system. At first, the data is
partitioned into k subsets randomly. Each subset is used once for testing and the results from each
subset are averaged to get the overall result. Fig. 7 shows the cross-validation approach.

Figure 7: Procedure to measure CAHRD system’s performance

3.3 Quantitative Measures
The two main quantitative measures for a screening test to identify people who have or do not

have a specific disease are sensitivity and specificity. The former measure shows the system’s ability to
identify people who have the disease or the probability that a person has the disease when they have it.
The later measure is an ability to correctly identify people who do not have a specific condition or the
probability that a person does not have the disease when they are disease free. For binary classification,
a table (Table 2) can be formulated based on the test outcomes and the ground truth data.

Table 2: Confusion matrix

Ground truth Test outcomes

Abnormal Normal

Abnormal heartbeat True Positive (TP) False Negative (FN)
Normal heartbeat False Positive (FP) True Negative (TN)
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From the Table 2, Sensitivity and Specificity are defined as follows:

Sensitivity = TP
TP + FN

(17)

Specificity = TN
TN + FP

(18)

The overall accuracy of CAHRD system is defined as

Accuracy = TP + TN
FN + FP + TN + TP

(19)

In this work, the multi-class classification problem with five conditions is studied. The above
quantitative measures can also be computed for multi-class classification problems.

3.4 Discussions
The performance of the CAHRD system in classifying the samples using the optimized features is

discussed. Table 3 shows the performance of the CAHRD system with 1st level hybrid wavelet features
using kernel SVMs.

Table 3: Performance of the CAHRD system with 1st level hybrid wavelet features

Quantitative
measure

Kernel SVM Beat type Average
performance

N A V R L

Accuracy (%) Linear 88.34 90.54 88.36 88.13 89.40 88.95
Polynomial 90.48 92.26 90.50 90.28 91.54 91.01
RBF 92.62 93.97 92.64 92.42 93.68 93.07

Sensitivity (%) Linear 77.20 52.04 69.00 69.67 78.27 69.24
Polynomial 81.20 59.90 74.61 75.18 83.22 74.82
RBF 85.20 67.75 80.22 80.69 88.17 94.36

Specificity (%) Linear 92.79 93.56 93.31 92.97 92.73 93.07
Polynomial 94.19 94.79 94.56 94.23 94.03 80.41
RBF 95.59 96.03 95.82 95.49 95.33 95.65

It can be seen from Table 3 that the RBF kernel based CAHRD system provides ∼92% classi-
fication accuracy for all heartbeats. Though the CAHRD system by 1st level hybrid wavelet features
has good classification accuracy and specificity, the system’s sensitivity (67.75% to 85.20%) is very
poor. For a good system, both quantitative measures should be at their maximum. Further analysis
is performed on the same dataset by extracting hybrid features from the 2nd level of decomposition.
Table 4 shows the performance of the CAHRD system with 2nd level hybrid wavelet features using
kernel SVMs.

It can be seen from Table 4 that the CAHRD system shows encouraging results with ∼99.9%
classification accuracy for all heartbeat classes. The average increase in classification accuracy from 1st

level hybrid features to 2nd level hybrid features is ∼7% by the RBF classification whereas it is ∼5% for
linear and polynomial kernel based classification respectively. To further analyze how the proposed
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CAHRD system performs at a higher level of decomposition, 3rd level features are analyzed. Table 5
shows the performance of the CAHRD system with 3rd level hybrid wavelet features using kernel SVMs.

It is observed from Tables 4 and 5 that the CAHRD’s performance while using 3rd level hybrid
wavelet features is less accurate than 2nd level hybrid features for all kernel SVMs. This performance
degradation may be due to the redundant data being formed at a higher level of decomposition. Thus,
the average performance of the CAHRD system is reduced from 99.91% (2nd level) to 95.92% (3rd

level) when using the RBF kernel for classification. In order to show the effectiveness of the hybrid
wavelet features, the performances of 2nd level features from individual wavelet filters (‘db8’, ‘sym8’
and ‘bior3.3’) using the RBF classifier are shown in Table 6.

Table 4: Performance of the CAHRD system with 2nd level hybrid wavelet features

Quantitative
measure

Kernel SVM Beat type Average
performance

N A V R L

Accuracy (%) Linear 93.91 95.68 93.93 93.70 94.97 94.44
Polynomial 96.34 97.68 96.78 96.56 97.40 96.95
RBF 99.90 99.89 99.92 99.91 99.92 99.91

Sensitivity (%) Linear 87.20 83.46 83.03 83.44 90.65 85.56
Polynomial 91.20 91.32 91.44 91.71 95.60 92.25
RBF 99.81 99.02 99.83 99.81 99.86 99.67

Specificity (%) Linear 96.59 96.64 96.71 96.39 96.26 96.52
Polynomial 98.39 98.18 98.15 97.83 97.93 98.10
RBF 99.94 99.95 99.94 99.94 99.94 99.94

Table 5: Performance of the CAHRD system with 3rd level hybrid wavelet features

Quantitative
measure

Kernel SVM Beat type Average
performance

N A V R L

Accuracy (%) Linear 91.25 93.63 91.27 91.05 92.31 91.90
Polynomial 93.34 95.11 93.36 93.13 94.40 93.87
RBF 95.48 96.83 95.50 95.28 96.54 95.92

Sensitivity (%) Linear 82.20 74.82 76.02 76.55 84.46 78.81
Polynomial 86.20 79.54 81.63 82.06 89.41 83.77
RBF 90.20 87.39 87.24 87.57 94.37 89.35

Specificity (%) Linear 94.87 95.10 95.17 94.84 94.66 94.93
Polynomial 96.19 96.33 96.36 96.03 95.89 96.16
RBF 97.59 97.57 97.61 97.29 97.19 97.45

It can be seen from Table 6 that the hybrid wavelet features increase the CAHRD system’s
performance more than their corresponding wavelet features such as ‘db8’, ‘sym8’ and ‘bior3.3’.
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Among the wavelet filters, ‘bior3.3’ provides better performance than ‘db8’, and ‘sym8’ with an average
accuracy of 98.76% with 96.09% of sensitivity and 99.22% of specificity. It is concluded from Tables 3
to 6 that 2nd level hybrid wavelet features with RBK kernel SVM provide better results in terms of
accuracy (99.91%), sensitivity (99.67%) and specificity (99.94%). The effect of changing the variables
α and β in Eq. (8) is analyzed in this work to choose the best fit for arrhythmia classification. Fig. 8
shows the performance of 2nd level wavelet features with different α and β values where β = 1 − α. The
feature dimension of wavelet coefficients when hybridizing the decomposed signal of three wavelet
filters is 600. The number of selected features is based on the α value. For example, if α = 0.5 (50%),
the BWO algorithm selects only 300 (600 × 0.5) features from the hybrid feature set. Fig. 9 shows the
number of optimized feature dimension.

Table 6: Performance of individual wavelet features of 2nd level and hybrid wavelet features

Quantitative
measure

Features Beat type Average
performanceN A V R L

Accuracy (%) db8 96.47 96.46 96.49 96.49 96.49 96.48
sym8 97.61 97.60 97.63 97.63 97.63 97.62
bior3.3 98.76 98.74 98.77 98.77 98.78 98.76
Hybrid 99.90 99.89 99.92 99.91 99.92 99.91

Sensitivity (%) db8 93.81 75.45 91.42 91.54 92.43 88.93
sym8 95.81 83.31 94.22 94.22 94.91 92.49
bior3.3 97.81 91.16 97.03 97.05 97.39 96.09
Hybrid 99.81 99.02 99.83 99.81 99.86 99.67

Specificity (%) db8 97.54 98.11 97.79 97.78 97.71 97.78
sym8 98.34 98.72 98.50 98.50 98.45 98.50
bior3.3 99.14 99.34 99.22 99.22 99.19 99.22
Hybrid 99.94 99.95 99.94 99.94 99.94 99.94
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Figure 8: Performance of 2nd level wavelet features with different α and β values
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Figure 9: Number of optimized features for different α and β values

It can be observed from Fig. 8 that the best combination of (0.8, 0.2) corresponding to (α, β) in the
fitness function provides the highest accuracy for arrhythmia classification. The overall results show
that the proposed CAHRD system is a powerful tool for ECG analysis. Table 7 shows a comparative
analysis of the proposed CAHRD system with the existing systems.

Table 7: Comparative analysis of the proposed CAHRD system with the existing systems

Method Classifier #beat types Accuracy (%) Sensitivity (%) Specificity (%)

RR intervals and
random
projections [10]

Ensemble SVM 5 93.8 94.73 -

Morphological and
ECG segment based
features [8]

SVM-RBF 4 97.8 88.83 -

Convolution
features [9]

CNN-LSTM 5 98.10 97.50 98.70

Human-machine
collaborative
knowledge
representation [7]

Auto encoder 6 93.87 83.75 97.54

Incremental broad
learning [11]

Neural Network 6 99 - -

Combined parametric
and visual pattern
features [12]

KNN 15 97.70 - -

Hybrid wavelet
features + BWO
(proposed)

SVM-RBF 5 99.91 99.67 99.94
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4 Conclusions and Future Work

The proposed CAHRD system designed in this paper is a classification system, that aims to use
ECG signals to determine whether a newly presenting patient has any abnormal heartbeats. After
preprocessing the ECG signal, each ECG segment is described using a feature vector consisting of
hybrid wavelet coefficients at a predefined decomposition level. The hybrid features are optimized
using BWO techniques and kernel SVMs such as linear, polynomial and RBF are employed for the
classification. The MIT-BIH provides an ideal dataset for arrhythmia classification due to its diversity
and large size. This study utilizes the entire database for performance evaluation. The proposed
CAHRD system reports average accuracy of 99% for discriminating between 5 different heartbeat
rhythms using 2nd level hybrid wavelet features with RBF kernel based SVM. Automated ECG signal
classification could provide an additional diagnostic support along with the traditional diagnostic
systems for clinicians. The proposed CAHRD system uses BWO as an optimization technique and
the main limitation of this work is that the Atrial (Premature) samples used in this study is very
few compared to other types of abnormal heartbeats. The proposed system can be adopted in the
future with different optimization techniques such as self organizing migrating algorithm and memetic
algorithms for feature selection and a more balanced database can be used to achieve a near-perfect
classification system.
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