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Abstract: The Henon map forms one of the most-studied two-dimensional
discrete-time dynamical systems that exhibits chaotic behavior. The Henon
map takes a point (Xn, Yn) in the plane and maps it to a new point (Xn+1, Yn+1).
In this paper, a chaotic pulse generator based on the chaotic Henon map is
proposed. It consists of a Henon map function subcircuit to realize the Henon
map and another subcircuit to perform the iterative operation. The Henon
map subcircuit comprises operational amplifiers, multipliers, delay elements
and resistors, whereas, the iterative subcircuit is implemented with a simple
design that comprises of an edge forming circuit followed by a monostable
multivibrator and a voltage controlled switch without the use of any clock
control. The proposed design can be used to realize the Henon map and also
to generate a chaotic pulse train, with a controllable time interval and pulse
position. The proposed circuit is implemented and simulated using Multisim
13.0 and MATLAB R2019b. The chaotic nature of the generated pulse train
and also the time interval between the consecutive pulses is verified by the
calculation of its Lyapunov exponents.

Keywords: Chaos; iterated maps; henon map; chaotic pulse train; lyapunov
exponents

1 Introduction

Chaotic systems are deterministic nonlinear dynamical systems that consist of a set of possible
states, together with a rule that determines the present state in terms of past states. It is required
that the rule be deterministic, to uniquely determine the present state from the past states. When
the governing rule is applied at discrete times, it is a discrete-time dynamical system or the so-called
iterated maps and when the rule is a set of differential equations, it is a continuous-time dynamical
system [1]. These systems are characterized by high sensitivity to initial conditions, presence of dense
orbits and must be topologically transitive, which makes the system output completely different for
even a very small change in the input applied to the system [2]. A chaotic map or the so-called iterated
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map is an evolution function exhibiting chaotic behavior, and can be parameterized by a discrete-
time or a continuous-time parameter. It mostly takes the form of iterative functions and can be one-
dimensional, two-dimensional or multi-dimensional. But much attention is given to one-dimensional
and two-dimensional quadratic mappings, as they exhibit all the interesting properties a map can have.

Such pseudo-random behavior of chaotic systems makes these systems highly regarded for
various applications like pseudo-random sequence generation, encryption and secure communication.
Moreover, these systems are extensively used for the generation of chaotic signals and chaotic pulse
train, that can be used as a control signal and modulating signal, and has several applications
in cryptography [3], data processing [4], secure communication [5], steganography [6], bio-medical
processing and its extended applications [7,8].

Several works have been done in the past for the generation of chaotic pulse train. In 2008,
Wang et al. introduced a method to generate chaotic pulse sequence by chaotic phase trajectory [9].
In 1994, Balmforth et al. found that under certain particular conditions, the third-order nonlinear
ODE can take the form of a chaotic pulse sequence [10]. Later in 2005, methods were proposed for
generating chaotic pulse for reaction-diffusion systems, mainly focused on algorithm implementation
and not appropriate for circuit implementation [11]. Dmitriev et al. in 2005 proposed a method to
generate the chaotic pulse trains using a dynamical system that uses a periodic signal [12]. In most of
these dynamic systems with circuits implemented by resistors, capacitors, monostable multivibrators,
analog switches etc. one–dimensional return maps are used. But in these methods, it is difficult or not
possible to control the generated pulse parameters like pulse position, pulse interval etc. The major
drawback of such a realization is the requirement of an external control signal to drive the circuits and
the difficulty in controlling various parameters such as pulse width and frequency of the generated
chaotic pulse sequence. In the last decade, another one-dimensional piecewise linear map referred to as
the Tent map has been used extensively in these applications [13,14] and such circuit implementations
[15,16]. In 2000, Tanaka et al. proposed the voltage mode based integrated circuits of Logistic map
and Tent map chaotic generators [17]. In 2009, Campos-Canton et al. proposed a voltage mode based
electronic circuit to implement the Tent map [18]. Though these circuits are easy to implement, chaotic
pulse sequence could not be produced. Later in 2015, Zhang et al. proposed a chaotic pulse generator
based on the Tent map which overcomes the drawbacks of the previous methods and can be used for
the generation of chaotic pulse sequence with control over the pulse parameters [19].

However, this article proposes the implementation of a chaotic pulse train based on a two-
dimensional chaotic map referred to as the Henon map. In past literatures, only a few one-dimensional
chaotic maps like logistic map, Tent map etc. have been realized and analyzed for such applications
[18,20,21]. But, very few works have been done to realize the two-dimensional iterated maps, and
analyze its chaotic and complex dynamics [22,23]. Even though all the circuits mentioned in these
literatures can be used to generate chaotic series, and some of them are even easy to implement, since
these methods use periodic clock signals to implement the iterative process, the chaotic pulse train
or sequence may not be produced. This article deals with the implementation of a circuit to realize
the Henon map and thus generate two sets of chaotic time series and also to generate the chaotic
pulse sequence with a control on the pulse parameters like pulse interval and pulse position. Also,
the entire circuit is realized more concisely compared to the existing literatures and has a reasonable
design without any clock control.

The Henon map forms one of the most studied two-dimensional discrete-time dynamical systems
that exhibit chaotic behavior. It was introduced as a simplified model of the Poincare section of Lorenz
model [24]. Due to its simple form and interesting chaotic behaviors, the map has always been attractive
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as a mathematical model to study deterministic chaos. The map takes a point (Xn, Yn) in the plane and
maps it to a new point (Xn+1, Yn+1), where (Xn, Yn) are the initial conditions or the initial state of the
map, whereas, Xn+1 and Yn+1 forms the next state of the map after iteration. The map also depends on
two bifurcating parameters ‘a’ and ‘b’. For the classical Henon map, the bifurcating parameters are set
to the values, a = 1.41 and b = 0.3, which keeps the map in the chaotic regime [25]. The Henon map
also exhibits a strange horseshoe shaped attractor with a fractal structure, and a constant value for
the Jacobian determinant | J | = − b. This existence of chaotic behavior and a transversal homoclinic
orbit for the map for some specific parameter values was analytically proved by Marotto [26].

2 Circuit Implementation

This article focuses on the circuit implementation of a chaotic pulse generator. A 2-D chaotic
Henon map based chaotic pulse train generator is proposed, which does not require an external control
signal. The design of the proposed circuit consists of mainly two parts (A) Henon map subcircuit
realization (B) a circuit to realize the iterative operation. The Henon map subcircuit realization is
done more precisely compared to the ones in the existing literatures whereas, the iterative subcircuit
is implemented with a simple design without any clock control. Instead of using an external control
signal, an edge signal forming circuit is designed to generate a positive and negative edge signal that,
in turn, triggers a monostable multivibrator (MM). Upon triggering, a pulse signal is generated at the
output of the MM, which is used to close an analog switch that passes the output of the Henon map
to its input.

Fig. 1 shows the overall block diagram of the proposed circuit. It consists of a simple circuit
designed to set initial condition for the Henon map, followed by a circuit to realize the Henon map.
The Henon map realization is followed by an iterative subcircuit which feeds back the iterated output
of the Henon map so that, it serves as the next input to the Henon map.

Figure 1: Block diagram of the proposed circuit

2.1 Henon Map Function Subcircuit
The Henon map function takes a point (Xn , Yn) in the plane and maps it to a new point (Xn+1, Xn+1)

as given by the Eqs. (1) and (2) where (Xn, Yn) represens the initial conditions of the map and Xn+1 and
Yn+1 represent the next state of the map, obtained by iterating the map once. Eqs. (1) and (2) describe
a classical Henon map with ‘a’ and ‘b’ as the bifurcating parameters. For the chaotic classical Henon
map, the value of ‘a’ is set to 1.41 and ‘b’ to 0.3, for the Henon map to be in the chaotic regime. The
Henon map can be chaotic, intermittent or can even converge to a periodic orbit for other values of
‘a’ and ‘b’ [27,28].

Xn+1 = 1 – a X 2
n + Yn (1)

Yn+1 = b · Xn (2)
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Fig. 2 shows the circuit diagram of the proposed subcircuit of the Henon map. The Henon map is
realized using an operational amplifier U3A, four resistors R2 to R5, two multipliers A1 and A2, a delay
element A3 and power supplies. Two multipliers A1 and A2 are used to set the values of the parameters
‘a’ and ‘b’. Since for the classical Henon map, a = 1.41 and b = 0.3, one of the inputs to the multipliers
A1 and A2 are set to −1.41 and 0.3 respectively, so as to design the Henon map as described by Eqs. (1)
and (2). The operational amplifier U3A, configured in non-inverting mode of operation along with
resistors R2 to R5, is configured to act as a summing amplifier. In order to make the op-amp output
equal to the sum of the inputs at the non-inverting terminal of it, the closed-loop gain of the op-amp
is made equal to three, which is equal to the number of summing inputs [29].

Figure 2: Circuit diagram of the Henon map subcircuit realization

The closed-loop gain of the summing amplifier is given by Av = 1 +
(

R6

R5

)
. Since, Av = 3, the

values of resistors are chosen to be R6 = 10 K� and R5 = 5 K�. Also, if the input resistances R2,
R3 and R4 are all made equal, the circulating currents cancel out since they cannot flow into the high
impedance non-inverting input of the op-amp and the output voltage of the op-amp becomes equal
to the sum of its inputs at the non-inverting terminal. Therefore, R2 = R3 = R4 = 10 K�. Thus, the
map is realized with less number of components when compared to those in the existing literatures.
Two sets of chaotic sequences can be generated from the Henon map for a particular value of ‘a’ and
‘b’, though only one set of sequences (X0, X1, X2, X3, . . .) is utilized in this article to be used as one
of the inputs to the edge forming circuit.

2.2 Iterative Function
In this article, an ingenious design consisting of an edge signal forming circuit, a switch and a

monostable multivibrator (MM) is used to develop a circuit that performs an iterative operation as
described in the Fig. 3. The edge signal generated is used to trigger the MM, that in turn produces
the pulse signal at its output. This pulse output from the MM is used as control signal to control the
analog switch, that pass on the signal Xn+1 onto Xn.

3 Working Principle

The overall circuit diagram of the proposed circuit to generate the chaotic pulse train is shown in
the Fig. 4. It consists of a simple circuit to set the initial condition of the Henon map followed by the
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Henon map realization subcircuit, a comparator circuit using LM311D, a monostable multivibrator
CD4538BCM and a voltage-controlled SPST switch S2.

Figure 3: Flow diagram of the proposed iterative operation

Figure 4: Overall circuit diagram of the proposed circuit

The initial condition X0 for the Henon map is set using the resistor R1, Key K1, capacitor C1 and
the potentiometer P1. The value of X0 is selected in the range [0, 1] by suitably selecting the values
of the different components, with the switch K1 closed and then fed as the non-inverting input to an
operational amplifier U4A that acts as a voltage follower. The output of the voltage follower is fed as
the initial condition of the Henon map. Even though two sets of chaotic sequences are generated from
Henon map, only one set of chaotic sequences given by [X0, X1, X2 . . . . . .] is taken into consideration
to the next stage of the system. Initially, the initial condition X0, and the iterated output X1 are fed to
the next stage of the system that forms the iterative circuit.

In the implementation of the iterative circuit, the design of the edge forming circuit forms the
crucial part. It is implemented by making use of an operational amplifiers U5A, a comparator U6
using LM311D, a switch S2, a capacitor C2 and a potentiometer P3. The initial state X0, and the
corresponding output state of the Henon map, Xn+1 are fed as inverting and non-inverting inputs of the
op amp U5A respectively, whereas the output is connected to a capacitor C2 through a potentiometer
P3. The voltage across the capacitor C2 is fed as the inverting input of the comparator circuit using
LM311 whereas Xn+1 forms the non-inverting input of the comparator.

When Xn+1 is greater than Xn, the op amp U5A outputs a high positive power supply voltage and
U6, the comparator circuit produces a high output voltage level. Now, the capacitor C2 gets charged
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through the potentiometer P3 and when the voltage across the capacitor rises to Xn+1, which is in turn
fed as the inverting input to the comparator U6, it produces a low output voltage. This results in the
appearance of a falling edge at the output of the comparator. Similarly, when Xn+1 is lesser than Xn,
the op amp U5A produces a low power supply voltage and U6 produces a high voltage level. Now,
the capacitor C2 starts to discharge through the generated negative power supply voltage. When the
voltage across the capacitor C2 discharges to Xn+1, the output of the comparator U6 rises to high level,
resulting in the appearance of a rising edge at its output. This output of the comparator LM311 is in
turn fed as the trigger input to the monostable multivibrator circuit, which results in the generation
of the chaotic pulse train. The generated pulse from the MM is used to close the voltage-controlled
SPST switch S2, which in turn passes Xn+1 to Xn.

Since both positive and negative triggering are used to trigger the monoshot CD4538BCM IC,
a dual precision monostable multivibrator is chosen for the circuit, which has two triggering inputs
to enable both rising and falling edge triggering. The time period of the output pulse of the MM
is controllable with the use of external resistor RM and capacitor CM , whose values are designed
accordingly. By repeating this process, an iterative process can be thus accomplished.

The time interval between the nth and (n + 1)
th chaotic pulse generated is denoted by Tn. The

expression for evaluating Tn can be obtained by using the basic charging equations of a capacitor
‘C’ given by Eq. (3), which represents the voltage VC across a capacitor ‘C’, with initial voltage Vi,
charged from a voltage source Vf through a resistor R [30].

VC = Vf + (
Vi − Vf

)
e−T/RC (3)

In this case, when Xn < Xn+1, VC = Xn+1, Vi = Xn and Vf = V and when Xn > Xn+1, VC = Xn+1,
Vi = Xn and Vf = −VDD. Thus, based on the charging principle of the capacitor C2 with initial voltage
Xn, getting charged to V1 through a potentiometer P3, the time interval Tn can be expressed as

Tn = P3C2 ln
[

V1 − Xn

V1 − Xn+1

]
if Xn < Xn+1

Tn = P3C2 ln
[

V1 + Xn

V1 + Xn+1

]
if Xn > Xn+1

(4)

where Xn and Xn+1 represent the nth and (n + 1)th sequence generated from the Henon map and V1 = 5 V,
represents the power voltage. From Eq. (4), it is evident that the time interval between the consecutive
pulses is directly proportional to the product of P3 and C2.

4 Simulation and Analysis

Table 1 summarizes the various components and devices used in the circuit along with its values.
First step is the setting of an appropriate value of initial condition for the Henon map in the range
[0, 1] by suitably adjusting the values of the potentiometer P3, resistor R1 and power supply. In this
article, the electronic circuit to generate the chaotic sequences and chaotic pulse train is simulated and
analyzed using Multisim 13.0, whereas, the Lyapunov exponents of the generated sequence and the
pulse interval between the consecutive pulses are measured using MATLAB R2019b. The simulations
were performed for an initial condition of (Xn, Yn) = (0.981, 0) by setting P1 = 2.5K�, R1 = 10K�

and V1 = 5 V. The initial condition specified, was chosen randomly so as to be in the range [0, 1].

Figs. 5a and 5b shows the chaotic waveforms generated from the Henon map, realized with
bifurcating parameters a = 1.41 and b = 0.3, with an initial condition of (0.981, 0). It represents
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the generated chaotic output waveforms of Xn and Yn, indicated in red and green respectively. The
figure clearly shows that the generated waveforms vary chaotically, which can be verified further by
computing its Lyapunov exponents.

Table 1: Electronic components used in the design of the proposed chaotic pulse generator

Device Value

R1, R2, R3, R4, R6 10K�

R5 5K�

R7 20K�

P1 2.5K�

P3 16K�

RM 50K�

CM 200 pF
C1 0.01 μF
C2 0.1 μF
S2 SPST voltage controlled switch
U1A CD4538BCM, monostable multivibrator
U3A,U4A,U5A TL084MJ
U6 LM311D comparator

Figure 5: The chaotic waveforms Xn+1 and Yn+1 generated from the realized Henon map circuit

Fig. 6 shows the Henon attractor obtained from the simulated results Xn+1 and Yn+1 of the Henon
map circuit, plotted in Figs. 5a and 5b. It shows the peculiar well-known horseshoe shaped Henon
attractor.

The influence of the potentiometer P3 on the time period of the chaotic series generated is indicated
in Fig. 7. It show the waveforms of the Henon map series Xn and the chaotic pulse train Pn, generated
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by the test circuit for an initial condition X0 = 981 mV where, the value of the potentiometer is changed
from 16 k� to 32 K� as shown respectively in Figs. 7a and 7b. Based on the previous discussion, as
indicated by Eq. (4), the figure clearly indicates that the time period between the generated chaotic
pulses is directly proportional to the value of the potentiometer P3, i.e.; Tn α P3, since the amount of
pulse generated with P3 = 32k� is twice that is generated with P3 = 32k�. Also, the values of the
generated Henon map series is in good agreement with the theoretical values and that whenever the
Xn value mutates, the chaotic pulse appears.

Figure 6: The Henon map attractor obtained from the simulated results of Xn+1 and Yn+1

Figure 7: The waveforms of Henon map series Xn (red) and chaotic pulse train Pn (green) generated
from the circuit for initial condition X0 = 981 mV with (a) P3 = 16 KΩ (b) P3 = 32 KΩ



IASC, 2023, vol.37, no.1 1205

The chaotic nature of the pulse train generated from the MM can be verified by calculating
its Lyapunov exponents [31]. The Lyapunov exponents provide a quantitative as well as qualitative
characterization of dynamical systems and are also related to the nearby orbit’s quick divergence or
convergence in phase space. The Lyapunov exponents of a discrete-time dynamical system Xn+1 =
f (Xn) is expressed as L(X0) = limn→∞

1
n

n−1∑
i=0

ln |f ′ (Xi) |. If L > 0, then {Xn} denotes a chaotic sequence.

The Lyapunov exponents of both, the pulse train generated from the MM and the time interval
between nth and n + 1th pulse, represented by Tn can be calculated using the method proposed by
Wolf et al. [32]. Figs. 8a and 8b show the plot of Lyapunov exponents of the pulse train generated and
Tn against the bifurcating parameter ‘a’ calculated from the time series generated from the realized
Henon map for an initial condition of (X0,Y0) = (0.982, 0.294) respectively. The figure clearly indicates
that the Lyapunov exponents of both Xn and Tn are positive, thus indicating the chaotic nature of the
generated pulse train [33].

Figure 8: (a, b) Plot of Lyapunov Exponents calculated for Xn and Tn with the bifurcating parameter
from the time series for an initial condition X0 = 0.982 V and Y0 = 0.294 V

5 Comparison with Other Benchmark Algorithms

In the electronic circuit designed, simulated and analyzed in the article, less number of components
are utilized to implement the overall circuit thus, when compared to other benchmark circuits, the
overall circuit is more concisely realized. The same circuit can be used to realize the Henon map and
also to generate two sets of chaotic series and a chaotic pulse train. Moreover, the position and time
interval of the generated chaotic pulse are controllable by varying the variable components used in
the design. Another important feature of the design is the implementation of a circuit to perform
iterative operation. To implement an iterative operation, a reasonable design comprising an edge
forming circuit, analog switch and monostable multivibrator is employed which eliminates the need
of a periodic clock control in contrast to existing works.

6 Conclusion

In this article, a two-dimensional Henon map based chaotic sequence and pulse generator is
proposed. The designed and simulated circuit can be used to realize the Henon map function and
also to generate two sets of chaotic sequences and a chaotic pulse train. The proposed circuit is simple
since less number of components are used to implement the system. The circuit is designed using
various electronic components such as operational amplifier, comparator, monostable multivibrator,
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analog switch and other passive components. The key feature of this realization is that the generated
chaotic pulse train from the monoshot multivibrator can be controlled in terms of pulse interval and
also pulse position, by changing the values of various electronic components used in the circuit. The
chaotic nature of both, the generated pulse train and the time interval between the consecutive pulses,
is verified by its calculated positive Lyapunov exponents and plotted against the bifurcating parameter.
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