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Abstract: Online advertising has gained much attention on various platforms as a
hugely lucrative market. In promoting content and advertisements in real life, the
acquisition of user target actions is usually a multi-step process, such as impres-
sion→click→conversion, which means the process from the delivery of the
recommended item to the user’s click to the final conversion. Due to data sparsity
or sample selection bias, it is difficult for the trained model to achieve the business
goal of the target campaign. Multi-task learning, a classical solution to this pro-
blem, aims to generalize better on the original task given several related tasks
by exploiting the knowledge between tasks to share the same feature and label
space. Adaptively learned task relations bring better performance to make full
use of the correlation between tasks. We train a general model capable of captur-
ing the relationships between various tasks on all existing active tasks from a
meta-learning perspective. In addition, this paper proposes a Multi-task Attention
Network (MAN) to identify commonalities and differences between tasks in the
feature space. The model performance is improved by explicitly learning the
stacking of task relationships in the label space. To illustrate the effectiveness
of our method, experiments are conducted on Alibaba Click and Conversion Pre-
diction (Ali-CCP) dataset. Experimental results show that the method outperforms
the state-of-the-art multi-task learning methods.
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1 Introduction

Conversion Rate (CVR) prediction is a fundamental task in online advertising and recommendation. For
example, the predicted CVR is used in Optimized Cost-Per-Click (OCPC) advertising to adjust the bid price
per click, achieving a win-win for both the platform and the advertiser [1]. CVRmodeling refers to the task of
estimating the post-click conversion rate, i.e., pCVR = p (conversion|click, impression). We mainly study the
CVR estimation problem. Considering the continuous action information in the user’s multi-step
transformation process, we adopt Multi-Task Learning (MTL) for modeling. MTL is a typical solution to
improve end-to-end transformation in many-step tasks in industry and academia.
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By using shared representations between sets of related tasks, MTL can improve data efficiency and
potentially lead to faster learning rates for related or downstream tasks. MTL learning techniques have
been widely applied in various fields, from Natural Language Processing (NLP) [2] to Computer Vision
(CV) [3], bug triage [4], code retrieval [5] and so on. Recent studies have shown that MTL techniques
are very suitable for recommender systems [6–10]. Multi-task neural network models share low-level
information among different tasks, separate each task’s unique features, and finally associate them to
obtain the final information. Knowledge transfer mainly relies on inter-task relationships. Therefore, how
to properly model the relationship between tasks and how to control the knowledge transfer between
tasks is the key to MTL.

Training a custom model from scratch for each task has serious overfitting problems. The pre-trained
embedding layer cannot consider the relationship between multiple tasks, and the model cannot
generalize well. Hence, the customized network is only suitable for the original distribution space. Deep
learning uses large-scale sample instances to “violently” train the network, allowing the model to process
a single task effectively. However, this can only alleviate temporary needs, and cannot implement the
same set of algorithms to solve various complex tasks. In order to cope with this challenge, we introduce
a meta-learning strategy in the training process to train a general model for all tasks that captures
complex relationships between tasks.

In this paper, we propose a Multi-task Attention Network (MAN) to control knowledge transfer between
tasks dynamically. MAN is an attention mechanism-based method to solve the problem of user sequence
modeling and alleviates data imbalances by leveraging shared information across tasks, and captures
correlations between sequential tasks by leveraging prior knowledge in MTL. The idea of meta-learning
is introduced in the training process, and two-stage training is carried out. First, a general generalization
model is obtained through the early stop mechanism. On this basis, the high-level information of the
fusion model is continued to be trained to improve the training effect, and it can eliminate data sparsity
and sample selection bias problems. The task-sharing experts and task-specific experts in the model
enable the model to separate the characteristics of each task and integrate the commonalities among
multiple tasks. Compared with existing models, we improve training performance by reducing conflicts
by sharing objectives.

To verify the effectiveness of our model, we conduct experiments on the Ali-CCP dataset [6], and
compare the results with the state-of-the-art multi-task models, showing that our results are up to the best.
The main contributions of this paper include the following points:

1) We propose a Multi-task Attention Network to dynamically learn the relationship between tasks and
control knowledge sharing in multi-task learning from the perspective of joint representation learning.
So the correlation between user sequence actions can be learned.
2) We define the problems of data sparsity and sample selection bias from the perspective of meta-
learning and use meta-learning to solve them.
3) We propose a two-stage training scheme, which is important for improving our performance.

Our work is organized as follows. In Section 2, we summarize related work. Section 3 formally defines
our problem and introduces methods for learning feature interactions. In Section 4, we present the
experimental results and detailed analysis. Section 5 concludes this paper.

2 Related Work

2.1 CVR Modeling

Accurately predicting user responses, such as click-through rates and conversion rates, is essential in the
recommendation, search, and advertising applications. As shown in Fig. 1, click-through rate (CTR) is
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designed to predict the probability of a user clicking on an advertisement. At the same time, CVR is to
estimate the probability of a user’s actions based on the previous one, and there is an order sequence of
actions in between. These two tasks can often be formalized as a classic binary classification problem
[11]. A major challenge in CVR estimation is the problem of sample selection bias [12]. DeepFM [13]
uses Factorization Machines (FM) instead of Logistic Regression (LR) in the wide-area part to
automatically learn second-order feature interactions, while DCN [14] uses a cross-network to learn
higher-order representations. DUPN [15] learns common user representations across multiple search and
recommendation tasks for more effective personalization. MA-RDPG [16] improves the overall
performance of ranking strategies in search, recommendation, and advertising through multi-agent
reinforcement learning. Weighted Fake Negative (FN) and FN calibration loss functions [17] are proposed
to address delayed feedback with continuous training of neural networks in CTR prediction. But they do
not exploit the task relationship in the label space. To address this issue, ESMM [6] simultaneously
models the posterior view click-through rate and post-view click-through & conversion rate (CTCVR) by
employing a feature representation transfer learning strategy across the entire space. HoAFM [18]
proposes a high-order attention decomposition machine by considering the interaction of high-order
sparse features, and uses a bit-attention mechanism to learn the importance of co-occurring features.

2.2 Multi-Task Learning (MTL)

MTL provides an effective framework for leveraging task relationships to transfer knowledge and
improve model generalization. To exploit the task relationship in MTL, there are recent examples such as
the cross-stitch network [19] using linear units to learn the optimal combination of task-specific
representations for each task, and a hard parameter sharing structure is thought to help each task better
leverage knowledge learned from other tasks, but the natural differences between each task may lead to
conflicts in learning shared representations. Furthermore, ESMM [6] proposes a new perspective on
multi-task modeling with sequence dependencies to tackle the challenges of extreme data sparsity and
sample selection bias. PAL [20] utilizes a two-task model to remove positional bias in advertisement
recommendation, which separates view-through and click-through rates. F3 [21] proposes an intuitive yet
effective general framework to concatenate different learners with the filter mechanism to filter out
unchanged fixes. Flow2Vec [22] presents a new code embedding approach that preserves interprocedural,
context-sensitive and alias-aware value-flows in the low-dimensional vector space to better support
subsequent learning tasks. These methods exhibit better feature learning in shared and task-specific
representations and achieve better performances than typical MTL methods. However, there are still some
limitations, such as the model depends on specific application scenarios and statically captures task
relationships.

Previous work [23,24] attempts to measure differences between tasks based on assumptions about the
data generation process. Still, in the real world, the data generation process is often more complex and
harder to measure. Existing studies still lack an in-depth exploration of the conflicting nature of shared
parameters, nor an in-depth analysis of the incompatibility and synergy of each task. Recent research has
shown that tower top modules tend to contain richer and more useful information, and if there is no

Figure 1: The user first clicks on a product from the search page and then decides whether to buy the
product. The aim is to maximize post-view click-through & conversion rate
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information exchange between them, they cannot help tasks improve each other. Multiple tasks will suffer if
any of these probabilities cannot be predicted accurately. In this paper, we attempt to adaptively model task
relationships in MTL with self-attention networks, dynamically learn the relationships between tasks and
control the knowledge transfer between tasks. Our proposed Multi-task Attention Network (MAN) trains
a model that can be generalized across multiple tasks from a meta-learning perspective. MAN combines
shared and task experts to further capture task relationships and learn transferable knowledge. This
enables each task to obtain shared feature representations better, thus enabling MTL methods to achieve
better performance.

3 Methodology

3.1 Problem Statement

Impression is represented as a feature set containing user features, item features, and other contextual
features. The feature set of impressions is converted into sparse feature vectors (composed of various one-hot
encodings), such as user fields, item fields, etc. Consider a sample of impressions X ; Y clickð Þ; Z convð Þð Þ,
where X is a sparse feature vector and Y clickð Þ 2 0; 1f g, Z convð Þ 2 0; 1f g denote its click label, view after
conversion label. Y ! Z reveals the order dependence of click and transition labels, i.e., when a conversion
event occurs, there is always a previous click. Our goal is to maximize the post-view click-through &
conversion rate, pCTCVR ¼ pðy ¼ 1; z ¼ 1jxÞ. Among them, CTCVR can be decomposed into two goals:
CTR and CVR. Post-click conversion rate ¼ p z ¼ 1jy ¼ 1; xð Þ, post-click view click-through rate
pCTR ¼ pðz ¼ 1jxÞ. Given a sample x, these probabilities fit the formula:

p y ¼ 1; z ¼ 1jxð Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
pCTCVR

¼ p y ¼ 1jxð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
pCTR

� p z ¼ 1jy ¼ 1; xð Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
pCVR

(1)

Since the original feature vector x is very sparse, the model is prone to overfitting. Therefore, we need to
encode the original feature X into an embedding vector to represent the original input features in a small
continuous space. Look-up embeddings have been widely used to learn dense representations from raw
data for online prediction [25]. We denote all features X as embedding vector E, where E 2 Rk and k
denotes the embedding dimension.

3.2 Model Structure

In order to better learn the relationship between complex tasks, we introduce a model to obtain the
feature information that is beneficial to each task from the original user input, and improve the prediction
of the network. The model framework consists of a customized gate control network model, a meta-
learning framework, and an attention network, as shown in Fig. 2.

Lower-level representations are jointly extracted/aggregated during knowledge extraction and
transformation and routed to higher-level shared experts. Shared knowledge is captured and gradually
distributed to specific tower layers, enabling more efficient and flexible joint representation learning and
sharing. The CVR task shares the embedding dictionary representation with the CTR task, which follows a
feature representation transfer learning paradigm. Since the training samples of the CTR task are relatively
abundant, using the parameter sharing mechanism is of great help in alleviating the problem of data sparsity.

3.2.1 Embedding
Given an impression sparse feature vector for the CTR estimation task, the embedding layer converts

high-dimensional, sparse features and sequence features into a low-dimensional dense representation, and
then concatenates these embeddings to obtain the feature embedding Ectr. Likewise, for the CVR
estimation task, we can obtain the feature embedding Ecvr. The embedding vector E can be described as
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Eb 2 R dmbð Þ�n, where n is the maximum length of the sequence and mb is the field numbers. The embedding
matrix is uniformly initialized and then learned during training. By sharing the same embedding vector
among all tasks, one can learn the embedding vector with rich positive samples for the former task, on
the one hand, to share information and alleviate the class imbalance of the latter task, and on the other
hand, to reduce the model parameters.

3.2.2 Experts Network
Different experts specialize in different spaces and can capture feature information in different

subspaces. Therefore, for a specific task, we choose task-specific experts for learning, and the experts do
not interfere with each other. For task-shared features, we use shared experts to learn the representations.
Different tasks share the outputs of experts and task-specific experts by combining tasks through a gated
network. By combining experts with the gating network, the model can retain the ability of transfer
learning and avoid the negative transfer phenomenon. Each of the k subtasks corresponds to a tower
network, and each subtask outputs a target that can be expressed as f xð Þ ¼ P

g xð Þifi xð Þ, whereP
g xð Þi ¼ 1; fi i ¼ 1; 2; 3; . . . ; nð Þ represents n expert networks. Specifically, the gate network g is to

generate the probability distribution of each expert, the final output is the weighted sum of all experts.

3.2.3 Multi-Task Attention Network
In order to better utilize richer and more useful information, facilitate the exchange of information

between tasks, and help tasks to improve each other, we use attention networks [26–28] to model relevant
task information. For the two tasks Ti and Tj, the attention network is used to assign weights to the
correlation information of adjacent tasks and the information of the current task, and then the two parts of
information are fused to obtain the output Cij with task-related information. The processing is as follows:
Cij ¼ atðxijjxjÞ, where xi; xj represent the information transferred from adjacent tasks and the current task,
respectively, at represents the attention network, and jj is the concatenation operation, Cij represents the
output of the fusion of the two tasks information. The Query, Key, Value in the attention mechanism is
obtained through feed-forward networks, which projects the input information to a new vector
representation, then the values of Q, K, V in the attention network are obtained.

Figure 2: The architecture of Multi-task Attention Network (MAN)
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3.3 Loss

Each task is equipped with tower networks for converting the final task-specific representation into
predicted values. The tower network is further learned to interact by a two-layer Multi-Layer Perceptron
(MLP) with ReLU activation. The final logits output the probabilities after the Sigmoid function. The
final loss is a linear combination of individual task losses, defined as follows:

LMTL ¼
X

k
wk � Lk (2)

whereW is task-specific weight, and L represents the loss function. A loss-optimized uncertainty weight [29]
is employed in our model, which uses homoscedastic uncertainty to balance the loss for individual tasks.
Homoscedastic uncertainty refers to any uncertainty that does not depend on the input data. It is not a
model output, but a quantity that remains constant for all input data and varies from task to task. When
we execute the optimizer to maximize the Gaussian likelihood objective, homoscedastic uncertainty is
taken into account. In the model, the uncertainty loss can be expressed as:

LMTL W ; o1;o2ð Þ ¼ 1

2o12
L1 Wð Þ þ 1

2o22
L2 Wð Þ þ logo1o2 (3)

where L1 and L2 represent the losses of the two tasks, respectively. o1 and o2 are the corresponding noise
parameters that balance task-specific losses. During training, the trainable parameters should be updated
automatically. In addition, during the training process, we also try to add corresponding weights to the
positive and negative samples when calculating the cross-entropy loss, so as to avoid overfitting and
make it better to predict the correct category.

4 Experiment

4.1 Datasets

The performance of our proposed method is evaluated on the public dataset Ali-CCP [6]. The overall
description of Ali-CCP data is xi; yi ! zið Þf gjNi¼1, and the format of the sample is X ;Y ! Zð Þ, which is
from the custom domain x; y ! zð Þ, where X is the feature space, Y and Z are the label spaces, and N is
the total number of samples. x represents the feature vector of the observed sample, which is usually a high-
dimensional sparse vector divided into multiple domains, such as user domain, commodity domain, etc.
Both y and z are binary labels (0 or 1), where y ¼ 1 represents a click event for the sample, and z ¼ 1
represents a conversion event for the sample. Data processing method follows the previous work of AITM [30].

4.2 Baseline Models

� OMoE [8]: OMoE builds on the shared expert base model by sharing a gate across all tasks to
integrate the output of experts.

� MMoE [8]: The difference from OMoE is that the original unique gate is changed to gates of the
number of tasks to integrate the output of experts respectively.

� ESMM [6]: This model is designed to be trained on the entire space to address non-end-to-end post-
click conversion rates. With the help of two auxiliary tasks, CTR and CTCVR, ESMM subtly
addresses the challenges of sample selection bias and data sparsity encountered in practical
applications of CVR modeling.

� PLE [10]: Progressive Hierarchical Extraction (PLE) distinguishes inter-task shared information from
specific information by constructing task-sharing experts and task-specific experts.

� AITM [30]: AITM improves the performance of sequence-dependent multi-task learning by
constructing an adaptive information transfer multi-task framework to simulate sequential

3588 IASC, 2023, vol.36, no.3



dependencies among transitions across many steps. This method achieves state-of-the-art results
under different task dependencies.

Experimental Settings: We set the hidden dimension of each expert to be [256, 128]. We use 3 layers
[128, 16, 32] MLP as a tower network to predict each task. For OMoE, MMoE, PLE, we use 8 experts, where
4 shared experts and 4 task-specific experts for fair comparison. Since ESMM and AITM do not use expert
networks, we follow the original settings for the rest of the parameter settings. For our model, we set
expert_per_task to 4 and shared_expert_num to 4. In these six models, the activation function of the
expert is set to ReLU. All models are optimized using Adam Optimizer [31] with batch size 2048, setting
weight decay to 1e-6 and learning rate to 0.001. Preliminary optimal parameters are obtained through grid
search, and the optimal parameters are determined on this basis. For feature input, we use the same
embedding module for consistency and fairness. All experiments are repeated 5 times and the average
results are reported. We also try to use the focal loss proposed in [32], but it does not improve our results.

4.3 Meta-Learning

Meta-learning is helpful in achieving fast learning to alleviate overfitting, and can quickly learn general
knowledge of tasks even in a limited sample space [33–35]. We treat the overall training algorithm from a
meta-learning perspective. First, we prepare N training tasks, support set and query set corresponding to each
task, and test tasks. The test task is used to evaluate the effect of the parameters learned by meta-learning.
Both training and test sets are sampled from our original sample space. The parameters to initialize meta-
learning network are h. The meta-learning network is the network that will eventually be applied to the
new test task, and the “prior knowledge” is stored in the network. Then we perform iterative “pre-
training” to obtain the parameters of the meta-learning network, through which the parameters of the
meta-learning network are “fine-tuning” using the support set in the test task. Finally, the effect of meta-
learning is evaluated using the query set of the test task. See Algorithm 1 for the detailed training process.

Algorithm 1: Training Multi-task Attention Network from a meta-learning perspective.

Require: p(T): given a training dataset D[c]

Require: α, β: step size hyperparameters

Require: f θ: the general model

1. randomly initialize θ.

2. while not converge do:

3. Sample batch of tasks Ti ∼ p(T)

4. for all Ti do:

Ti contains two disjoint sets Da
[c], D

a
[c]

evaluate loss La(θ) with Da
[c]

compute updated parameter θ[c] = θ − a
#La uð Þ
#u

evaluate loss Lb(θ[c]) with Db
[c]

7. end for

8. Update θ = θ − β
P

TiE T1; . . . ;Tnf g#Lb h c½ �
� �

#u
9. end while
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4.4 Performance Comparison

The results show that our proposed model outperforms the mainstream models on all metrics tested
offline. Among the base models we compared, only ESMM performed slightly worse on the CTR task,
which may be due to the model implicitly modeling the relationship between tasks and relying too much
on the performance of the previous task leading to the seesaw phenomenon. From the detailed data
information, we can find that the samples have serious class imbalance classes, and from the results in
Table 1, we can find that the click task appears as the first task in these MTL baseline models, and the
MTL model does not significantly improve its performance. We explicitly model the relationship between
tasks through an attention network, so our model can achieve better performance in this case and good
generalization performance even in the case of sample class imbalance. We print out the final weights for
model training and find that the weights assigned to the two tasks are [0.0041, 0.0765]. From the learning
results of the model, it can be seen that the reason for this result is due to the problem of sample
selection bias. The completion process from click event to conversion event is rare, so the model learns
different weights to balance the training process, indicating that our method is effective in solving the
above problems. Compared with the state-of-the-art models, our model achieves 3.52% and 7.29%
improvements over the LightGBM [36] baseline model on the CTR and CVR tasks, respectively. Our
model achieves the best results Ali-CCP dataset, proving the effectiveness of our model.

4.5 Ablation Study

To verify the effectiveness of our method, we further compare our model with its own variants,
evaluating our various modules, and the results are shown in Table 2. “Without meta” means to remove
the training method of meta-learning, “Without att” means to remove the attention network, “Without
meta-att” means to remove the embedding layer and directly train the original feature data. The results
show that under the same setting, our main method outperforms several other variants in both CTR and
CVR estimation. The addition of meta-learning enables fast adaptation tasks. After training for 3 epochs,
the AUC of CTR and CVR can reach 0.61 and 0.64, respectively, which is helpful in alleviating
overfitting. The attention network module promotes the exchange of information between tasks, so that
the auxiliary information of related tasks can be used between tasks to improve the model’s performance.
Experimental results show that considering the task hierarchy in the process of using multi-task learning
to solve the CVR modeling problem can further improve performance.

Table 1: The performances of each model on Ali-CCP. The Gain indicates the improvement of the results of
each model compared to the LightGBM baseline. Our experiments are repeated 5 times, and the results report
the mean and standard deviation

Model CTR AUC CVR AUC Gain

LightGBM [36] 0.5837 ± 0.0005 0.5870 ± 0.0038 – –

OMoE [8] 0.6049 ± 0.0020 0.6405 ± 0.0041 +0.0212 +0.0535

MMOE [8] 0.6047 ± 0.0017 0.6420 ± 0.0031 +0.0210 +0.0550

ESMM [6] 0.6022 ± 0.0020 0.6291 ± 0.0061 +0.0185 +0.0421

PLE [10] 0.6039 ± 0.0014 0.6417 ± 0.0013 +0.0202 +0.0547

AITM [30] 0.6043 ± 0.0016 0.6525 ± 0.0024 +0.0206 +0.0655

OURS 0.6225 ± 0.0003 0.6599 ± 0.0047 +0.0352 +0.0729

3590 IASC, 2023, vol.36, no.3



5 Conclusion

In this paper, we propose a Multi-task Attention Network to learn knowledge transfer between tasks and
use an attention network to learn weight assignment and knowledge sharing between complex tasks. The
correlations between tasks are captured by leveraging prior knowledge in MTL. The shared experts and
task-specific experts in the model can well separate the characteristics of each task and integrate the
commonalities between multiple tasks, avoiding the phenomenon of negative transfer. In the training
process, a two-stage training meta-learning strategy is introduced to train a general model for all tasks
that can capture the complex relationships between tasks. Experimental results show that our method
achieves state-of-the-art results.

Funding Statement: Our work was supported by the research project of Yunnan University (Grant No.
2021Y274), Natural Science Foundation of China (Grant No. 61862064).
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