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Abstract: Falls are the contributing factor to both fatal and nonfatal injuries in the
elderly. Therefore, pre-impact fall detection, which identifies a fall before the
body collides with the floor, would be essential. Recently, researchers have turned
their attention from post-impact fall detection to pre-impact fall detection. Pre-
impact fall detection solutions typically use either a threshold-based or machine
learning-based approach, although the threshold value would be difficult to accu-
rately determine in threshold-based methods. Moreover, while additional features
could sometimes assist in categorizing falls and non-falls more precisely, the esti-
mated determination of the significant features would be too time-intensive, thus
using a significant portion of the algorithm’s operating time. In this work, we
developed a deep residual network with aggregation transformation called
FDSNeXt for a pre-impact fall detection approach employing wearable inertial
sensors. The proposed network was introduced to address the limitations of fea-
ture extraction, threshold definition, and algorithm complexity. After training on a
large-scale motion dataset, the KFall dataset, and straightforward evaluation with
standard metrics, the proposed approach identified pre-impact and impact falls
with high accuracy of 91.87 and 92.52%, respectively. In addition, we have inves-
tigated fall detection’s performances of three state-of-the-art deep learning models
such as a convolutional neural network (CNN), a long short-term memory neural
network (LSTM), and a hybrid model (CNN-LSTM). The experimental results
showed that the proposed FDSNeXt model outperformed these deep learning
models (CNN, LSTM, and CNN-LSTM) with significant improvements.
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1 Introduction

Due to the increasing aging of the world’s population, the welfare and safety of the elderly are a concern.
Moreover, 28%–35% of people aged 65 years or older fall at least once a year, and 20%–30% of falls result in
moderate to severe injury or even death [1]. Much research has also been conducted to develop fall detection
systems (FDSs) to reduce the severity of fall-related injuries.

Based on the sensors used, FDSs can be divided into contextual and wearable systems [2,3].
Furthermore, context-aware systems rely heavily on environmental sensors such as radar and floor
sensors, in addition to vision-based instruments, as primary data collection sources. The inability to detect
falls anywhere at any time would be a critical shortcoming of such systems, which would be limited to
indoor applications. In the last decade, wearable sensor-based fall detection systems have gained wide
appeal among researchers due to their mobility, accurate motion detection, and low cost [4]. Moreover,
research has mainly focused on wearable inertial sensors. There have been two general approaches for
developing sensor-based fall detection systems for wearable devices. Additionally, most current research
has focused on post-fall detection, which has aimed to efficiently detect fall events and trigger medical
alerts to limit the frequency and severity of prolonged falls [5]. Nonetheless, this strategy has inherent
drawbacks. It could not prevent fall-related injuries because the effects of the fall had already occurred.
Another area of research was pre-impact fall detection, which has attempted to monitor a fall during the
fall process before the body contacts with the floor. As a result, fall prevention measures such as wearing
airbags could be triggered to prevent injuries from the impact of a fall [6]. This strategy would provide
older people with a more fundamental approach to fall injury prevention. Unfortunately, this would be
more complicated than post-fall detection because of the algorithms of the body-to-floor contact moment
sensor signal, which would contain the most detailed data.

In recent years, numerous studies have been conducted to clarify this challenge by shifting the focus
from post-impact fall detection to pre-impact falls. Most relevant work on pre-impact FDS has been done
using threshold-based and machine learning (ML) techniques. However, determining the correct threshold
has not been straightforward. Although additional features could help to categorize falls and non-falls
more accurately, computing the values of the salient features would be too time-consuming and waste too
much operating time of the ML algorithm. With the development of deep learning (DL) techniques, a few
early experiments have demonstrated the effectiveness of the generated algorithms on moderately small
datasets (limited number of human participants and movements).

Therefore, this study investigated the use of pre-impact FDS utilizing wearable sensors and DL
techniques. To accomplish our study objective, we proposed a deep residual network for pre-impact FDS
that would effectively detect pre-impact falls. The proposed model was trained and evaluated using KFall,
a large-scale movement dataset. The following is a summary of our contributions:

� FDSNeXt, a novel deep residual network with aggregated transformation, was proposed in this study,
which included many multikernel blocks throughout the main convolution procedure to provide
reliable predictions for pre-impact and impact fall detection.

� Different DL networks (CNN, LSTM, and CNN-LSTM) were implemented to analyze and detect the
pre-impact and impact fall events.

� On the same pre-impact fall dataset, we compared the performance of the proposed FDSNeXt.

The following specifics highlight the paper’s organization: The related study is discussed in Section 2.
Section 3 explains the approach, which consists of a sensor-based FDS structure and a proposed DL model.
Then, in Section 4, the experiments and results of the DL model are analyzed and compared. The research
results are discussed in Section 5. In Section 6, we conclude with a description of our results, limitations, and
potential research challenges.
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2 Related Studies

In this section, we briefly discuss the studies on sensor-based fall detection. The following sections
contain further information on the related studies in this study.

2.1 Sensor-Based Fall Detection

Vision-based, ambient, and wearable sensors are three possible classifications for current fall detection
strategies [7]. Vision-based sensors collect movement data by tracking tools and determining a participant’s
body image tilt or particular skeletal inscriptions from video or image data [8] to notice a fall. In most cases,
ambient sensors detect falls by gathering infrared [9], radar [10], and other data from the surrounding sensor.
Although it poses no privacy concerns, this has a slightly higher cost. Moreover, this is susceptible to noise
and has a somewhat restricted detection range. Several low-cost sensors have also been used by wearable
technology to monitor falls [11]. Their detecting capabilities have depended on the sensor being worn in
real-time. However, the elderly could not do this in some situations, such as bathing. In addition, some
elderly people could feel pain through their clothing.

There are post-fall and pre-impact fall detection systems based on wearable inertial sensors. Post-fall
detection would perceive falls and alert caregivers to avoid prolonged recumbency [12]. As the name
implies, a fall could not be detected until after it occurred, so injuries due to fall impact could not be
prevented. Hence, pre-impact fall detection would attempt to detect a fall before the body reached the
floor (pre-impact), so that a protective device could be triggered to prevent any harm [13]. Since only
partial fall data has been available, the development of pre-impact fall detection algorithms would be
more difficult but could address the problem more fundamentally.

Due to the cheap affordability of sensors in latest years, wearable sensors have gained increasing
popularity. To achieve the three-axis acceleration at various points and the three-axis rotation angular
velocity in a gyroscope, the most popular locations for wearable sensors have been the calf, spine, head,
pelvis, and feet [14].

2.2 DL Approaches in Fall Detection

Conventional pattern classification and recognition based on DL are the two primary categories of ML
techniques [15]. Standard recognition techniques (such as the support vector machines (SVM) technique [16]
and the k-nearest neighbor (KNN) technique [17]) would depend on manually extracted features for
identification. Therefore, researchers have proposed stricter parameters for fall detection. First, it would
be crucial to identify the physical components involved in the falling operation. Second, it would be
necessary to analyze how these traits would be differentiated from the activities of daily living (ADLs)
such as sitting and leaping; otherwise, the feature extraction process would greatly slow down.
Classification and recognition based on DL would be used in fall detection systems that could
automatically identify feature data. Because of this advantage, DL approaches have gained popularity in
the scientific community. They have been used in various fields where they have played an equivalent
role to human specialists. In general, the stages required in DL approaches that use sensor data from
wearable devices are preprocessing the received signals, extracting features from the signal parts, and
training a model using these aspects as input data [18]. The current study on fall risk assessment using
sensor data from wearable devices mainly focused on engineering optimization. Various DL techniques
were provided with the obtained features to predict the occurrence of falls. In addition, Klenk et al. [19]
developed a fall detection approach based on LSTM, which used a longstanding array as input and
extracted temporal information correctly.
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3 Proposed Methodology

In this section, the procedure for developing a DL model and detecting falls using wearable sensing
devices is explained. Fig. 1 shows the proposed approach for fall detection. This consists of four stages:
(1) data acquisition, (2) data pre-processing, (3) data generation, and (4) model training and classification.
In the following sections, each stage is described in detail.

3.1 Data Acquisition

The KFall [20] was a public dataset for fall detection. The data mainly included inertial sensor data
collected at waist level. According to Table 1, 32 teenage male participants performed 21 ADLs and
15 falls in this study. A total of 5075 ADL/fall events were recorded. For the data collection of mobility,
a nine-axis inertial sensor was used to collect the mobility data, which consisted of a triaxial
accelerometer with ±16G, a gyroscope with ±2,000°/s, and a magnetometer with ±16G. The orientation
measurement given by the supplier was the combination of the angular velocity, which was adjusted by
merging the accelerometer and magnetometer data using an extensive Kalman filter. The sensor was set at
a 100 Hz frequency. The sensor data was transferred through a Bluetooth dongle connected to the
Raspberry Pi host.

Figure 1: The proposed FDSNeXt methodology

Table 1: Activities of the KFall dataset (21 ADLs and 15 Falls)

Activity Class

Stand for 30 s ADL

Stand with a slow bend on the back ADL

Take up an object ADL

Take a jump ADL

Stand and sit, and get up ADL

Regular walk with a turn ADL

Fast walk with a turn ADL

Regular jog with a turn ADL

Fast jog with a turn ADL
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3.2 Data Pre-Processing

The raw sensor data from the waist contained the measurement noise and additional unpredicted noise
resulting from the active movements of the participants during the data acquisition. A noisy signal obliterated
the relevant information. Therefore, it was important to limit the impact of the noise on the mobility in order
to collect the user’s data for subsequent processing. Mean, low-pass, and wavelet filtering were the most
common filtering methods [21,22]. We used a third order low-pass Butterworth filter with a 20 Hz cutoff
frequency to the accelerometer, gyroscope, and Euler angles sensors in all orientations to denoise the data
as shown in the Fig. 2. Furthermore, 99.9% of the energy was retained below 15 Hz [23]; therefore, this
value was sufficient for the physical motion detection. As illustrated in Fig. 3, the preprocessed sensor
data were separated by a sliding window with a fixed width of 0.5 s and an overlap of 50%.

Table 1 (continued)

Activity Class

Fall down while walking ADL

Thirty seconds of sitting on a chair ADL

Thirty seconds while seated on the sofa (back angled toward the support) ADL

Sit down on a chair, and get up ADL

Sit down on a chair, and get up quickly ADL

Sit down on a chair, attempt to stand, and collapse ADL

Stand and sit down on the couch (back is inclined), and stand up again ADL

Lay down on the bed for 30 s. ADL

Perform usually sitting, lying down on the bed, and getting up ADL

Perform quickly sitting, lying down on the bed, and getting up ADL

Regular walk upstairs and downstairs ADL

Fast walk upstairs and downstairs ADL

Sit down and forward fall Fall

Sit down and backward fall Fall

Sit down and lateral fall Fall

Get up and forward fall Fall

Get up and lateral fall Fall

Sit and forward fall (fainting) Fall

Sit and lateral fall (fainting) Fall

Sit and backward fall (fainting) Fall

Walk with vertical fall (fainting) Fall

Walk with a fall (hands to dampen fall, fainting) Fall

Walk and forward fall (caused a trip) Fall

Jogging and forward fall (caused a trip) Fall

Walk and forward fall (caused a slip) Fall

Walk and lateral fall (caused a slip) Fall

Walk and backward fall (caused a slip) Fall
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There were three reasons about the selection of the window size of 0.5 s and the overlapping proportion
of 50% as follows: (1) the 0.5 s window size in the sliding windows were sufficient to achieve the high
detection rates for the fall detection problems as suggested by Liu et al. [24]. (2) Since the focus of this
study was pre-impact fall detection, the window size was suggested for the fall injury prevention based
on the practicality measures [15]. The sliding window approach was the most widely employed
segmentation technique in fall detection research. Its implementational simplicity and lack of
preprocessing determined that the windowing approach to be ideally suited to real-time applications [25].

Figure 2: Some samples of acceleration before and after noise removing

Figure 3: Fixed length sliding window approach
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The signals were split into windows of a fixed size and with no inter-window gaps. This work used a 50-
sample window, as mentioned above, and a 50% displacement of the sample size, which corresponded to
25 temporal samples and applied this approach as a data augmentation technique: This inferred that there
was an overlap of 50% of the information between the two consecutive temporal windows.

3.3 The Proposed Deep Residual Network

This study addressed a convolution-based DL technique to overcome the FDS challenge. We proposed a
multi-branch aggregation model called FDSNeXt that was influenced by Xie et al. [26]. In this network, the
various-sized kernel feature maps were appended, as opposed to concatenated as in InceptionNet [27]. This
dramatically decreased the number of model parameters, thus making such interconnections appropriate for
edge and low-latency applications. Fig. 4 shows the information on the FDSNeXt.

The FDSNeXt model contained four units with convolutional kernels of differing sizes. Each
multikernel unit had three kernel sizes: 1 × 3, 1 × 5, and 1 × 7. In addition, the 1 × 1 convolution was
used before applying these kernels to decrease the model’s complication and the number of parameters.
Fig. 5 shows the multikernel in its entirety.

Figure 4: The proposed FDSNeXt model

Figure 5: Structure of the multikernel unit
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3.4 Evaluation Metrics

In this work, the evaluation metrics of accuracy, precision, recall, and F1-score were used to evaluate the
DL models and the proposed models for pre-impact and impact fall detection. These four evaluation metrics
are most commonly used in fall detection research to evaluate the overall success. The detection is a true
positive (TP) for the category under consideration and a true negative (TN) for all others. If sensor data
from one category is incorrectly classified as belonging to another, this will result in a false positive (FP)
detection. Sensor data from another category may be incorrectly classified as belonging to this category,
resulting in a false negative (FP) detection.

Accuracy is the sum of correctly detected issues divided by the total number of classifications. The
mathematical formula of the accuracy is shown in Eq. (1).

accuracy ¼ TP þ TN

TP þ FP þ TN þ FN
(1)

In the field of fall detection, the precision rate is the proportion of instances that represent a positive class
out of all instances that are predicted to be positive classes. According to the definition, the mathematical
formula for calculating the precision rate is presented in Eq. (2).

precision ¼ TP

TP þ FP
(2)

The recall rate is the proportion of the number of instances of all positive classes of which the number is
correctly predicted to be positive. According to the definition, the recall metric is calculated mathematically
as shown in Eq. (3).

recall ¼ TP

TP þ FN
(3)

The F1-score is the weighted summed average of the precision rate and the recall rate. The F1-score
takes into account both the precision and recall metrics. When the F1-score is higher, this metric can
indicate that the experimental method is effective. The F1-score formula is shown in Eq. (4).

F1� score ¼ 2 � precision � recall
precisionþ recall

(4)

4 Research Experiments and Results

4.1 Environmental Configuration

For this study, the Google Colab-Pro+ platform was deployed. The 16 GB graphics processor unit of
Tesla V100-SXM2 was used to accelerate the training of the DL models with excellent performance. It
was decided to include FDSNeXt and other standard DL models in the Python library using the
Tensorflow backend v.3.9.1 [28] and the CUDA v.8.0.6 graphics cards. The following is a summary of
the Python libraries that were the topic of these explorations:

� Numpy and Pandas were used to access, process, and analyze sensor data.

� Matplotlib and Seaborn were used to display and report the results of the data discovery and model
evaluation.

� In the study, Sklearn was used to perform the sampling and data generation.

� Models for DL were created and trained using Keras, TensorFlow, and TensorBoard.

3378 IASC, 2023, vol.36, no.3



4.2 Hyperparameters

The hyperparameter settings in the DL model were used to drive the learning experience. For the
proposed model, the relevant hyperparameters used were: (1) epochs, (2) batch size, (3) learning rate, (4)
optimization, and (5) loss function (shown in Table 2). To create these hyperparameters, the number of
epochs was set to 200, and the batch size was set to 128. If there was no improvement in the validation
loss after 30 epochs, we used a call to stop early to terminate the training process. Initially, the learning
rate was set to 0.001. Six epochs later, when the validation accuracy of the proposed model did not
improve, we reduced the parameter to 75% of its initial value. To reduce the error, the Adam optimizer
was used with the parameters β1 = 0.90, β2 = 0.999, and ε = 1 1010, respectively. The error was
determined by the optimizer using the categorical cross-entropy function. The cross-entropy was superior
to other methods, including classification and mean squared error.

Table 2: Hyperparameters of the proposed FDSNeXt model

Stage Hyperparameter Values

Convolutional Block

Conv1D Kernel Size 5

Multi-Kernel Block × 5 Filters 64

Batch Normalization –

Activation ReLU

Max Pooling 2

Branch1-1

Conv1D Kernel Size 1

Filters 16

Conv1D Kernel Size 3

Filters 16

Branch1-2

Conv1D Kernel Size 1

Filters 16

Conv1D Kernel Size 5

Filters 16

Branch1-3

Conv1D Kernel Size 1

Filters 16

Conv1D Kernel Size 7

Filters 16

Branch1

Kernel Size 1

Conv1D Stride 1

Filters 64
(Continued)
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4.3 Experimental Results

In this research, the two main experiments were conducted utilizing sensor data from the KFall dataset:

� Scenario I: Detected falls using data from wearable sensors

� Scenario II: Utilized data from wearable sensors to identify falls before impact.

Considering a five-fold cross-validation procedure, experimental movement signal data were obtained.
This study evaluated the identification effectiveness of three standard DL models (CNN, LSTM, and CNN-
LSTM) and the proposed FDSNeXt model via a series of experiments. The experimental results were
evaluated by the Accuracy, Loss, and F1-score, as shown in Tables 3 and 4.

Table 2 (continued)

Stage Hyperparameter Values

Branch2

Kernel Size 1

Conv1D Stride 1

Filters 64

Classification Block Global Average Pooling –

Flatten –

Dense 128

Training Loss Function Cross-entropy

Optimizer Adam

Batch Size 128

Number of Epochs 200

Table 3: Performance metrics of the baseline models and the proposed FDSNeXt of scenario I

Model Performance

Accuracy Loss F1-score

CNN 86.19% (±0.541%) 0.40% (±0.054%) 85.57% (±0.578%)

LSTM 90.56% (±1.564%) 0.23% (± 0.032%) 90.30% (±1.676%)

CNN-LSTM 83.69% (±0.866%) 0.35% (± 0.013%) 83.22% (±0.898%)

FDSNeXt 92.52% (±0.208%) 0.23% (± 0.010%) 92.34% (±0.208%)

Table 4: Performance metrics of the baseline models and the proposed FDSNeXt of scenario II

Model Performance

Accuracy Loss F1-score

CNN 85.69% (±0.700%) 0.49% (±0.048%) 82.37% (±0.765%)

LSTM 90.12% (±0.412%) 0.25% (±0.004%) 87.68% (±0.406%)

CNN-LSTM 84.04% (±0.417%) 0.35% (±0.008%) 79.29% (±0.659%)

FDSNeXt 91.87% (±0.306%) 0.27% (±0.009%) 89.92% (±0.375%)
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From the results of the fall detection, the proposed FDSNeXt model achieved the highest accuracy and
F1-score in the experiment. The proposed model was achieved the best interpretations of the operating
motion signals from the waist position with the highest accuracy of 92.52% and the highest F1-score of
92.34%.

The proposed FDSNeXt model achieved the highest accuracy and F1-score in the performed
investigation for the pre-impact fall identification. Considering motion data from the waist location, the
proposed model achieved the highest accuracy of 91.87% and the highest F1-score of 89.92%.

5 Discussion

5.1 Comparison with Standard Models

To evaluate the effectiveness of the proposed FDSNeXt model, three standard DL models were
evaluated as the benchmarks. In this work, the models were evaluated using five-fold cross-validation
procedures, and the average performance indicators (Accuracy, Loss, and F1-score) were used as the
indices to evaluate the effectiveness.

Several baseline models were used to evaluate the proposed model, including CNN, LSTM, and CNN-
LSTM. Fig. 6 shows a comparative summary of the exploratory results.

As illustrated in Fig. 5, the comparative results showed that the proposed FDSNeXt model achieved
encouraging results with more satisfactory interpretation than the baseline models.

5.2 The Results from Confusion Matrices

To show the efficiency of the proposed fall detection approach, we showed the confusion matrices of
each DL model used in this work. Fig. 7 shows the confusion matrices of scenario I. The results showed
that the proposed FDSNeXt model surpassed the three baseline DL models.

Fig. 8 shows the confusion matrices of the models performed for the scenario II. The results showed that
our proposed FDSNeXt outperformed the other standard DL models (CNN, LSTM, and CNN-LSTM).

5.3 Comparison with Previous Works

The proposed FDSNeXt model was compared to previously trained models on the same dataset (KFall
dataset). Previous research [20] has revealed that using a ML technique called the SVM model made it
possible to reach a high-performance of the pre-impact fall detection using multimodal sensors. In the
prior work, 80% of the data (26 subjects) were randomly chosen as a training set, and the remaining 20%
of the data (six subjects) were treated for testing purposes. The sensitivity and specificity were calculated
to evaluate the performance of the SVM and threshold-based algorithms. The comparison results

Figure 6: Comparative results of the models in different metrics: (a) Accuracy and (b) F1-score
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indicated that the proposed FDSNeXt model achieved better accuracy than the previous model for pre-impact
fall detection as shown in Table 5.

Figure 7: Confusion metrics of each model used in scenario I: (a) CNN, (b) LSTM, (c) CNN-LSTM and
(d) FDSNeXt
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Figure 8: Confusion metrics of each model used in scenario II: (a) CNN, (b) LSTM, (c) CNN-LSTM and
(d) FDSNeXt

Table 5: Performance metrics of two benchmark models compared with the FDSNeXt

Model Performance

Sensitivity Specificity

Threshold 95.50 83.43

SVM 99.77 94.87

FDSNeXt 99.78 95.02
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6 Conclusion and Future Works

In this study, we investigated a DL model that depended on the inputs from wearable sensors compared to
other models. According to the experimental results, the proposed FDSNeXt model significantly outperformed
the other baseline models (CNN, LSTM, and CNN-LSTM). The proposed model was achieved the detection
accuracies of 92.52 and 91.87% for fall detection and pre-impact fall detection, respectively.

The proposed DL network in this paper benefited from the repeated topology of the InceptionNet, which
enabled it to have a very high accuracy rate while slightly increasing the amount of the network calculations,
while also greatly reducing the number of hyperparameters. Moreover, the FDSNeXt network was based on
the design concept of the residual connection and combined the aggregation transformation. The structure of
the residual connection improved the shortcomings of the degradation for multi-layer DL networks.
Moreover, the convolution modules of the transformation set were all the same. The FDSNeXt used a
transformation set to replace the transformation structure of the Inception network. Because each
aggregated topology was the same, the network no longer needed to modify too many hyperparameters
on the different data sets, which had better robustness.

For future studies, we plan to collect elderly fall data and train the model to improve the detection
accuracy. Moreover, the proposed model would be used on wearable devices such as smartphones and
smartwatches.
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