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Abstract: Data is growing quickly due to a significant increase in social media
applications. Today, billions of people use an enormous amount of data to access
the Internet. The backbone network experiences a substantial load as a result of an
increase in users. Users in the same region or company frequently ask for similar
material, especially on social media platforms. The subsequent request for the
same content can be satisfied from the edge if stored in proximity to the user.
Applications that require relatively low latency can use Content Delivery Network
(CDN) technology to meet their requirements. An edge and the data center con-
stitute the CDN architecture. To fulfill requests from the edge and minimize the
impact on the network, the requested content can be buffered closer to the user
device. Which content should be kept on the edge is the primary concern. The
cache policy has been optimized using various conventional and unconventional
methods, but they have yet to include the timestamp beside a video request. The
24-h content request pattern was obtained from publicly available datasets. The
popularity of a video is influenced by the time of day, as shown by a time-based
video profile. We present a cache optimization method based on a time-based pat-
tern of requests. The problem is described as a cache hit ratio maximization pro-
blem emphasizing a relevance score and machine learning model accuracy. A
model predicts the video to be cached in the next time stamp, and the relevance
score identifies the video to be removed from the cache. Afterwards, we gather the
logs and generate the content requests using an extracted video request pattern.
These logs are pre-processed to create a dataset divided into three-time slots
per day. A Long short-term memory (LSTM) model is trained on this dataset
to forecast the video at the next time interval. The proposed optimized caching
policy is evaluated on our CDN architecture deployed on the Korean Advanced
Research Network (KOREN) infrastructure. Our findings demonstrate how add-
ing time-based request patterns impacts the system by increasing the cache hit
rate. To show the effectiveness of the proposed model, we compare the results
with state-of-the-art techniques.
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1 Introduction

According to Cisco white papers [1], there is a 35% increase in Internet users and a 60% increase in IP
devices, and six hundred million more mobile devices from 2018 to 2023. The broadband speed will double
from 45 to 110 Mbps, and the cellular speed will triple from 13.2 to 43.9 Mbps. The higher Internet users, the
more social media applications, resulting in an increased number of IP networks and rapidly affecting the
velocity of big data generation. Many social media streaming applications need very low latency and high
bandwidth consumption. Similarly, real-time applications such as virtual reality, augmented reality, and
voice recognition requires ultra-low network latency and high bandwidth. The network must carefully
manage this immense increase in big data to reduce congestion. These requirements will further expand
the difficulty faced by network administrators. Therefore, there needs to be a mechanism that can cope
with such low latency and high bandwidth requirements.

The Content Delivery Network (CDN) is a distributed infrastructure that provides users with real-time
content [2]. It can efficiently handle applications with low latency, high speed, and maximum bandwidth
utilization requirements. The industry has deployed CDN to store data in user proximity to fulfill users
requests. The CDN reduces the backbone network traffic load and decreases the request count toward the
data center. Providing the content from CDN-edge means having comparatively less latency than the data
center. According to Gartner [3], in 2023, more than 75% of the data will be processed at the edge.
Therefore, we need strategies and algorithms to process and manage the resources on edge servers
optimally. The edge can exist anywhere between the data center and the user. An edge device one hop
away from the user, can provide very low latency with higher processing speed. But it can reduce the
coverage area of the CDN-edge, which means more edge devices are required to cover different areas.
Therefore, a suitable caching policy is needed to fulfill the network demands. Over the past few years,
there have been many proposed caching policies, such as LRU (Least Recently Used) [4], LFU (Least
Frequently Used) [5], and ILP (Integer Linear Programming) [6]. Since we live in the era of (Artificial
Intelligent) AI, caching policies based on machine learning (ML), deep learning (DL), and reinforcement
learning (RL) can extract the inherent features of data and then act accordingly [7]. The above-mentioned
network requirements can be satisfied to take advantage of AI capabilities on a CDN-edge.

Many AI-proposed techniques optimize content caching on edge servers [8–10]. The authors in [6]
employ machine learning for caching the multi-media content and location prediction to enrich the
customer experience [11]. Utilizes the Q-Learning methodology for assisted caching in multiple (Multi-
Access Edge Computing) MEC servers [12]. Proposes a dynamic programming knapsack optimization
algorithm for video caching and real-time transcoding problems. However, none of these methods
specifically discuss the user request arrival pattern. Although in [13], the author claims to extract the user
request pattern from the customer transaction dataset, which is unsuitable in caching scenarios. Moreover,
a recent survey on edge cache optimization emphasizes the significance of a time-based request pattern
[14]. In this regard, we propose an optimized CDN-edge caching policy that extracts a time-based request
pattern from the publicly available dataset captured over 25 years. Furthermore, while assessing the CDN
optimization technique’s performance, another vital aspect is the evaluating environment. Generally,
researchers evaluate their proposed methods using either a simulation or a lab-based environment.
However, in the case of a CDN scenario, such environments are inappropriate because they do not reflect
real-world constraints such as network delay, link bandwidth, and traffic congestion. Therefore, our
proposed testbed scenario consists of a CDN server, CDN-edge, and user devices representing the real-
world use case on KOREN Software-Defined Infrastructure (SDI).

Our approach aims to optimize the utilization of cache on edge. The main contributions of our work are
as follows:
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■ A publicly available dataset is analyzed to extract a time-based request pattern for its execution in the
CDN scenario.

■ A data center is built consisting of 1300 videos with their meta information.
■ A CDN-edge architecture is created on KOREN.
■ A dataset is created by collecting the logs from the CDN scenario.
■ The problem is formulated mathematically as a cache hit maximization problem with environmental
constraints.

■ A video removal mechanism is created based on time, genre, and video size attributes.

The rest of the paper is structured as follows: Section 2 provides the literature review. Section 3 describes
the problem statement and mathematical model of the proposed system. Section 4 presents the algorithm
design, and Section 5 discusses building the CDN scenario with the generation of a dataset with the
details of the supervised learning model. Section 6 evaluates the performance of the proposed
methodology and discusses the results. The last section concludes our research with future directions.

2 Related Work

The authors in [15] propose an LRU-based cache replacement strategy. The LRU strategy is merged with
the priority queue and re-access weight mechanism. Also, a Bayesian network theory-based prefetching
strategy is implemented to reduce access latency and improve the quality of service. The proposed
methodology is evaluated on the campus network, but the data center is usually placed in a
geographically remote location in real-world scenarios. The authors do not consider user preferences,
video profiles, and user request patterns over time. In [16], the author has proposed a machine learning-
based smart caching and location prediction method for improving user experience. It caches multi-media
content’s temporal and spatial information on the Internet of Things (IoT) equipment. A real-time
database is used to locate information. However, no real-time-based user request pattern is considered,
and simulation-based evaluation is done. Reference [11] presents utilized multi-agent reinforcement
learning techniques for cooperative content caching in MEC servers and download weight latency is used
as a cache reward. MEC servers use Q-learning to make caching decisions in a multi-agent environment.
The authors use an inappropriate representation of a Poisson distribution-based user request and evaluate
their proposed work using a simulated environment. Authors in [13] concatenate the convolutional neural
network (CNN), bidirectional deep neural network (BNN), and fully connected neural network (FCNN)
models. A combined model is used for feature extraction, dimension reduction, timestamp-based user
request association, and prediction performance improvements. They claim to use the models in the
online function. However, these models are computationally intensive and complex; therefore, they are
inappropriate in online scenarios. Also, the user request pattern is extracted from the customer transaction
dataset that does not reflect the legit video request pattern. Moreover, the proposed scheme is not
evaluated in a CDN environment. In [12], the dynamic programming and knapsack algorithm is
employed to optimize the solution for video caching and real-time transcoding problems. The authors
consider the attributes of video representations, video popularity level, and user profiling for user request
patterns. Their objective is to maximize the cache hit ratio, and a simulation is done to evaluate the
performance of the proposed system. Unrealistic assumptions about the edge resources are made. Further,
Zipf distribution-based content popularity is considered that is impractical. In [17], the authors designed a
cooperative caching model based on multiple cooperative caching edge servers. Machine learning and
greedy algorithm-based content delivery strategies are designed for cooperative caching servers. The
optimization objective is to minimize the average content transmission delay. The simulation environment
is set up to evaluate the performance of the proposed scheme. The authors use a fixed user request pattern
and Zipf distribution-based content popularity.
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In [18], the authors integrate a social content-centric network (SocialCCN) with mobile edge caching. A
multi-head attention-based model uses the social relationship, geographical information, and historical request
features for popularity prediction. It incorporates the encoder-decoder structure with BiLSTM, and caching
strategy is based on the average value of multi-step popularity prediction. However, it needs the details of
the environmental setup and information on how their proposed scheme has been evaluated in the CDN
environment. In [19], a cyclic genetic ant colony optimization algorithm for the CDN environment is
presented. The access count, access frequency, and data size are the multi-objectives for the optimization
algorithm. The algorithm efficiently offloads the data with minimum access and latency and processes the
high access and latency data. However, there is no added information about the video request patterns and
profiles. The authors in [20] utilize an artificial neural network (ANN) to find the relationship of content
demand over the time stamp. Then, an integer linear programming-based solution is proposed to formulate
the latency problem. Although they numerically evaluate the results, they do not consider content and user
profiling. Moreover, they do not evaluate their proposed method in the CDN scenario.

Table 1 shows a comparison of all the proposed techniques. The above algorithms optimize the CDN-
edge caching policy. The previous studies utilize either traditional or machine learning techniques for CDN
cache optimization. A few methods [11,12,16,17] are evaluated in the simulation environment and others
[18,19] numerically. The following proposed approaches [13,18–20] are not assessed in the CDN
environment, only the model proposed in [15] is evaluated in the campus-level CDN environment.
However, it still does not reflect real-world cases, whereas, in typical CDN scenarios, the data center is
usually placed in a geographically remote location. In addition, a user request pattern is essential when
considering the edge caching scenario. The previous studies have used random, Poisson distribution,
fixed, and Recurrent Neural Network (RNN) based patterns. However, they have yet to consider a
timestamp in their solution. The importance of a time-based request pattern is also highlighted in [22,23].
For example, users tend to watch more entertainment videos at night than educational ones. Similarly,
most users work in offices, universities, and companies during the daytime. To this end, it is important to
consolidate the timestamp with the request pattern.

Additionally, [13,15,16] also mention the algorithms to optimize the cache replacement strategies. But
multiple AI models will put a huge computational workload on the CDN-edge. Therefore, our proposed
model combines AI techniques with the computational workload.

Table 1: Comparison with state-of-the-art techniques

Reference Technique Used What is cached? Environment Dataset Request Pattern

[10] Reinforcement Learning Video Simulation MovieLens Poisson

[12] Dynamic Programming Video Simulation No No

[13] Deep-RNN User Request Not Tested Customer Transaction Bi-RNN

[15] Priority LRU File Campus No Random

[16] ML with (LRU/LFU) Multimedia Content Simulation No No

[17] Neural CF Content Not Tested No Fixed

[18] Encoder-Decoder with Bi-LSTM Content Simulation No SONETOR

[19] Ant Colony Optimization Data Numerical Evaluation No No

[20] RNN with Linear Programming Data Numerical Evaluation No Random

[21] Deep-RL Content Simulation Resource Utilization No

Our Proposed Scheme Video Real-time CDN We generate dataset Time-based
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We design a CDN architecture on top of KOREN-SDI to overcome the challenges mentioned above to
represent a real-world scenario. We establish a data center consisting of 1300 videos from eight different
categories. Additionally, we extract a time-based content request pattern from the publicly available
dataset. Furthermore, we create video profiles to integrate the effect of size, length, and type of video.

3 System Model Definition and Problem Formulation

This section explains the caching model with the formulation of the relevance score. The integration of
the proposed system model with machine learning is also presented. The discussion of the hit ratio
maximization problem using relevance score and machine learning concludes the section. The basic steps
followed by the proposed model are mentioned in Algorithm 1. Initially, the proposed system waits for
the video request. Once the video request arrives, it checks for the requested video in a cache. If found in
the cache, a requested video will be provided to the user. Suppose that a requested video is not available
in the cache. In that case, a reactive caching function is activated to download the video from the data
center and provide the video to the user. In case of a cache miss scenario, a proactive caching function is
activated to predict the request video for the next time stamp. A REACTIVE CACHING () and
PROACTIVE CACHING () functions detail is provided in section IV.

Algorithm 1: Cache Optimization

1: Wait until the video request arrived

2: When a request for video v has arrived

3: if Requested video v is available in the cache, then

4: Provide the requested video v to the user

5: Record the log, such as the time of the request, video id, and video genre

6: else

7: Video v ← call REACTIVE CACHING (v)

8: Provide the requested video v to the user

9: call PROACTIVE CACHING ()

10: end if

3.1 System Model

A CDN environment is a design that consists of a data center, edge server, and end device on KOREN-
SDI to evaluate the proposed scheme in a real-world environment. Furthermore, a 24-h video request pattern
is extracted from the public dataset and executed on edge to generate the user request. Fig. 1 shows the
overview of our proposed architecture. The main components are the end-device to generate user
requests, CDN-edge for video caching, and the data center for video repository. Initially, a 24-h video
request pattern is extracted from publicly available datasets [24,25] and placed on the end-device to
generate a request in a time-based pattern. A request generator module is activated on the user’s device to
create a request. Initially, a request is sent to CDN-edge; the request handler on the CDN-edge receives
the request and checks for content in the local video repository. If video content is found, it is provided to
the user. Otherwise, the CDN-edge generates a new request to the data center. On the data center, the
request handler receives the content request from the CDN-edge, finds the requested content in the central
video repository, and forwards the requested content to the response generator. Response generators send
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the content to CDN-edge. Upon receiving the content from the data center, the CDN-edge provides the
content to a user. On the end device, the content handler receives video from CDN-edge and stores it.

Ri ¼ 1; if requested video is ið Þ
0; otherwise

�
(1)

Rg
i ¼ 1; if requested video is ið Þ

0; otherwise

�
(2)

A V ¼ v1; v2; v3; . . . ; vNf g is the set of videos that make up a data center, and N is the total number
of videos. Similarly, the set of the genre is denoted as G ¼ g1; g2; g3; . . . ; g3f g, where K is the total
number of genres. The symbol for the total number of videos that are currently cached is M. Cache and
video storage sizes are denoted by the symbols SC and Si. The morning period, which lasts from
4:00 AM to 9:00 AM; the day period, which lasts from 9:00 AM to 5:00 PM; and the evening period,
which lasts from 5:00 PM to 4:00 AM, are the three time periods that make up a 24-h period. The
mathematical representation of time slots is defined as t E T where T ¼ Morning; Day; Nightð Þ. There
are two binary variables Ri and Rg

i whose definition is provided in Eqs. (1) and (2), respectively. Ri is
used to indicate whether or not a video is the requested video. Similarly, the Rg

i function will show
whether or not a requested video belongs to the g genre.

Figure 1: An overview of a proposed system with all basic components
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3.2 Relevance Score

All of the requested data cannot be stored in the cache due to the cache’s storage capacity being
significantly less than that of the data center. As a result, there should be a way to replace the old videos
in the cache with the ones that have just been requested. All cached videos are given a relevance score,
and the video with the lowest relevance score is removed from the cache. A relevance score is based on
three attributes: time, genre, and size. All these attributes are separately calculated for each time slot tð Þ.

f1 ¼
PM

i¼1 Ri

M
;
XM
i¼0

Si , Sc (3)

f2 ¼
PM

i¼1 R
g
i

M
; g E G (4)

f3 ¼ Sv � min Sið Þ
max Sið Þ � min Sið Þ ; i E n (5)

The time and genre attribute of the video is derived using empirical probability [26,27]. The empirical
probability states the ratio of the number of outcomes of event A to the total number of trials. That is used for
the time attribute as the ratio of the total number of requests for video i to the total number of requests. For
genre attribute, it is used as the ratio of total number of requests for video of genre gð Þ to the total number of
requests. The mathematical formulation of the time and genre attributes is shown in Eqs. (3) and (4),
respectively. The video (v) size attribute is calculated as the normalized value of all requested videos, as
shown in equation Eq. (5).

E fj
� � ¼ �ln mð Þ�1 Pm

i¼1
P fj
� � � lnP ifj

� �� �
(6)

wj ¼
1� E fj

� �
3 � E f1ð Þ þ E f3ð Þ þ E f3ð Þ½ � (7)

relscore ¼ w1f1 þ w2f2 þ w3ð1 � f3Þ½ � (8)

The information entropy [28] is stated as “how much surprise there is in an event. Those events that are
rare (low probability) are more surprising and therefore have more information than those events that are
common (high probability)”. The weights are assigned to each attribute based on the definition of information
entropy to determine how each attribute affects the relevance score as shown in Eq. (6). The weight of each
attribute is obtained through information entropy, as shown in Eq. (7). In denominator of Eq. (7), the sum of
all the attributes entropies is subtracted from three because there are three attributes in total. E fj

� �
and Wj

represents the information entropy and weight of jth attribute, respectively, and fj E f1; f2; f3ð Þ. The
constant value in the denominator of Eq. (6) denotes the total number of attributes in our system. Eq. (8)
determines the relevance score based on the video’s attribute value and weight. The relevance score
measures how good the video is in the current context. The context comprises the current time slot tð Þ
and cached videos. The aim is to locate and remove a video with a minimum relevance score.

3.3 LSTM Architecture

LSTM is the most widely used algorithm for time series prediction because it can memorize prior
predictions. In our case, the model needs to take the preceding predict previous to account when
forecasting the next time stamp. Fig. 2 shows a simplistic representation of the LSTM. It comprises basic
gates that determine which information is allowed to get through and which is denied. The ignoring gate
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is used to remove irrelevant results from the predictions. The forgetting gate separates the current predictions
from the old ones that were kept in memory. The selection gate determines which part of the prediction will
be the output. There are two additional activation functions: the hyperbolic tanhð Þ function and the logistic
rð Þ function. A hyperbolic function squashes data between −1 and 1, while a logistic function squashes
values between 0 and 1.

ft ¼ r Wf : ht�1; xt½ � þ bf
� �

(9)

it ¼ tanh r Wi : ht�1; xt½ � þ bið Þ½ � (10)

~Ct ¼ r Wc : ht�1; xt½ � þ bcð Þ (11)

Ct ¼ ft � tanh itð Þ þ Ct � Ct�1 (12)

The output of the ignoring gate, represented by the value of ft, is calculated using Eq. (9). Eqs. (10) and
(11) show how to calculate the values of it and ~Ct in a similar way. Based on ft, it, and ~Ct, Eq. (12) is utilized
to calculate the updated cell state Ct at time stamp t.

ot ¼ r Wo : ht�1; xt½ � þ boð Þ (13)

ht ¼ ot � tanh Ctð Þ (14)

As per Eq. (13), the value of the selection gate is calculated using the previous hidden state and current
cell input with sigmoid used as an activation function. As shown in Eq. (14), the current hidden state is the
addition of the selection gate output with the current cell state.

Vt ¼ Wv : ht þ btð Þ (15)

ĥt ¼ softmax Vtð Þ (16)

To find the final output ĥt
� �

of the LSTM model, the SoftMax activation function is added as the last
layer activation. Before the activation is applied, the weighted matrix Wvð Þ is multiplied and bias btð Þ is
added to the output htð Þ. Eqs. (15) and (16) represent the steps of final prediction of LSTM model.

Figure 2: The internal structure of LSTM cell
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3.4 Objective Function

To maximize cache hits, we build a multi-objective problem based on the relevance score and accuracy
of the machine learning model under the constraints of total cache capacity and caching decision variables.
Therefore, Eq. (17) defines the cache maximization problem:

max
HitRatio

max accscoreð Þ þ 1� min relscoreð Þð Þ
2

(17)

s:t: C1 :
Xm
i¼0

Si � Xi½ �, Sc

C2 : Xi ¼ 1; if video ið Þ in cache
0; otherwise

�

In this case, C1 confirms that the total amount of storage for all cached videos should not exceed the total
amount of storage for the cache, and C2 ensures that a function only evaluates cached videos.

4 Algorithm Design

According to the hit ratio maximization model, the proposed algorithm considers the hybrid strategy,
which combines proactive and reactive caching. The reactive algorithm is invoked to fulfill the video
request in case of a cache miss. Proactive caching is activated to pre-fetch the video that the machine
learning model has predicted in time t � kð Þ. For both strategies, a minimum relevance score is utilized to
remove a video from the cache in order to make room for new videos. The reactive caching steps used
during the cache miss scenario are listed in Algorithm 2. In case of a cache miss scenario, CDN-edge
forwards the video request to the data center. Upon receiving the video, CDN-edge verifies the available
space. If no free space is available, video (d) will be removed from the CDN-edge the make the space.
Video (d) is selected based on the minimum relevance score recorded in the video log. Based on machine
learning prediction, Algorithm 3 describes the proactive caching procedures. Before the next request is
due, it retrieves the predicted video and puts it in the cache. The machine learning model predicts the
next video to arrive. No further action is done if the predicted video is already in CDN-edge. If the video
is unavailable in the cache, it is downloaded from the data center. In Algorithm 4, the procedures for
calculating the relevance score are listed. It measures how relevant a video is in the given context. The
relevance score is calculated for all available videos on CDN-edge. An empirical frequency is measured
for genre and time attributes; a normalized value is calculated for size attributes. After that, entropy and
weight are calculated for each attribute using Eqs. (6) and (7), respectively. In the end, the relevance
score is calculated, and a video with a minimum relevance score is selected for removal.

Algorithm 2: Reactive Caching

1: Forward video v request to data center

2: On video v arrival from the data center

3: if Available cache space ≥ video v size, then

4: Store the video v in the cache

5: Available cache space = currently available space-video v size

6: RETURN video v to user

7: else
(Continued)
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8: video d ← call RELEVANCE SCORE CALCULATION ()

9: delete video d from the cache

10: Record the log, such as time of deletion, video id, and video genre

11: Go to line 3

12: end if

Algorithm 3: Proactive Caching

1: video i ← ML PREDICTION () (Eq. (9))

2: if the video i already in the cache, then

3: EXIT ()

4: else

5: while Available cache space ≤ video i size do

6: video d ← call RELEVANCE SCORE CALCULATION ()

7: delete video d from the cache

8: Record the log, such as time of deletion, video id, and video genre

9: end while

10: Store the video i in the cache

11: Available cache space = currently available space-video i size

12: end if

Algorithm 4: Relevance Score Calculation

1: Create an empty list as lsrel

2: for Every video v in the cache do

3: f1 ← Calculate the empirical frequency of time attribute (Eq. (3))

4: f2 ← Calculate the empirical frequency of genre attribute (Eq. (4))

5: f3 ← Calculate the normalized value of the size attribute (Eq. (5))

6: E(fj) ← Calculate info. The entropy of every attribute (fj) (Eq. (6))

7: Wj ← Calculate the weight of every attribute (fj) (Eq. (7))

8: relscore ← Calculate the relevance score of video v (Eq. (8))

9: ls_rel ← Append (relscore)

10: end for

11: video d ← minimum (ls_rel)

12: RETURN video d

Algorithm 2 (continued)
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5 Dataset Generation and Pre-Processing

This section discusses request pattern generation, log collection, and real-time dataset building.

5.1 Video Request Pattern

For a better prediction, the context of the environment needs to be integrated. The time of day strongly
relates to the video request count. Typically, more entertainment videos are requested at night and education
in the daytime. To understand the relationship between time and request count, we analyze two publicly
available datasets from Kaggle [29]. The dataset is “MovieLens20M” [24] with 20 million records, and
“The Movie Dataset” [25] with 26 million records. A 24-h request pattern extracted from these datasets
depicts the mapping of request counts on timestamps, as shown in Fig. 3. The Y-axis and X-axis
represent the user request count per hour and hour value, respectively. The request count tends to increase
during the evening and peak at night around 9:00 PM. Similarly, it tends to decrease late at night and
reaches a minimum around 9:00 AM. This 24-h pattern is divided into three time slots, a morning time
slot from 4:00 AM to 9:00 AM, a day time slot from 9:00 AM to 5:00 PM, and a night time slot from
5:00 PM to 4:00 AM. A similar time slot-based prediction model is proposed in [29,5]. These three
intervals are our different scenarios where the caching policy will adapt accordingly.

5.2 Video Repository

We built a repository of 1300 videos from eight genres downloaded from popular YouTube channels
such as BTS, T-Series, and Cocomelon. The genres are animation, movies, interviews, education, sports,
films, news, travel, and music. The video meta-information is as follows: a rating, number of views,
video length, and video size. Videos with a size of 50 MB or less are downloaded. Then, all videos are
assigned a unique video id, and later on, these video ids are mapped to a request pattern generated in the
previous step. Complete detail about the dataset features is listed in Table 2.

5.3 Logs Collection

We send 80,000 video requests from the end device based on the extracted video request pattern. If the
requested video is available, the edge server satisfies the request rather than a data center. The records for
each of these operations are kept, and the time it takes to download a video is also measured. A dataset is
created afterward by mapping these logs to user request patterns; a complete description of the dataset is
shown in Table 3.

Figure 3: An extracted 24-hour time-based request pattern extracted from a publicly available dataset
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5.4 Pre-Processing and Model Training

Fig. 4 shows the overall system flow from data pre-processing to model training and evaluation. The
dataset is further refined and restructured in the data cleaning and feature selection phase. In this phase,
the irrelevant features are dropped, and the essential features are selected using a correlation matrix score.
The data is sorted with a timestamp to make the sequential prediction feasible. As mentioned above, we
calculate the relevance score using equations [30]. After completion of pre-processing step, the dataset
has video-id, timeslot, latency, and relevance score as essential features. We aim to predict the videos for
the next time slot; therefore, we further divide the datasets into train and test. 20% of the data is left for
testing, and 80% is used for training. The capacity of the LSTM model to keep the prior output in
memory and apply it for the subsequent prediction is the main factor driving its selection. If dataset
features have a strong correlation, LSTM can be trained on a small amount of data [30]. To benefit from
these characteristics, several researchers applied LSTM in a variety of areas, including language
identification [31], picture detection [32], and forecasting [33]. We selected LSTM as our predicted model
while keeping these capabilities in mind. A dataset built through log collection was used to train the
model. The model hyper-parameter values are count layer (2), output classes (325), features (4), and step-
size (8).

Table 2: Data center attributes with their description

Attributes Description

Number of videos 1300

Video genre Interview, education, sports, films, animation, NEWS, music, and travel

Video attributes Size, length, rating, and views

Video size Between 5 to 50 MBs

Video rating 1, 2, 3, 4, 5

Table 3: Dataset features with description

Attributes Description

Video ID To uniquely identify the video.

Timestamp Time of requested video

Genre Type of video (listed in Table 2)

Rating How popular is the video (most popular is the highest number)

Views How many requests for video are received

Length Time duration of the video

Size Video storage size of the disk

Latency Time required to download a video

Latency (avg) Average time required to download a video in the time slot (t)

Ratio Total number of requests for single video/total number of requests for all videos
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6 Performance Evaluation and Results

The testbed environment, mathematical model verification, system model performance evaluation, and
results are all covered in this section.

6.1 Testbed Environment

The testbed environment is built on top of the KOREN infrastructure. The topology has ten virtual
switches in the KOREN, one for each city, interconnected using 10G links. We have ten physical nodes
(edge nodes) deployed in ten cities connected through virtual switches. All outgoing city traffic passes
through the directly connected switch. The Open Daylight SDN controller is used to deploy virtual flow
switches in the KOREN testbed. The flow rules are deployed using reactive forwarding based on the
requested end device in the initial step. After that, a communication link between the data center and
CDN-edge is created. The content request is generated from the end device and sent to the CDN-edge.
The content request will be provided to a user if found on the edge. Otherwise, the request is fulfilled by
the data center.

6.2 Mathematical Model Verification

To validate our proposed model, we apply the data validation approach. To examine how an objective
function is defined in Eq. (17) behaves, we choose seven different values between 0 and 1. These numbers
have been chosen: 0, 0.1, 0.2, 0.4, 0.6, 0.8, and 1. To determine which combination produces the best
outcome, we examine the outcome of the objective function for every combination. When accuracy is
one and relevance score is zero, an objective function yields its optimal value. That indicates that the
most irrelevant video is removed from the cache, and machine learning is predicted with the highest
accuracy. When an objective function produces a value of zero, it indicates that the user requests the
deleted video from the cache in the next timestamp and that the machine learning-predicted video did not
result in a hit scenario. Similarly, the definition of the relevance score function is evaluated as stated in
Eq. (8). The following possible values are considered for each attribute: 0, 0.25, 0.50, 0.75, and 1. The
weights w1; w2; and w3ð Þ are computed in accordance with Eq. (7). We examine the results of every
possible combination in an effort to determine the optimum attribute values and weights. According to

Figure 4: The data pre-processing with model training and prediction
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the relevance equation, if a single attribute returns its maximum value, the relevance score will be more than
50%. For instance, if video v is the most-watched video, the time attribute value will be 1, and the resulting
relevance score will be more than 50%. Similarly, to this, the relevance score will be higher than 90% if two
attributes return their maximum value. For instance, if video v in the currently cached video is the most
popular and has a smaller size, the resulting relevance values will be greater than 90%.

6.3 Model Performance Evaluation

The two sub-systems will determine how the proposed system is evaluated. The two subsystems are the
relevance score computational model, which has a mathematical definition, and the machine learning model,
which forecasts the video for the next time stamp. The previous section has explained how the relevance
score computational model is evaluated. Here, we will discuss the machine learning model and
demonstrate the proposed system evaluation later. For the proposed model evaluation, we generate the
request in sequential order. Based on the sequential list, we have the information about the video v to be
requested at t þ nð Þ, therefore, w. Therefore, video v on time t at the edge. The request can be executed
from the edge when the user requests the video v on the next timestamp. We measure the prediction of
the proposed model using an accuracy metric. The trained model is individually applied on the CDN-
edge to make the prediction. Later the model performance is measured using the hit ratio. Fig. 5 shows
the hit ratio comparison results of our proposed models. The morning and day datasets have a lower hit
ratio, which might be due to the smaller dataset size and fewer training examples per class. With an
increase in dataset size, the hit ratio can be improved. Fig. 6 shows the comparison of the proposed
caching policy with state-of-the-art schemes. The morning (M) and day (D) dataset performance scores
are relatively lower due to the smaller dataset size. The increase in dataset size can improve the
performance. The best performing lowering model has trained on the night (N) dataset and achieved 94%
accuracy, which is better than any other existing model.

Figure 5: Hit ratio of time-slot datasets
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7 Conclusion and Future Works

This paper proposes an algorithm that optimally utilizes the edge storage resource to increase the
chances of request fulfillment from the CDN-edge. The optimal use of the storage is the major problem in
CDN as the edge resources are limited. Therefore, our CDN-edge caching scheme optimally selects the
video that is least affected by future requests and deletes it from the edge. A selected video is based on
video weight and a time-based video and genre profile. Then, an extracted request pattern is appended
with the proposed scheme to inherit the time-based features. Furthermore, a request pattern is configured
on the user device to generate request in sequential order. A dataset is built after the pre-processing of
operation logs. Finally, an LSTM model is trained and optimized with different hyper-parameter values
using GridSearchCV. Moreover, the proposed scheme is tested on a CDN architecture built on top of
KOREN SDI. The comparison results show the proposed method outperforming the state-of-the-art
techniques on hit ratio. A more complex time-based pattern can be extracted in future work, and different
dataset features can be utilized to enhance model training. A hierarchical or multi-level edge can be
deployed to test the model in a more realistic environment. An extended version of this algorithm can be
applied to optimize the network resources.
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