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Abstract: Automation software need to be continuously updated by addressing
software bugs contained in their repositories. However, bugs have different levels
of importance; hence, it is essential to prioritize bug reports based on their sever-
ity and importance. Manually managing the deluge of incoming bug reports faces
time and resource constraints from the development team and delays the resolu-
tion of critical bugs. Therefore, bug report prioritization is vital. This study pro-
poses a new model for bug prioritization based on average one dependence
estimator; it prioritizes bug reports based on severity, which is determined by
the number of attributes. The more the number of attributes, the more the severity.
The proposed model is evaluated using precision, recall, F1-Score, accuracy, G-
Measure, and Matthew’s correlation coefficient. Results of the proposed model
are compared with those of the support vector machine (SVM) and Naive Bayes
(NB) models. Eclipse and Mozilla datasetswere used as the sources of bug
reports. The proposed model improved the bug repository management and out-
performed the SVM and NB models. Additionally, the proposed model used a
weaker attribute independence supposition than the former models, thereby
improving prediction accuracy with minimal computational cost.

Keywords: Bug report; triaging; prioritization; support vector machine; Naive
Bayes

1 Introduction

Software development is an umbrella term used to refer to the complete process that comprises several
phases, such as coding, documentation, and testing; it applies to both the development and maintenance of
application programs and frameworks. To maintain software quality, bug reports are submitted in the
software bug repository containing attributes of the software bugs. The software bug reports are
submitted by the end-user or a member of the development team [1]. A bug repository, also known as the
bug tracking system (BTS), stores information regarding the bugs and plays a vital role in bug resolution.
The large amount of new bug reports that are entered in repositories makes it difficult for the developer
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to manage them. Software companies spend excessive time and resources dealing with the incoming bug
reports and about 45% of their costs on handling software bugs [2]. The analysis and management of bug
reports are known as bug triaging and the person dealing with them is called a bug triager [3].
Researchers analyze the bug reports to determine duplicate, important, unimportant, and real bugs [4].

The bug reports contain several nominal and textual attributes [5]: platform, bugid, assignee, component,
severity, status, priority, reporter, date of submission, product, resolution, operating system, cc-list, summary,
and long description [3]. Among these, severity is considered the most important attribute for assigning priority
to the bug report [6]. Severity has seven types: major, minor, blocker, normal, critical, trivial, and enhancement.
Severity determines the criticality of solving a particular bug at the early stages. Sometimes priority field is left
blank because of insufficient technical knowledge of the user regarding bugs [1]. Priority states the importance
and urgency of fixingthe bugfor the developer. Priority can be classified into five levels: P1–P5, where
P1 shows the highest and P5 is the lowest priority [7].

The priority levels depend on the need of the developers. In bug triaging, the software development team
determines the urgency of the bugs to be fixed using different categories. Most developers use 5-level
priorities, whereas some use 4-levels [8]. In this study, to make the bug prioritization more robust and
cover more range of bug scenarios, we prioritize 5 levels: P1 being the most urgent, P2 can be handled
before the release of the next product, P3 may be deferred, P4 level bugs may be handled at a later time
as this bug does not affect the product, and P5 bugs may remain unresolved because they do not disturb
the life cycle of the software. If the triager is uncertain about the bug priority or severity, the priority can
be set to the default priority of P3 and will be appropriately adjusted later by the assigned developer.

Proper prioritization of the bug reports reduces the fixing time and optimizes resource allocation,
whereas poor prioritization may postpone the resolution of critical bugs. Therefore, a bug prediction
system that can anticipate the priority of an incoming bug is critical [9].

This study proposes an approach to prioritize bug reports using the average one dependence estimator
(AODE). The contribution of this paper is thus two-fold:

1. Exploring AODE for bug prioritization.
2. Comparing different machine learning techniques for prioritizing bug reports using various evaluation
criteria.

The remainder of the paper is organized as follows. Section 2 presents the background study related to bug
prioritization and automatic bug triage. Section 3 provides an overview of the bug triage process and bug report
features. Section 4 presents the proposed classification-based approach and classification techniques used to
build the classifier. Section 5 describes the experiment and the results of the proposed model. A threat to
validity is presented in Section 6. Conclusion and future work are described in Sections 7 and 8, respectively.

2 Related Work

Bug report prioritization helps resolve critical bugs early to keep the software running. This study aims to
explore machine learning techniques in a single framework for bug prioritization. Many studies have been
conducted on bug prioritization. Each technique has its strengths and weaknesses. We summarize the related
work in chronological order. The problem of developer prioritization has been addressed in [10], which ranks
the contribution of developers based on the product, evolution over time, and tolerance of uproarious or noisy
comments. The authors investigated two aspects: demonstrating the designer prioritization in the bug archive
and helping predictive tasks with their proposed model. They analyzed the outcomes on two large open-
source software, Eclipse and Mozilla, using precision, recall, F-measure, and accuracy as evaluation metrics.
Their proposed model improved Eclipse by 10.89% and 2.88% for support vector machine (SVM) and Naive
Bayes (NB), respectively, and Mozilla by 13.64% and 2.30% for SVM and NB, respectively.
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Wong et al. [2] reduced the data in the report for bug triage by minimizing the scale of the bug and
improving the accuracy of bug triage. The authors combined instance selection (IS) with feature selection
(FS) to reduce the word and bug dimensions data scale. They examined data reduction performance on
open-source projects, i.e., Eclipse and Mozilla, on approximately 600,000 reported bugs using accuracy
as an evaluation measure and revealed that data reduction could efficiently decrease the scale of data and
improve accuracy.

Zhou et al. [8] proposed a new approach of merging text mining and machine learning techniques to
automatically predict the bug report. The authors first used the text mining algorithm (multinomial Naïve
Bayes) to examine the summary attributes of the bug report and analyzed the result into three levels (low,
mid, and high). Bayesian net classifier was used in the second step that receives data from the first step.
Data grafting technique was used to combine the two stages. The authors used seven popular open-source
software for their experiments, and precision, recall, and F-measure as evaluation metrics. Combining text
mining and machine learning improved the results of the proposed approach.

Rocha et al. proposed a new technique to find similar bugs in a report [9]. The new technique called
NextBug uses two attributes for the bug report: the project component and a short description. The
authors used the Mozilla dataset to evaluate the results. They developed a field study to supervise one-
week bug reports of the Mozilla dataset. Emails were sent to developers regarding the performance of
NextBug and feedback from 40% of the developers reported that the technique was working well.

Sapphire Paul et al. proposed combining the IS technique with FS to solve the problem of bug
prioritization [11]. The Bayesian classification technique was used for the prioritization of bug reports.
Results of their proposed method showed that the reduction in data effectively cut back the proportion of
knowledge and enhanced the quality of software sorting.

Govindasamy et al. [12] achieved data reduction in bug triage by inducting the representative values of
the bug dataset and the statistical values [12]. They used Eclipsedataset and K-mean clustering algorithm and
achieved better accuracy results than those of Naïve Bayes classifier.

Uddin et al. surveyed the literature on automatically and systematically prioritizing bug reports [4]. They
presented a detailed study for the reported bug to inspire the need for effort on the reported bug prioritization.
The current study also discusses reported bug prioritization and the likely problems associated with it.

Choudhary et al. used an artificial neural network technique to develop prediction models [13] for five
different versions (2.0, 2.1, 3.0, 3.1, and 3.2) of Eclipse that assigns priority levels based on the information
provided in each bug report. The collected dataset was used to train and test classification algorithms.
Receiving operator characteristic (ROC) and F-measure were used to interpret the result of the proposed
model with Naïve Bayes.

Umer et al. proposed an emotion-based approach that automatically prioritizes bug reports in the bug
repository [7]. Initially, the authors used preprocessed algorithms to get the concrete data from the summary
of a bug report, then identified emotion words and assigned them emotion values. A feature vector was
created for emotion values and priority was predicted using a machine learning classifier. They used SVM
on Eclipse open-source software and compared the result with linear regression, Naïve Bayes, and
multinominal Naïve Bayes. The proposed model showed more than 6% improvement in the F1 score.

Iqbal et al. [14] proposed a model that combined feature reduction, clustering, and classification
algorithm. They first used clustering techniques on all and then reduced the features, while SVM and NB
were used last for classification purposes. They used Chromium, Mozilla, Eclipse, Net beans, and Free
desktop for their experiment. Precision, recall, F-score, and accuracy are used as evaluation metrics.
22.46%, 8.32%, 30.93%, 25.79%, and 37.78% improvement in accuracy was achieved with Chromium,
Eclipse, Free desktop, Mozilla, and Net bean, respectively. The literature review is summaried in Table 1.
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3 Overview Bug Repository

The bug repository software is an application software that keeps records of the reported bugs during
software development projects. The repository helps to manage and assign bug reports to specific
developers during software development projects.

3.1 Bug Report

The repository contains bug reports submitted by the end-user when problems arise with the software
product. The bug reports are then forwarded to the concerned developer to resolve the bugs. A sample of
the bug report is shown in Fig. 1 and presents the following details:

a) The Bug was reported on 5th January 2011 and modified on 2nd September 2015.

b) 1 and 2 in the figure shows the title and importance of the bug report, respectively.

c) The bug report contains both categorical and textual data.

3.2 Bug Report Attributes

The comprehensive bug report, its attributes and description are shown in Table 2. The second column of
the table shows a list of attributes of the bug report, while the third column represents a description of the bug
attribute.

Table 1: Summary of literature review

Year Paper Proposed/
Explored

Year Paper Proposed/ Explored

2012 Xuan et al. SVM, NB Eclipse and
Mozilla

Nil Precision, Recall, F-
measure, Accuracy

2014 Xuan et al. SVM, KNN,
NB

Eclipse and
Mozilla

Nil Accuracy

2015 Rocha et al. NextBug Mozilla Similar bug Precision and Recall

2016 Paul et al. Decision tree Eclipse Different machine
learning algorithms

Accuracy, Instance
selection and Feature
selection

2017 Govindasamy,
et al.

Decision tree Eclipse Different machine
machine learning
algorithms

Accuracy, Instance
selection and Feature
selection

2017 Choudhary,
et al.

Multilayer
perceptron
(MLP), NB

Eclipse,
Bugzilla

Nil Precision, Recall and F-
measure

2018 Umer et al. SVM Eclipse
projects

Linear regression
(LR), MNB, NB

Precision, Recall and F1-
score

2020 Iqbal et al. SVM and NB Chromium,
Mozilla,neat
bean, Eclipse,
and Free
desktop

SVM and NB Precision, Recall, F-
score, and accuracy
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Figure 1: Eclipse bug report sample

Table 2: Bug report fields description [15]

S No. Attribute Description

1 Bug_Id Unique ID of bug report

2 Assigned_to Triager who will resolve the bug

3 Bug_severity The harshness level of the reported bug.

4 Bug_status Show the current status of the bug

5 Short_desc A small detail of the bug

6 Long_desc A comprehensive information

7 Comments Comments

8 Op-sys Affected operating system (OS)

9 Priority Priority level, e.g., from P1 to P5

10 Keywords Keywords relating to the bug

11 Product Title of product to which bug belongs to

12 Component Title of the product component to which bug belongs to

13 Reported_time The time slice when the bug report succumbs

14 Duplicate The bug report that is finalized as duplicates one

15 Version The CVS/SVN version
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3.3 Bug Life Cycle

The bug life cycle is also known as a defect life cycle. There are several states that the bug report
encounters in its complete life cycle [16]. Fig. 2 represents the complete life cycle of bugs. In the bug life
cycle, the first stage when a bug is reported is called the new state. When a bug is triaged and allotted to
a triager, the state is altered to Assigned. When terminating the concerning bug, the state is marked as
Verified, Resolved, or Closed. Determination of the bug is checked in many ways: the resolution status
shows how the bug was resolved; if it is because of variation in code, then it is checked as Fixed; if the
concerned report is not a real bug or will not be fixed, it is set to Invalid or Wontfix, respectively. When
the bug is measured as a duplicate, it is set to Duplicated. If a bug has been resolved but is still not
finalized, it is set as Reopened [17].

3.4 Bug Triage Process

In the bug triage process, a triager checks the bugs that arrived in the bug repository in two ways. Fig. 2
shows the process of Bug Triage. In repository-oriented decisions, when it finds out whether it is a duplicate
bug, the analyst analyses the report for cogency, such as whether the report is normal or not [14]. This step is
to clear away those bug reports that are not important. The rest of the reports are scrutinized for development-
oriented decisions in which the severity and priority levels of the bugs have been checked by the triager [4].
These levels can be changed by triager if incorrect, so that time and resources can be allocated to important bugs.

4 Proposed Approach

In this section, we describe the proposed approach for developing the priority recommender.

Figure 2: Bug report lifecycle [18]
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4.1 Dataset

In this study, we used two datasets Eclipse1 and Mozilla2, from the GITHUB3 data repository. Fifteen
attributes were used in both datasets as listed in Table 2.

Eclipse is a development environment tool that includes integrated development environment and a
plug-in system. The Eclipse tool provides a development platform with extensible tools, frameworks, and
runtimes for creating and managing a software in its whole life. Mozilla is an internet application suite
that contains classic products, such as the Firefox browser and Thunderbird email client. We have used
platform products for Eclipse, and Thunderbird for Mozilla, with 16 components shown in Table 3. These
components contain the maximum number of bugs in the software bug repository.

4.2 Preprocessing

Preprocessing techniques—stemming, tokenization, and removal of stop words—get meaningful data
from the dataset and apply to textual data.

Stemming: This technique is applied to the data to convert a word to its 1st form, like “gone” is
converted to “go.” Different words have the same meaning; hence they are likely to convert into a single
form (e.g., treatment and treats are converted to treat).

Tokenization: It is a process of breaking up a series of texts into words. Each word in this process is
called a token.

Table 3: Different components of platform and thunderbird

Sr. No. Platform components Thunderbird components

1 Ant Account manager

2 Compare Address book

3 Debug Build config

4 Doc Disability access APIs

5 Framework esES Spanish

6 IDE General

7 Releng Help documentation

8 Runtime Installer

9 Search JavaScript engine

10 SWT Layout

11 Team Mail window front end

12 Text Mailnews composition

13 UI Message compose window

14 Update Migration

15 Update deprecated use RT equinox p2 Preference

16 User assistance RSS

1 http://eclipse.org/.
2 http://mozilla.org/.
3 https://github.com/gith.
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Stop-Word Removal:Words that do not carry any meaning (like a, the, there, and they) are called stop
words. These words must be removed from the set of tokens received from the previous step.

4.3 Classification-Based Approach

Many machine learning techniques, such as SVM and NB, have been used for bug prioritization (see
Section 2). SVM has high algorithmic complexity and considerable memory requirements in large-scale
tasks [19]. Also, it does not perform well on very large-scale datasets because the training time increases
with the size of the dataset used. SVM might also be prone to overfitting some of the noise in the dataset.
NB is biased towards incomplete datasets and does not work well where attributes are dependent on each
other [3].

4.4 Averaged One Dependence Estimator

AODE is a semi-Naïve Bayes classifier. In AODE, each attribute of the dataset depends on two
attributes: one is the target class attribute, and the other is selected from the list of attributes [20]. AODE
technique ignores more complex dependency connections involving three or more values while
permitting mutual reliance between pairs of values inside the input vector. As a result, the technique
somewhat reduces the “naivety” of the NB classifier. With a lot of (training or input) data items, AODE
works well. However, it is not possible to apply the AODE technique with high-dimensional vectors
since all pairs of input values are taken into account in a combinatorial manner (each data item has many
input values). It may make sense to only utilize dependency estimators in situations with a large number
of input values where interdependence is known to exist or is at least conceivable. In general, estimating
probability needs an x-dependence estimator furnished by the class value, target attribute value, and the
values of the x other attributes based on which the target is conditioned. It estimates the probability of
each class ‘y,’ given a specified set of features x1,…,xn, P(Y|x1,…,xn), and is formulated as in Eq. (1).

P̂ yjx1; . . . ; xnð Þ ¼
P

i:1�i�n^F xið Þ�m P̂ y; xið ÞQn
j¼1 P̂ xjjy; xi

� �
P

�y2Y
P

i:1�i�n^F xið Þ�m P̂ �y; xið ÞQn
j¼1 P̂ xjj�y; xi

� � (1)

where, P̂(.) denotes an estimate of P(.), F(.) shows the frequency with the help of which arguments come in
the sample data of the dataset, and m is used for minimum frequency finalized by the user. It minimizes the
variance by averaging the estimates of Naïve Bayes.

Research Question 1: Why is there a need to use AODE?

Answer: AODE performs classification by averaging all stiffened class of classifiers [12]. The classifier
takes one attribute as the super-parent attribute from the list of attributes and target attribute. The result of the
super-parent attribute depends on the rest of the attributes, whereas the target or class attribute that classifies
the instance depends on the super-parent attribute. A key point with this classifier is that it takes two attributes
from the list of attributes for decision making. The more the attributes for decision making, the more likely
will be the result of the classifier.

By averaging over all models in which all attributes rely on the class and a single other attribute, AODE
defeats the Naïve Bayes assumption of attribute independence. Another benefit is the ability to seamlessly
incorporate useful prior information into the estimate. Within a strong decision theory framework, it
offers a natural and logical method of fusing previous knowledge with facts. You may create a prior
distribution for future analyses by using historical data about a parameter. The previous posterior
distribution might be utilized as a prior when fresh data become avaable. From the Bayes theorem, all
conclusions are logically justified.
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The proposed model uses AODE to prioritize bug reports. The main objective of the proposed model is
to improve accuracy by reducing the error rate. The evaluation metrics used to evaluate the proposed model
are precision, recall, F1-score, G-measure, MCC, ROC, and accuracy. Fig. 3 shows the flowchart of the
proposed model.

4.5 Evaluation Criteria

Precision, recall, F1-score, G-measure, MCC, ROC area, and accuracy are used as evaluation metrics to
check the performance of the proposed model.

Precision can be considered as the amount of exactness (The percentage of instances labeled as positive
are positive).

Figure 3: Flow chart of the proposed model
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Precision ¼ True Positive TPð Þ
True Positive TPð Þ þ False Positive FPð Þ (2)

where TP is the true positive, which refers to the positive tuples correctly classified by the classifier, and FP is
the false positive, which means negative tuples incorrectly classified as positive by the classifier.

Recall can be considered a measure of completeness (The percentage of positive instances is labeled as
positives).

Recall ¼ True Positive TPð Þ
True Positive TPð Þ þ False Negative FNð Þ (3)

where FN is the false negative, the classifier mislabeled positive instances as negative. F1-score is the balance
and discrepancy between precision and recall.

F1� score ¼ 2 Precision � Recallð Þ
Recall þ Precisionð Þ (4)

G-measure is the mean of specificity and recall.

G� measure ¼ 2 � Specificity �Recall
Specificityþ Recall

(5)

MCC is the correlation coefficient between predicted and actual class.

MCC ¼ TN � TPð Þ � FN �FPð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FP þ TPð Þ FN þ TPð Þ TN þ FPð Þ TN þ FNð Þp (6)

Accuracy is the percentage of tuples that are correctly classified by the classifier.

Accuracy ¼ TruePositive TPð Þ þ TrueNegative TNð Þ
TP þ TN þ FP þ FN

(7)

To retrieve labels from multiple classes, averaging the output of evaluation metrics gives a view of the
general results. For that purpose, micro-averaged and macro-averaged are two measures used to average the
results of precision, recall, and F1-score. Their formulas are given in Eqs. (8)–(13), respectively [7].

Pmacro ¼ 1

Cj j
X Cj j

i¼1

TPi

TPi þ FPi
(8)

Rmacro ¼ 1

Cj j
X Cj j

i¼1

TPi

TPi þ FNi
(9)

F1macro ¼ 1

Cj j
X Cj j

i¼1

2 �Pmacro �Rmacro

Pmacro þ Rmacro
(10)

Pmacro ¼
X Cj j

i¼1

TPi

TPi þ FPi
(11)

Rmacro ¼
X Cj j

i¼1

TPi

TPi þ FNi
(12)
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F1macro ¼
X Cj j

i¼1

2 �Pmacro �Rmacro

Pmacro þ Rmacro
(13)

5 Results Analysis and Discussion

Results for the AODE employed on the Eclipse and Mozilla dataset using confusion matrix are shown in
Tables 4 and 5.

Here P1 is the highest priority and P5 is the lowest priority. Table 6 shows the results of AODE for both
Eclipse and Mozilla datasets. The columns of the table show the results of the evaluation metrics, which are
precision, recall, F1-score, G-measure, MCC, ROC Area, and accuracy. Rows indicate a comparison in the
output of both datasets.

5.1 Comparison with SVM and NB Using Eclipse Dataset

The performance of AODE is compared with SVM and NB, and experimental results are shown in
Table 7. The percentage difference is calculated in the last two columns of the table, which shows the
difference in the results (precision, recall, F1-score, G-measure, MCC, ROC Area, and accuracy) of both
the classifiers. Percentage difference is computed using Eq. (14):

Table 4: Confusion matrix for eclipse using AODE

Predicted

Actual P1 P2 P3 P4 P5 TP TN FN

P1 14 6 2 7 5 14 120 20

P2 3 27 3 1 0 27 121 7

P3 1 3 24 3 2 24 127 9

P4 6 2 3 10 13 10 118 24

P5 5 3 1 6 19 19 115 15

TP 14 27 24 10 19

FP 15 14 9 17 20

Table 5: Confusion matrix for mozilla using AODE

Predicted

Actual P1 P2 P3 P4 P5 TP TN FN

P1 33 20 17 14 9 30 119 60

P2 14 13 19 12 6 13 126 51

P3 8 20 25 3 2 25 145 33

P4 3 6 0 2 4 2 195 13

P5 3 4 1 1 1 1 209 9

TP 30 13 25 2 1

FP 28 50 37 30 21
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Percentage Difference ¼ vi� vjj j
viþ vj

2

� 100 (14)

where vi and vj are the values where the difference is required.

Percentage difference represents the total difference between the results of AODE, with SVM and NB.
Better performance of AODE over SVM and NB is observed in Table 7. The result shows that AODE
outperforms the SVM in overall results based on the criteria (precision, recall, F1-score, G-measure,
MCC, ROC area, and accuracy). The results show more than 20% percentage difference for recall, F1-
score, G-measure, MCC, and accuracy, while the percentage difference for precision and ROC area is
7.7% and 0.05%, respectively. The results of AODE using precision, recall, F1-score, G-measure, MCC,
ROC area, and accuracy improved by 18.2%, 51.7%, 36.6%, 36.12%, 21.6%, 0.03%, and 13.3%
respectively over NB. Fig. 4 shows the comparison of AODE with SVM and NB using the Eclipse
dataset. The difference represents the total difference between the results of AODE and SVM and NB.
Better performance of AODE over SVM and NB is observed in Table 7. The result shows that AODE
outperforms the SVM in overall results based on the criteria (precision, recall, F1-score, G-measure,
MCC, ROC area, and accuracy). The results show more than a 20% percentage difference for recall, F1-
score, G-measure, MCC, and accuracy, while the percentage difference for precision and ROC area is
7.7% and 0.05%, respectively. Results of AODE using precision, recall, F1-score, G-measure, MCC,
ROC area, and accuracy improved by 18.2%, 51.7%, 36.6%, 36.12%, 21.6%, 0.03%, and 13.3%
respectively over NB. Fig. 4 shows the comparison of AODE with SVM and NB on the Eclipse dataset.

5.2 Comparison with SVM and NB Using Mozilla Dataset

The results of AODE with SVM and NB on the Mozilla dataset for Precision, Recall, F1-score, G-
Measure, MCC, ROC Area, and Accuracy are shown in Table 8. The last two columns of the table show

Table 6: Results of evaluation metrics for AODEAODE

Datasets Precision Recall F1-Score G-measure MCC ROC Area Accuracy

Eclipse 54% 56% 55% 54.9% 44.52% 79.4% 56%

Mozilla 37% 31% 33% 33.7% 18.5% 58% 31%

Table 7: Results analysis of AODEAODE with SVM and NB

Evaluation metrics AODE SVM NB Percentage difference
with SVM

Percentage difference
with NB

Precision 54% 50% 45% 7.7% 18.2%

Recall 56% 35% 33% 46.2% 51.7%

F1-Score 55% 42% 38% 26.8% 36.6%

G-measure 54.9% 41.2% 38.1% 28.5% 36.12%

MCC 44.52% 31.2% 35.65% 35.18% 21.6%

ROC area 79.4% 75.1% 77% 0.05% 0.03%

Accuracy 56% 45% 49% 21.8% 13.3%
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the percentage difference between the classifier’s results. It is clear from Table 8 and Fig. 5 that AODE gives
better results than SVM and NB.
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Figure 4: Comparison of AODE with SVM and NB using eclipse dataset

Table 8: Results analysis of AODE with SVM and NB

Evaluation metrics AODE SVM NB Percentage difference
with SVM

Percentage difference
with NB

Precision 37% 28.9% 30.1% 24.6% 20.6%

Recall 31% 30.5% 28.6% 1.6% 8.1%

F1-Score 33% 31% 31.9% 7.9% 3.4%

G-Measure 33.7% 29.7% 29.3% 12.6% 13.9%

MCC 18.5% 12.5% 18.2% 38.7% 0.02%

ROC area 58% 53.6% 53% 0.08% 0.09%

Accuracy 31% 30% 30% 3.2% 3.2%
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Figure 5: Comparison of AODE with SVM and NB using mozilla dataset
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5.3 Comparison of Results of Both the Datasets

Precision, recall, F1-Score, G-Measure, MCC, ROC area, and accuracy were calculated for both Eclipse
and Mozilla datasets for AODE, SVM, and NB are shown in Table 9. Columns of the table present the results
of evaluation metrics for both the datasets, and rows show calculated outcomes for AODE, SVM, and NB.
The proposed approach outperforms both the SVM and NB models. The accuracy of AODE on the Eclipse
dataset improved by 11% and 7% over SVM and NB, respectively, and 1% over both classifiers on the dataset
of Mozilla.

5.4 Macro and Micro-Averaged Analysis for Both the Datasets

Macro and micro-averaged values are calculated using Eqs. (8)–(13). Table 10 shows the averaged
values of precision, recall, and F1-score for macro and micro analysis from the above confusion matrices
for Eclipse and Mozilla, respectively. The columns of the table show the macro and micro analysis of
precision, recall, and F1-score. Whereas the rows of the table show performance of AODE, SVM, and NB.

From Table 10, AODE achieved better results than SVM and NB. The value of micro-averaged analysis
for precision, recall, and F1-score are the same because TP and FN values are the same in both datasets.

5.5 Priority-Level Comparison of Both the Datasets

Priority-level comparison is shown in Tables 11 and 12 for Eclipse and Mozilla datasets. Columns of the
tables show the values of precision, recall, and F1-score for each priority. At the same time, rows show the
output of AODE, SVM, and NB.

The proposed approach achieves significant improvement in performance on each priority level over the
results of SVM. The improvement in results for Eclipse dataset varies from 0% to 37% for precision, 0.4% to
28.9% for recall, and 0% to 40.84% for F1-score.

Significant improvement was achieved by the proposed model over NB on the Eclipse dataset. Results
vary from 0.6% to 17.6% for precision, 5.9% to 20.6% for recall, and 4.37% to 13.02% for F1-score. By
using the Mozilla dataset, improvements in results over SVM are from 0% to 23.1% for precision, 1.17%

Table 9: Comparisonof different classifiers

Precision Recall F1-Score G-Measure MCC ROC area Accuracy

Classifier Eclipse Mozilla Eclipse Mozilla Eclipse Mozilla Eclipse Mozilla Eclipse Mozilla Eclipse Mozilla Eclipse Mozilla

AODE 54% 37% 56% 31% 55% 33% 54.9% 33.7% 44.52% 18.5% 79.4% 58% 56% 31%

SVM 50% 28.9% 35% 30.5% 42% 31% 41.2% 29.7% 31.2% 12.5% 75.1% 53.6% 45% 30%

NB 45% 30.1% 33% 28.6% 38% 31.9% 38.1% 29.3% 35.65% 18.2% 77% 53% 49% 30%

Table 10: Macro and micro-averaged results for evaluation metrics

Datasets Eclipse Mozilla

Analysis Macro Micro Macro Micro

Classifiers Precision Recall F1-score Precision =
Recall = F1-score

Precision Recall F1-score Precision =
Recall = F1-score

AODE 54% 56% 55% 55.6% 31% 31% 33% 34%

SVM 41.1% 45.8% 43.3% 44.9% 28.9% 31% 30.5% 32%

NB 45% 33% 38% 48.5% 30.1% 28.6% 31.9% 34%
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to 25.9% for recall, and 1.01% to 24.45% for F1-score. Whereas achievements over NB on the Mozilla
dataset are from 0.5% to 29.5% for precision, 0.07% to 24.2% for recall and 1.01% to 20.12% for F1-score.

The AODE reveals significant zero-one loss performance. It significantly reduces computational cost
and improves accuracy. AODE sustains the robustness and much of the efficiency of NB and at the same
time, achieves higher classification accuracy for many datasets. It has the potential to be a valuable
substitute for NB over a considerable range of classification tasks. The AODE outperforms other
employed models due to its appealing qualities and effectiveness. With the exception of two explicit
assumptions attribute independence and precise frequency-based estimates it is demonstrably the best
solution.It is good with small error rate and allows incremental learning, allowing the classifier to be
effectively updated as new examples become available with their information. Instead of only predicting
one class, it predicts class probabilities, enabling the user to decide how confidently each classification
may be done.

5.6 Threats to Validity

This subsection discusses the factors that may influence the results of our approach and the steps we took
to minimize their impact.

5.6.1 Internal Validity
The bug prioritization in the proposed method is based on the assumption that there is a connection

between the bug report features and bug priority. The study was not limited to a small number of features
(e.g., summary, long description); it also included categorical and textual features. However, the proposed

Table 11: Priority-level comparison on eclipse dataset

Approach P1 P2 P3 P4 P5

Precision Recall F1-
score

Precision Recall F1-
score

Precision Recall F1-
score

Precision Recall F1-
score

Precision Recall F1-
score

AODE 48% 41.2% 44.34% 68.5% 79.4% 73.55% 72.7% 73% 72.35% 37% 40.4% 33% 48.7% 55.9% 51.75%

SVM 29.9% 35.35% 36.64% 31.5% 50.5% 32.71% 54.7% 69.69% 70.77% 37% 40% 33% 47.6% 29.4% 37.14%

NB 36.4% 35.3% 35.84% 60.5% 67.6% 63.85% 55.1% 81.8% 65.69% 36.4% 23.6% 28.63% 42.9% 35.3% 38.73%

Improvement
with SVM

18.1% 5.85% 7.7% 37% 28.9% 40.84% 18% 3.31% 1.58% 0% 0.4% 0% 1.1% 26.5% 14.61%

Improvement
with NB

11.6% 5.9% 8.5% 8% 11.8% 9.7% 17.6% -8.8% 6.66% 0.6% 16.8% 4.37% 5.8% 20.6% 13.02%

Table 12: Priority-level comparison of Mozilla dataset

Approach P1 P2 P3 P4 P5

Precision Recall F1-
score

Precision Recall F1-
score

Precision Recall F1-
score

Precision Recall F1-
score

Precision Recall F1-
score

AODE 51.7% 57.3% 49.51% 22% 24.07% 23% 40.3% 43.10% 41.65% 62.5% 23.3% 33.95% 45.4% 26% 33.1%

SVM 42.9% 55.9% 48.5% 22% 22.9% 23% 17.2% 17.2% 17.2% 55% 18.5% 30.23% 44.2% 20% 31%

NB 42.9% 55.9% 48.5% 21.5% 24% 20% 25% 18.9% 21.53% 33% 15.2% 29.5% 44% 20% 29.2%

Improvement
with SVM

8.8% 1.4% 1.01% 0% 1.17% 18% 23.1% 25.9% 24.45% 7.5% 4.8% 3.72% 1.3% 6% 2.1%

Improvement
with NB

8.8% 1.4% 1.01% 0.5% 0.07% 3% 15.3% 24.2% 20.12% 29.5% 8.1% 4.45% 1.4% 6% 3.9%
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approach may not perform well if the summary or the long description does not provide sufficient
information or is left blank.

5.6.2 External Validity
The Eclipse and Mozilla datasets are used in this study to evaluate the results of the proposed approach.

From the literature review, different researchers used Eclipse and Mozilla datasets for their experiments. We
have only considered and analyzed the bug reports related to the projects of Eclipse and Mozilla from the
Bugzilla BTS. Other bug tracking systems report the bug differently, which may affect the performance
of the proposed model.

Our approach uses the bug report written in English. Therefore, it might not work for the bug reports
written in other languages.

5.6.3 Construct Validity
The AODE depends on the FS and its output values. If the contents of the bug report are wrong, the

prioritization of the bug report is affected. In case of incorrect bug report contents, the right prioritization
of bug reports is negatively influenced. However, for Eclipse, the user base comprises mostly developers,
therefore it is expected that the bug reports are filled cautiously, prompting fewer errors. But if end-users
submit the reports, there are increased chances of wrong bug reports, which leads to a decrease in the
performance of the proposed approach.

6 Conclusion

We observed from the literature that several types of studies on bug report prioritization were reported;
however, it is still a challenge for the developers. In this study, we used the AODE classification algorithm as
a bug priority classifier to automatically assign priority to the bug report. We focused on improving the results
by reducing the error rate of evaluation metrics using the AODE model. Datasets from the GITHUB
repository were selected Eclipse and Mozilla. Precision, recall, F1-score, and accuracy were used as
evaluation metrics for bug prioritization to compare the result of AODE with those of SVM and NB. The
AODE can also be hybridized with ANN, SVM, or any other classification algorithms to improve the
accuracy of bug prioritization and to reduce the error rate of evaluation metrics. Data reduction technique
can help reduce the size of the data. Then, the DM technique can efficiently utilize the data for
prioritization purposes, which helps in saving time and improves the performance in terms of accuracy.
Studies on bug prioritization can be extended to include more datasets with different classifiers for better
results.

In the future, the meta-heuristic technique can be used to deal with the problem of bug prioritization,
when dealing with an imperfect or incomplete set of data. The most severe bug is the blocking bug. If
this bug is resolved at the first stage, then the performance in terms of accuracy and effort will improve
for the rest of the bugs.
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