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Abstract: Monocular 6D pose estimation is a functional task in the field of com-
puter vision and robotics. In recent years, 2D-3D correspondence-based methods
have achieved improved performance in multiview and depth data-based scenes.
However, for monocular 6D pose estimation, these methods are affected by the
prediction results of the 2D-3D correspondences and the robustness of the per-
spective-n-point (PnP) algorithm. There is still a difference in the distance from
the expected estimation effect. To obtain a more effective feature representation
result, edge enhancement is proposed to increase the shape information of the
object by analyzing the influence of inaccurate 2D-3D matching on 6D pose
regression and comparing the effectiveness of the intermediate representation.
Furthermore, although the transformation matrix is composed of rotation and
translation matrices from 3D model points to 2D pixel points, the two variables
are essentially different and the same network cannot be used for both variables
in the regression process. Therefore, to improve the effectiveness of the PnP algo-
rithm, this paper designs a dual-branch PnP network to predict rotation and trans-
lation information. Finally, the proposed method is verified on the public LM,
LM-O and YCB-Video datasets. The ADD(S) values of the proposed method
are 94.2 and 62.84 on the LM and LM-O datasets, respectively. The AUC of
ADD(-S) value on YCB-Video is 81.1. These experimental results show that
the performance of the proposed method is superior to that of similar methods.

Keywords: 6D pose; monocular RGB; edge enhancement; dual-branch PnP; 2D-
3D correspondence

1 Introduction

The position and posture estimation of objects are functional tasks of vision systems in robotics. These
tasks are widely used in many applications, such as robot vision [1], augmented reality [2] and autonomous
driving [3–5]. These tasks are defined by 6D pose estimation, which is used to predict the location of objects
in a 3D coordinate system and the orientation of each axis.
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From a data perspective, 6D pose estimation approaches can be divided into two categories: depth data-
based methods [3,6] and monocular RGB image-based methods [7–9]. Monocular RGB image-based
methods are more practical and superior to depth data-based methods in terms of popularity and cost.
Therefore, monocular 6D pose estimation has become a research hotspot in the field of computer vision.
In addition, from a methods perspective, deep learning-based methods have been successfully applied in
many computer vision tasks [10–12]. In recent years, deep learning-based monocular 6D pose estimation
methods, such as directly regressing the rotation and translation information [13,14], learning the
potential relationship of features [15,16] and using 2D-3D correspondences for 6D pose estimation
[17,18], have achieved competitive results. This work focuses on the problem of monocular 6D pose
estimation and attempts to find an effective solution to this problem.

Although the performance of monocular 6D pose estimation has greatly improved using 2D-3D
correspondence-based methods, these methods still need to be improved in terms of accuracy compared
with multiview-based methods [19] and depth data-based methods [3,20]. Through an in-depth
understanding of the data information of complex scenes and an analysis of the learning ability of each
module in the existing network architecture, it is found that the 3D model points predicted from an RGB
image are somewhat different from the actual points. Specifically, due to the information uncertainty
caused by occlusion, symmetry and fuzziness of objects, 3D points predicted by deep neural networks
have ineradicable errors. In this situation, it is required to capture more effective image features to
eliminate the pose estimation errors caused by the failure of 2D-3D correspondence regression.
Furthermore, PnP networks, which estimates 6D poses based on 2D-3D correspondences, need to have
good learning abilities that can filter unusual features to achieve robust regression.

To solve these problems, in this work, edge map learning and a dual-branch PnP (DB-PnP) network are
proposed for 6D pose estimation. First, the edge maps of an object are used to reduce the information
uncertainty in a complex scene. The edge maps, which contain rich shape information, are combined with
dense correspondence maps that associate plane images and the three-dimensional space, and then these
two-layer feature representations can be used to improve the effectiveness and robustness of 6D pose
estimation. Additionally, inspired by the multibranch regression of object detection methods, this work
proposes separating the rotation and translation regression tasks. Although the transformation matrix is
composed of rotation and translation information in the transformation process from the 3D model point
to the 2D pixel point, the two variables are essentially different; by transforming the rotation and
translation tasks with an allocentric perspective, as in [18], they become independent from each other.
Therefore, the same network cannot be applied for the regression processes. Hence, a DB-PnP network is
designed to predict rotation and translation information. A comparison between the proposed method and
the existing baseline method is shown in Fig. 1. In summary, the contribution of this work can be
summarized as follows.

(1) This paper proposes adding a layer of edge maps to enrich the object shape information, reduce the
impact of the correspondence error of 6D pose regression, and improve the accuracy of 6D pose
estimation.

(2) This paper proposes separating the feature learning of rotation and translation matrices and building a
two-branch PnP learning network. In the proposed network, the two branches are implemented to
simultaneously predict the rotation and translation matrices to highlight the difference between the
features of these two tasks, and an attention module is applied to fuse the common features
between them.

(3) The experimental results on the public LM, LM-O and YCB-Video datasets show that the proposed
method achieves accurate and robust results for monocular 6D pose estimation. The performance of
the proposed method is superior to that of similar methods.
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The remainder of this paper is organized as follows. Section 2 introduces the related works, Section
3 describes the algorithms used to implement the proposed method, Section 4 presents and discusses the
experimental results, and Section 5 concludes the paper.

2 Related Work

Most monocular 6D pose estimation methods are supervised methods for rigid objects. They can be
divided into indirect methods and direct methods. The indirect methods mainly include correspondence-
based methods, voting-based methods, and template-based methods. For the direct methods, the
transformation matrix is predicted using computational models, especially deep learning-based models.
Currently, indirect methods are still the predominant method for monocular 6D pose estimation,
especially the correspondence-based method, which has a better prediction effect than the direct method.

The correspondence-based method is a two-stage method that first looks for the 2D-3D correspondences
and then uses the RANSAC/PnP algorithm to estimate the 6D pose of objects. In BB8 [21] and YOLO6D
[22] the two-dimensional projection of a set of fixed key points, including eight vertices and one center point
of a three-dimensional bounding box, are calculated, and the 6D pose of the object is quickly and accurately
predicted. When using PVNet [23], the key points are determined by voting. Due to object occlusion, sparse
correspondence-based methods are difficult to further improve. To solve this problem, some dense
correspondence-based methods, such as CDPN [17] and DPOD [9], have been proposed in recent years.

In references [24,25], a similar idea was adopted to solve the problem of 6D pose estimation. In both of
these works, Lie et al. utilized algebra-based vectors and quaternions to represent 6D poses, and a relative
transformation between the two poses was estimated for the prediction of the current pose. In [24], the
current observation (i.e., the 3D CAD model of the object and the RGB and depth images) and the pose
computed in the previous timestamp were applied as input, and the goal was to find a relative
transformation from the 6D pose in the previous timestamp to the pose captured by the current
observation. In [25], 6D pose estimation was transferred to the problem of iterative 6D pose matching.
Given an initial 6D pose estimation of an object in a test image, a relative transformation that matches the
rendered view of the object against the observed image is predicted. Different from these works, given an
RGB image that contains N objects, the goal of our work is to directly calculate the transformation
relationship of each object from the object coordinate system to the camera coordinate system in a real
scene. In addition, in [24], the rotation matrix and translation matrix were directly predicted by separate
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Figure 1: Flowcharts of the proposed method and the existing baseline method
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neural network branches composed of convolutional blocks and residual blocks. However, in our work, R
and t are predicted by the DB-PnP structure. A convolutional block attention module (CBAM) [26] is
applied to improve the performance of the DB-PnP. Although both the method in [24] and the method in
our work use two branches to predict the rotation matrix and translation matrix, the ideas and network
structures of these two methods are completely different.

Some researchers have argued that based on the performance of 6D pose regression, it is limited to the
use of single correspondence features, but a few multifeature learning methods have been proposed to
improve the performance of monocular 6D pose estimation. HybridPose [16] uses mixed intermediate
features to represent different geometric information, allowing more diverse features to be utilized for
pose regression. Di et al. [27] proposed a self-occlusion pose (SO-Pose) framework to directly estimate
the 6D pose from two feature representations, self-occlusion and 2D-3D correspondences. The semantic
decomposition pose (SD-Pose) model proposed by Li et al. [28] effectively took advantage of the
transferability of the cross-domain 6D pose in different representation domains and integrated different
semantic representations to improve performance. Main ideas of these works are summarized in Table 1.

3 Method

In this section, the proposed method is introduced in detail. The overall architecture is shown in Fig. 2. It
mainly contains three modules: object image cropping, dense map regression (DMR), and pose estimation. In
the first module, the bounding box of the object is obtained from the original RGB image by an object
detector. Then, dynamic zoom in (DZI) is applied to the cropped region of interest (RoI), and the RoI of
the object is resized to 3� 256� 256 as the input of the DMR module. The DMR module consists of an
encoder, an edge decoder and a correspondence decoder. To predict the edge maps and 3D
correspondences, each object RoI is sent to this module. In this process, the mapping of all points on the
object should be computed. Therefore, these types of methods are also called dense mapping-based
methods. The last module uses the predicted edge maps and 2D-3D correspondences to estimate the
rotation and translation matrices.

Table 1: Summary of the main ideas of the related works

Method Main idea

BB8 [21] Sparse correspondence

YOLO6D [22]

PVNet [23] Keypoint voting

DPOD [9]
CDPN [17]

Dense correspondence

se(3)-TrackNet [24] Pose estimation algorithm

Deepim [25]

HybridPose [16] Multilayer feature representation

SO-pose [27]

SD-pose [28]

3246 IASC, 2023, vol.36, no.3



3.1 Dense Mapping Pipeline

Given an RGB image I that contains N objects O ¼ fOiji ¼ 1; 2; . . . ; Ng, the goal of 6D pose
estimation is to calculate the transformation relationship of each object from the object coordinate system
to the camera coordinate system in the real scene, as shown in Fig. 3. R is a 3� 3 rotation matrix, and t
is a 3� 1 translation matrix. Specifically, in this work, R and t are represented by the parameterization
method provided in [18,27], which have achieved a much more accurate estimate than the commonly
used Lie algebra-based vector. In particular, the origin of the object coordinate system is the center of the
object. The 6D pose can be defined as P ¼ fR j tg.

To obtain the 6D pose, at the beginning of the proposed pipeline, the RoI of each object is fed into
convolutional neural networks for feature extraction. In this work, ResNet34 [29] is applied as the feature
encoder to make a fair comparison with the baseline method [18], which also used ResNet34 as the
feature backbone. This can further highlight the effectiveness of the proposed strategy of 6D estimation.
In addition, compared with many deep neural networks without shortcuts, the convergence effect of
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Figure 2: Overall architecture of the proposed method. It contains (a) object image cropping, (b) and
(c) dense map regression, and (d) pose estimation

Figure 3: Transformation relationship between the object coordinate system and the camera coordinate
system
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ResNet with residual blocks will not deteriorate even if the number of network layers increases continuously.
ResNet34, excluding the convolutional layer at the beginning and the pooling layer and the full connected
layer at the end, has a total of 4 sequence blocks, and each block contains 3 to 6 residual blocks, as shown
in Fig. 4.

In the DMR module, there are two branches: edge map regression and 2D-3D correspondence
regression. As shown in Fig. 2, these two branches use the same feature extraction network and share the
weights. The extracted image feature of the input object is fed into two decoders to predict the edge map
and 2D-3D correspondences.

For 2D-3D correspondences, the decoder is designed with the GDR-Net baseline [18], which is
composed of a deconvolution layer, an upsampling layer and a convolutional layer. The image feature
extracted from the feature backbone is used as the input of the decoder. The decoder consists of one
deconvolution layer and two upsampling layers, and both of the deconvolution and upsampling layers are
followed by two convolutional units. Each convolutional unit contains one convolutional layer, batch
normalization and an ReLU activation function. The output of this decoder is an H�W� C feature map,
where H and W are the height and width of the feature map, respectively. C is the number of channels
for the 3D maps, surface region attention maps (SRAMs) and mask maps. The 3D maps and 2D maps
are spliced together to form 2D-3D correspondences. The 2D maps are tensors of H�W� 2 obtained by
sampling the u and v coordinate values of the object RoI image. The 2D-3D correspondences and SRAM
are used in the following PnP network, and the mask maps are used to remove background information.
The loss function of the 2D-3D correspondence regression is defined in Eq. (1).

LCorr ¼ jMvis � dMXYZ �MXYZ

� �
j1

þjdMvis �Mvisj1
þCE Mvis � dMSRA; MSRA

� � (1)

where MXYZ, Mvis and MSRA represent the 3D maps, mask maps and SRAM respectively. �̂ and �� represent
the output and ground truth respectively. And � represents the multiplication operation. CE �ð Þ is the cross
entropy function. j�j1 is the L1 function.

3.2 Edge Enhancement

In complex scenes, due to the occlusion of objects and dim light, there are few visible areas and few
textures on objects. The features extracted from a single RGB image are limited, so the predicted 3D
model points are bound to have errors, such as offsets or anomalies of 2D-3D correspondences. Complete
reliance on unstable correspondences will lead to incorrect 6D pose estimations. Considering this
limitation, it is necessary to find more robust and effective features to enhance the input of pose
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estimation. In dense high-level semantic maps, both surface texture information and spatial information can
be used to estimate pose information. Spatial information is difficult to predict without stable structure
representation. In this regard, edge maps are adopted as the second representation because they not only
contain rich surface texture information but are also easy to obtain.

The network structure of the edge decoder is the same as that of the correspondence decoder. For edge
map regression, the image feature extracted from the feature backbone is sent to the edge decoder. The output
layer of the decoder is set to H�W� 1, which represents the surface edge of the visible object. H andW are
the height and width of the feature map, respectively, and are set in the same way as that of the output of the
correspondence decoder. To train the edge map regression network, Canny edge extractor is used to obtain
the edge of the object as the label. The loss function of edge map regression is defined in Eq. (2).

LEdge ¼ jMvis � dMEdge �MEdge

� �
j1 (2)

where dMEdge and MEdge denote the predicted edge map and the label, respectively. Mvis is the mask map
predicted in the 2D-3D correspondence decoder, and j�j1 is the L1 function. Some qualitative results of
the edge map are shown in Fig. 5.

3.3 Dual-Branch PnP Network

The DB-PnP is an extension of a patch-PnP network. From the results of previous works [18], it can be
observed that translation estimation is often very accurate, but rotation estimation is always more difficult.
Although both translation and rotation are variables with three degrees of freedom, their properties are
different. For a rotation vector, its direction is the same as the rotation axis, and its length is equal to the
rotation angle. It is not appropriate to use the same network to simultaneously calculate these two
variables. However, most of the previous works have estimated R and t in a module or by using the same
network. Therefore, in this work, the structure with two regression branches is proposed to form the DB-
PnP network.

Fig. 6 shows the architecture of the DB-PnP network, which contains two inputs and two outputs to
compute the 6D pose in parallel. The predicted edge map and the output of the 2D-3D correspondence
module are concatenated as the input features f c of these two branches. The outputs of these two
branches correspond to rotation matrix R and translation matrix t. The two branches adopt the same
structure; that is, they contain three convolutional units and three fully connected layers. Each
convolutional unit contains one convolutional layer, group normalization and an ReLU activation
function. The feature extraction process is defined in Eq. (3).

Input

GT

Pre.

Figure 5: Illustration of edge prediction results
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fR ¼ CGR3R fcð Þ ft ¼ CGR3t fcð Þ (3)

where CGR3R �ð Þ represents the operation of three convolutional units in the branch for estimating R.
Similarly, CGR3t �ð Þ represents the operation for estimating t. f R and f t are the output features of the
corresponding branches.

As the separate learning of translation and rotation features leads to a significant increase in rotation
accuracy and a slight decrease in translation accuracy, this work applies CBAM [26] to merge the
features of the two parallel branches, which alleviates the decrease in the translation accuracy due to the
separation. The outputs of CGR3 and CBAM are added and then input into the fully connected layer to
predict rotation and translation information, respectively. In this work, the numbers of neurons in the first
and second fully connected layers are 1024 and 256, respectively. The number of neurons in the last layer
is equal to the dimension of the output matrices. The calculation process is defined in Eqs. (4) and (5).

f 0R ¼ CBAMR ftð Þ R ¼ FC3R fR þ f
0
R

� �
(4)

f 0t ¼ CBAMR fRð Þ R ¼ FC3R ft þ f
0
t

� �
(5)

where CBAMR �ð Þ and FC3R �ð Þ represent the CBAM and fully connected layers in the branch of rotation
matrix R estimation, respectively. Similarly, CBAMt �ð Þ and FC3t �ð Þ represent the functions in the
estimations branch of translation matrix t.

3.4 Overall Loss Function

The proposed method predicts the two-layer feature representation by inputting an RGB image and then
feeding it into a DB-PnP network for pose estimation. All differentiable units can obtain the pose during
regression. The overall loss of the model consists of the correspondence loss, edge loss and pose loss.

L ¼ LCorr þ LEdge þ LPose (6)

where LCorr and LPose are commonly used as the correspondence loss and pose loss, respectively, and are
defined in [15].

4 Experimental Results and Discussion

4.1 Implementation Details

The proposed model is implemented on the PyTorch framework and trained on a GeForce RTX
3090 GPU. This work uses a batch size of 80 and a base learning rate of 5e − 4. All objects use the same
network for training, without special distinction between symmetric objects and asymmetric objects and
without refinement. There are 18493.3 M floating point operations (FLOPs) in the proposed method, and
the parameter size is 48.8 M.

Figure 6: Dual-branch PnP network
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4.2 Dataset

Some experiments are performed on the LM [15], LM-O [30] and YCB-Video [8] datasets. The LM
dataset consists of 15 videos with a total of 18,273 frames. There are 15 object models in the LM dataset.
These models have less texture and slight noise, and each image has only one annotation of an object
with almost no occlusion. According to official instructions, 85% of the LM dataset is used as the test set,
and the remaining 15% and 15,000 composite images (1,000 rendering images per model) are used as the
training set. LM-O consists of 1214 images from the LM dataset, which provide real poses of eight
visible objects with more occlusion. Except for a small amount of real data, most of the training data in
the LM-O dataset are composed of synthetic data obtained through physically-based rendering (PBR)
[31]; hence, it is a more challenging occlusion dataset. YCB-Video is a more recent and challenging
dataset that contains real-world scenarios with occlusion, clutter, and symmetric objects. It comprises
approximately 130 K real images of 21 objects. In addition to LM-O, this work also uses the PBR
training images generated for the BOP Challenge [31].

4.3 Evaluation Metrics

This work employs the two most commonly used metrics to compare the proposed method with other
state-of-the-art methods. ADD is used to measure the percentage of the difference between the projection
point and the actual point that is less than the threshold and is generally 10%, 5% and 2% of the object
diameter (0.1 0.05 and 0.02 d). ADD Sð Þ is used to evaluate symmetric objects. These metrics are defined
as follows:

ADD ¼ 1

m

X
x2M j Rxþ tð Þ � R̂xþ t̂

� �j (7)

ADD Sð Þ ¼ 1

m

X
x12Mminx22M j Rx1 þ tð Þ � R̂x2 þ t̂

� �j (8)

where x; x1; x2 are points in the object coordinate system, R and t are the predicted values, and R̂ and t̂ are
the ground truth values. M is the set of points on the object.

In addition, 2� and 2 cm are the other commonly used measurement metrics for 6D pose estimation. For
rotation matrix estimation, a predicted rotation matrix error of less than 2� is regarded as correct. The value of
2� measures the percentage of the correctly predicted rotation matrix. Similarly, for translation matrix
estimation, a distance between the predicted value and ground truth of less than 2 cm is considered
correct. The value of 2 cm measures the percentage of the correct translation rotation matrix. 2�, 2 cm
represents the percentage of the correct results that meet both conditions.

4.4 Ablation Study

To verify the effectiveness of each component in the proposed method, ablation experiments are
performed on the universal LM dataset, with 300 epochs of training for all objects in the related baseline
experiments and 360 epochs of training for the validation experiments in [27]. The object detection
results provided by [17] are used in the LM dataset. In this experiment, GDR-Net [18] and SO-Pose [27]
are applied as the baseline methods.

Tables 2 and 3 show the results of the ablation study. First, due to the equipment difference and some
evaluation metric values missing from the baseline methods, the results of the baseline methods are
reproduced in Tables 2 and 3. The method in this paper obtains better performance than the original
methods, except for the 2�, 2 cm metric using SO-Pose. For a fair comparison, this paper implements the
proposed method using the same training settings as those used to obtain the reproduced results of the
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baseline methods and compares the results of the proposed method with the reproduced results to verify the
effectiveness of the proposed method.

In Table 2, using GDR-Net [18] as the baseline, it can be observed that the results are improved by the
addition of the DB-PnP network and the edge map. The DB-PnP network obviously improves the accuracy
of rotation estimation, and the edge graph affects the rotation and translation regression results. Compared
with the original GDR-Net, by the addition of edge enhancement, the values of ADD(S) are improved
from 36.6, 76.3 and 94.0 to 40.6, 79.7 and 94.8, respectively. For the 2�, 2 cm metric, the value is
improved from 64.1 to 71.6. Compared with the fused DB-PnP and GDR-Net method, the values of
ADD(S) can be improved from 40.2, 78.6 and 94.6 to 42.6, 80.7 and 95.4, respectively. For the 2�, 2 cm
metric, the value is improved from 72.9 to 74.6. All of these results show that the DB-PnP network and
edge enhancement are effective in improving the accuracy of 6D pose estimation. The experimental
results combined with the DB-PnP network and edge maps show great improvement compared with the
baseline results, especially for the 2�, 2 cm metric, which increases from 64.1 to 74.7.

To further verify the effectiveness of the proposed method, the proposed edge map and DB-PnP module
are applied to the SO-Pose algorithm [27], which adds the self-occlusion feature to the baseline method. The

Table 2: Ablation study of GDR-net on the LM dataset. “**”means that the result was taken from the original
reference, “*”means that the result was reproduced by this research based on the code provided in the original
reference

Method ADD(S) 2°, 2 cm 2° 2 cm

0.02 d 0.05 d 0.1 d

GDR-net** [18] 35.5 76.3 93.7 62.1 63.2 95.5

GDR-net* [18] 36.6 76.3 94.0 64.1 65.1 95.7

GDR-net + DB-PnP 40.2 78.6 94.6 72.9 74.0 96.1

GDR-net + DB-PnP (w/o CBAM) 38.9 77.7 94.2 71.7 72.8 96.2

GDR-net + Edge map 40.6 79.7 94.8 71.6 72.5 96.4

GDR-net + Ours 42.6 80.7 95.4 74.7 75.5 96.8

Table 3: Ablation study of SO-pose on the LM dataset. “-” means that the results were not reported in the
original paper, “**”means that the result was taken from the original reference. “*”means that the result was
reproduced by this research based on the code provided in the original reference

Method ADD(S) 2°, 2 cm 2° 2 cm

0.02 d 0.05 d 0.1 d

SO-pose** [27] 45.9 83.1 95.5 76.9 - -

SO-pose* [27] 47.21 84.26 96.37 72.98 73.39 97.78

SO-pose + DB-PnP 47.23 84.18 96.44 75.47 75.96 97.69

SO-pose + DB-PnP (w/o CBAM) 47.22 84.36 96.36 74.02 74.72 97.52

SO-pose + Edge map 47.47 84.44 96.38 73.73 74.15 97.71

SO-pose + Ours 48.34 83.99 96.27 75.94 76.52 97.60
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self-occlusion representation proposed by SO-Pose reflects the spatial information of the object, and our edge
maps focus on the surface information of the object. Table 3 shows the ablation study on LM. When the DB-
PnP network is added to SO-Pose, it has no effect on the 2 cm metric with high accuracy, as it decreases by
0.09, but there is an increase of 2.57 for the 2� metric with low accuracy. The 2�, 2 cm result is also improved
from 72.98 to 75.47. By adding all of our schemes to the SO-Pose model, the rotation accuracy is increased
by 3.13. Furthermore, the results of the proposed method using the ADD(S) evaluation metric with the
minimum threshold (0.02 d) are increased by 1.1, and it can be observed that the proposed modules are
effective under stricter conditions.

Combined with the experimental results in Table 2, it can be observed that when the intermediate
representation is not sufficiently accurate and rich, DB-PnP and edge maps can introduce a significant
improvement. In addition, from the comparison results in Tables 2 and 3, it can be observed that in DB-
PnP, CBAM is effective in improving the results of 6D pose estimation.

4.5 Comparison with the State-of-the-Art Methods

This paper compares the proposed method with existing methods on the LM and LM-O datasets. In the
experiment, for the LM-O dataset, the Faster-RCNN detection results provided by [18] are applied to
segment objects from RGB images, and the training data are composed of real data and composite data of
PBR. Our method shares one network for all objects. Tables 4 and 5 show the comparison results and
reveal that the proposed method is superior to the most advanced methods.

As shown in Table 4, on the LM dataset, the proposed method achieves the best performance in terms of
ADD(S) (0.02 d) and 2�, 2 cm. metrics. However, from the results in Table 5, on the LM-O dataset, compared
with the SO-Pose algorithm, the improvement in the proposed method is not significant. During training, the
samples of each batch are randomly selected. Therefore, the model trained each time is slightly different. To
ensure the effectiveness of the proposed method, this work repeats the experiment using the SO-Pose
algorithm 8 times and reports the mean in Table 5. Compared with SO-Pose, the result is improved from
62.1 to 62.84, and the standard deviation of the proposed method is 0.39. From these experimental
results, for SO-Pose, the improvement is not as significant as those for GDR-Net. The main reason is that
in SO-Pose, the self-occlusion representation model was proposed to reflect the spial information of the

Table 4: Comparison with the state-of-the-art methods on the LM dataset. “-”means that the results were not
reported in the original paper. None of these methods use PBR data. “*”means that the result was reproduced
by this research based on the code provided in the original reference

Method ADD(S) 2°, 2 cm 2° 2 cm

0.02 d 0.05 d 0.1 d

PVNet [23] - - 86.3 - - -

CDPN [17] - - 89.9 - - -

HybridPose [16] - - 94.5 - - -

GDR-net* [18] 38.9 77.7 94.2 71.7 72.8 96.2

GDR-net + Ours 42.6 80.7 95.4 74.7 75.5 96.8

SO-pose* [27] 47.21 84.26 96.37 72.98 73.39 97.78

SO-pose + Ours 48.34 83.99 96.27 75.94 76.52 97.60
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object and improve the intermediate representation. Therefore, the proposed improvement has little impact
on the accuracy of the prediction results of SO-Pose.

To further verify the effectiveness of the proposed method, the proposed method is applied to the YCB-
Video dataset [8]. The experimental results are shown in Table 6. Compared with GDR-Net, the value of
ADD(S) is improved from 49.6 to 53.1 after adding the proposed method. From the results on the LM,
LM-O and YCB-Video datasets, it can be observed that the proposed method is effective in improving
the performance of the baseline methods for 6D pose estimation.

5 Conclusion

In this paper, a two-layer intermediate representation combining edges and correspondence for 6D pose
estimation is proposed. Compared with the previous single-layer correspondence representation, the
two-layer representation contains richer and more accurate features and uses simple but effective edge

Table 5: Comparison with the state-of-the-art methods on the LM-O dataset (ADD(S) 0.1 d). “M” means
that a model is trained for each object, and “1” means a model is trained for all objects. “*” means that the
result was reproduced by this research based on the code provided in the original reference

Object PVNet
[23]

HybridPose
[16]

GDR-net*
[18]

GDR-net +
Ours

SO-pose*
[27]

SO-pose +
Ours

P.E. M M 1 1 1 1

Training
data

real + syn real + syn real + PBR real + PBR real + PBR real + PBR

Ape 15.8 20.9 47.2 46.8 45.9 47.96

Can 63.3 75.3 81.9 82.3 84.1 84.92

Cat 16.7 24.9 27.1 31.9 33.3 33.44

Driller 65.7 70.2 72.8 71.1 74.0 78.17

Duck 25.2 27.9 37.0 43.6 50.9 49.10

Eggbox 50.2 52.4 49.3 56.8 54.8 53.30

Glue 49.6 53.8 72.9 71.3 78.6 78.22

Holep 36.1 54.2 63.1 66.1 75.2 77.58

MEAN 40.8 47.5 56.4 58.7 62.1 62.84

Table 6: Comparison with state-of-the-art methods on the YCB-video dataset. “*”means that the result was
reproduced by this research based on the code provided in the original reference

Method ADD(S) AUC of ADD-S AUC of ADD (-S)

0.02 d 0.05 d 0.1 d

PoseCNN [8] - - 21.3 75.9 61.3

SegDriven [32] - - 39.0 - -

GDR-net* [18] 4.7 24.2 49.6 90.1 80.9

GDR-net + Ours 5.2 27.1 53.1 89.4 81.1
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features to achieve robust regression. Moreover, the PnP network for estimating rotation and translation
information is improved, and the proposed DB-PnP network significantly improves the accuracy of
rotation estimation. The results on the public datasets show that the proposed method is superior to the
other related works.

The proposed method still has some limitations. The results of ADD(S) (0.1 d) can be further improved
on the LM-O and YCB-Video datasets. Furthermore, the proposed method can only estimate instances, and
category estimation has not yet been implemented. In the future, the proposed method will be implemented in
more complex and challenging scenarios; for example, the estimation of concrete objects will be expanded to
the estimation of categories.
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