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Abstract: Breast Cancer (BC) is considered the most commonly scrutinized can-
cer in women worldwide, affecting one in eight women in a lifetime. Mammogra-
phy screening becomes one such standard method that is helpful in identifying
suspicious masses’ malignancy of BC at an initial level. However, the prior iden-
tification of masses in mammograms was still challenging for extremely dense
and dense breast categories and needs an effective and automatic mechanisms
for helping radiotherapists in diagnosis. Deep learning (DL) techniques were
broadly utilized for medical imaging applications, particularly breast mass classi-
fication. The advancements in the DL field paved the way for highly intellectual
and self-reliant computer-aided diagnosis (CAD) systems since the learning cap-
ability of Machine Learning (ML) techniques was constantly improving. This
paper presents a new Hyperparameter Tuned Deep Hybrid Denoising Autoenco-
der Breast Cancer Classification (HTDHDAE-BCC) on Digital Mammograms.
The presented HTDHDAE-BCC model examines the mammogram images for
the identification of BC. In the HTDHDAE-BCC model, the initial stage of image
preprocessing is carried out using an average median filter. In addition, the deep
convolutional neural network-based Inception v4 model is employed to generate
feature vectors. The parameter tuning process uses the binary spider monkey opti-
mization (BSMO) algorithm. The HTDHDAE-BCC model exploits chameleon
swarm optimization (CSO) with the DHDAE model for BC classification. The
experimental analysis of the HTDHDAE-BCC model is performed using
the MIAS database. The experimental outcomes demonstrate the betterments of
the HTDHDAE-BCC model over other recent approaches.

Keywords: Digital mammograms; breast cancer classification; computer-aided
diagnosis; deep learning; metaheuristics

1 Introduction

Breast cancer (BC) has become one of the most common cancers among women; as the name defines, it
starts in the breast and gradually spreads to other body parts [1]. This cancer ranks second in the list of most
common cancer globally, next to lung cancers, and mainly affects the breast glands. BC cells create cancer
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that can be seen in X-ray images [2]. In 2020, almost 1.8 million cancer cases were identified, representing
30% of those cases. There exist 2 kinds of BC exist: benign and malignant [3]. Cells were categorized based
on several features. Identifying BC at an initial stage is critical for reducing the death rate. Medical image
analysis considers the effectual methodology for identifying BC [4]. Different imaging modalities were
utilized for diagnoses, like magnetic resonance imaging (MRI), digital mammography, infrared
thermography, and ultrasound (US). Also, mammography imaging was highly suggested. Mammography
generates high-quality images for visualizing the breast’s internal anatomy. There were various pointers of
BC from mammograms [5]. Some of them were architectural distortions, masses, and macrocalcifications
(MCs). The former 2 indicators were the powerful pointers of cancers in the initial stage, whereas the
architectural distortions were less important than the MCs and masses. Radiotherapists cannot simply
offer precise manual assessment because of the rising amount of mammograms produced in widespread
screening [6]. Thus, computer-aided diagnosis (CAD) systems were advanced for identifying BC’s
pointers and enhancing the accuracy of diagnosis. Such a system would simplify the diagnosis procedure
and remains a second opinion from the radiologist’s point of view.

For the past few years, several authors have recommended numerous solutions for automated cell
classification in BC diagnosis [7]. Because of the complicated nature of classical ML approaches, like
feature extraction, pre-processing, and segmentation, the system’s performance reduces accuracy and
efficiency. Conventional ML difficulties were addressed by the deep learning (DL) approach, which has
occurred currently [8]. This technique can achieve outstanding feature representation for solving object-
localization tasks and image classification. A conventional neural network (CNN)-training task mandates
a large amount of data lacking in the medical field, particularly in BC [9]. The transfer learning (TL)
method from natural-images datasets comes as a solution to this issue, namely ImageNet, and applies a
finely tuned method. The TL idea is used for enhancing the performances of different CNN architectures
by merging their knowledge. The major benefit of TL was the improvement of classifier accuracy and
quickening training procedures [10]. A suitable TL approach was a model transfer; initially, the network
parameters were pre-trained utilizing the source data, then such variables were implemented in the target
field, and lastly, the network variables were altered for superior performance.

In [11], CNN structure has been devised using simplified feature learning and finely tuned classification
method for separating cancer and ordinary mammogram cases. BC was a predominant and mortal illness that
seemed resultant the mutation of normal tissues into cancer pathology. Mammograms have become effective
and typical tools for BC diagnosis. The presented DL-related method mainly focused on evaluating the
pertinence of several feature-learning techniques and improving the learning capability of the DL
techniques for an effective BC identification utilizing CNN. Hassan et al. [12] introduce an innovative
classifier algorithm for BC masses related to deep CNNs (DCNNs). The author examined the usage of
TL from GoogleNet and AlexNet pre-trained techniques, which is suitable for this task. The author,
through an experiment, determined the optimal DCNN technique for precise categorization through
comparison made with different approaches that vary under the hyper-parameters and design.

Cabrera et al. [13] inquiry depended on this network type for categorizing 3 classes, malignant normal
and benign cancer. For this reason, the miniMIAS database employed contains lesser images, and the TL
algorithm has been implemented in the Inception v3 pre-trained network. Kavitha et al. [14] provide a
novel Optimal Multi-Level Thresholding-related Segmentation with DL-enabled Capsule Network
(OMLTS-DLCN) BC diagnosing technique leveraging digital mammogram. The OMLTS-DLCN
technique adds an Adaptive Fuzzy related median filtering (AFF) method as a preprocessing stage for
eliminating the noise presented in the mammogram images. Further, the presented method includes a
CapsNet-related Back Propagation Neural Network (BPNN) classification, and the feature extractor
technique was used to identify the BC existence.
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Saffari et al. [15] advance a fully automatic digital breast tissue classification and segmentation utilizing
advanced DL methods. The Conditional generative adversarial networks (cGAN) network was implemented
to segment the tissues dense in mammograms. To take a whole mechanism for breast density classifications,
the author modelled a CNN for classifying mammograms related to the standard Breast Imaging-Reporting
and Data System (BI-RADS). Zahoor et al. [16] intend to examine a solution for preventing the disease and
offer innovative classification techniques to reduce the risk of BC among women. The Modified Entropy
Whale Optimization Algorithm (MEWOA) can be projected related to fusion for in-depth feature
extracting and executing the classifications. In the presented technique, the effective Nasnet Mobile and
MobilenetV2 were implemented for simulation.

This paper presents a new Hyperparameter Tuned Deep Hybrid Denoising Autoencoder Breast Cancer
Classification (HTDHDAE-BCC) on Digital Mammograms. The presented HTDHDAE-BCC model
examines the mammogram images for the identification of BC. In the HTDHDAE-BCC model, the initial
stage of image preprocessing is carried out using an average median filter. In addition, the deep
convolutional neural network-based Inception v4 model is employed to generate feature vectors. The
parameter tuning process uses the binary spider monkey optimization (BSMO) algorithm. The
HTDHDAE-BCC model exploits chameleon swarm optimization (CSO) with the DHDAE model for BC
classification. The experimental analysis of the HTDHDAE-BCC model is performed using the MIAS
database.

2 The Proposed BC Classification Model

This paper devised a new HTDHDAE-BCC technique for classifying BC on digital mammograms. The
HTDHDAE-BCC model encompasses preprocessing, Inception v4 feature extraction, BSMO-based
hyperparameter tuning, DHDAE classification, and CSO hyperparameter optimization. Fig. 1 displays the
overall process of the HTDHDAE-BCC approach.

Figure 1: Overall process of HTDHDAE-BCC approach
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2.1 Feature Extraction Using Inception v4

In this work, the Inception v4 model is employed to generate feature vectors. CNNs remove the need for
manual extraction of features to identify features employed for classifying images. CNN operates through the
extraction of features straightforwardly from images. Inception-v4 was a CNN structure constructed on
earlier iterations of the Inception family by facilitating the structure and utilizing more inception modules
instead of Inception-v3 [17]. The inception module has been initially presented in GoogLeNet and
Inception-v1. The input went through 1 × 1, 3 × 3, and 5 × 5 conv, along with the max pooling
concurrently and concatenated as output. The inception-v4 presented as a Batch normalization (BN), in
which ReLU can be utilized as an activation function for addressing the saturation issue and the resultant
vanishing gradients. Moreover, 5 × 5 conv has been replaced by dual 3 × 3 convs for parameter
minimization while keeping the receptive field size. Additionally, a factorization idea was presented in the
convolution layer to diminish the dimensionality to lessen the overfitting complexity.

2.2 Hyperparameter Tuning Using BSMO Algorithm

To optimally modify the hyperparameters related to the Inception v4 model, the BSMO algorithm is
utilized. SMO discovers novel solutions and uses present solutions to accomplish optimum outcomes
[18]. The summary of different stages associated with the traditional SMO process is demonstrated for
the reader’s rapid reference. The logical operators such as AND (�Þ; OR ðþ), and XOR �ð Þ are applied
in the SMO equation to form binary SMO as follows.

Initialization phase

Initialization of the arbitrary binary solution is as follows:

SMij ¼ 0; if x � p
1; otherwise

�
(1)

In Eq. (7), SMij denotes the ith monkey’s jth parameter. p indicates the likelihood taken as 0.5, and x
indicates an arbitrary number within 0; 1½ �. The dimension becomes 0 once the arbitrary value is lesser
than 0.5. The logical operator upgrades afterwards initialization, the position of the SM.

Local leader (LL) stage (LLS)

SMnewij ¼ SMij � b� LL kj� SM ijð Þð Þ þ d � SM rj� SM ijð Þð Þð Þ; if b � pr
SMij; otherwise:

�
(2)

In Eq. (8), SMnewij represents the upgraded location of ithSM , LLkj denotes the kth local group leader in
the jth parameter, SMrj indicates rth SM in jth variable so that r 6¼ i; b and d denotes binary arbitrary numbers
amongst 0; 1½ �: pr denotes the perturbation rate.

Global leader stage (GLS)

SMnewij ¼ SMij � b� GLkj � SMij

� �� �þ d � SMrj � SMij

� �� �� �
; if b, probi (3)

Now, GLkj indicates the kth GL in the jth parameter. The updated location depends on the following
formula:

probi ¼ 0:9� fiti
maxf it

þ 0:1 (4)

In Eq. (4), probi denotes the probability, fiti indicates the fitness of ith SM, and maxfl t shows the maximal
fitness of the group.
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Local leader decision stage (LLDS)

SMnewij ¼ SMij �
�
b� LLkj � SMij

� �� �þ ðb� ðGLj � SMijÞÞ
�

if b � pr
use Equation l2; otherwise:

�
(5)

In Eq. (5), LLkj indicates the kth LL in the jth parameter, and GLj denotes GL in the jth variable.

Global leader decision stage (GLDS)

Once the GL SM value isn’t changed to global leader limit GLLð Þ time, GL divides the entire group into
subcategories. Once the class number is equivalent to the maximal group MGð Þ value, then it is regarded that
the maximal potential subgroup has been generated. Next, GL integrates each subgroup to generate a single
group. The position of LL is eventually upgraded.

2.3 BC Classification Using Optimal DHDAE Model

For BC classification, the DHDAEmodel is exploited in this study. The autoencoder (AE) variants of the
Deep Hybrid Boltzmann Machine (DHBM), the DHDAE, Follow the same path as a preceding subsection;
however, it starts from the HSDA basis structural design [19]. Also, this borrows the similar structure of
DHBM, containing the bi-direction connection required for integrating bottom-up and top-down
influences. But, rather than learning through a Boltzmann-based method, we intend to learn a stochastic
decoder and encoder procedure over several layers conjointly. The DHDAE might be stacking a strongly
incorporated hybrid denoising autoencoder (HdA) with the coupled predictor. An HdA is a single hidden-
layer MLP that shares input-to-hidden weight with an encoder-decoder module whose weight is tied (viz.,
decoding weight is equivalent to the transfer of encoding weight).

A 3-layer form of the joint models (generalized to L layer and determined as the similar variable set as

DHBM) is quantified as the encoder f 1h y; X̂ ; bh2� �
; f 2h

bh1� �o� �
and decoder gh bh1� �� �

functions:

h1 ¼ f 1h X̂ ; bh2� �
¼ f W 1X þ W 2

� �
T ĥ

� �
(6)

h2 ¼ f 2h
bh1� �

¼ f W 2ĥ
1

� �
(7)

�x ¼ gh bh1� �
¼ f W 1

� �
T ĥ

1
� �

(8)

W 1; W 2
� �

denotes the weight matrix interconnecting input X to h1 and h1 to h2 correspondingly (the
superscript T signifies a matrixes transpose function). The output operation ohðyjh1; h2Þ required to produce
prediction is evaluated through Eq. (6), similar to the DHBM method. Similar to HSDA, the DHDAE
exploits a stochastic mapping function ĥlt � qDðĥltjhÞ for corrupting input vector (haphazardly masking
entry in provided likelihood) 4 Noted that the DHDAE needs lesser matrix operation when compared to
the DHBM because it exemplified the “weak multiple level semi-supervised hypotheses”, providing it
with the benefit of a speedup in comparison with the DHBM.

The information flow to collect layer-by-layer statistics is specified as the arrows (that characterize an
operation like element-wise non-linearity and matrix multiplication), using the vector at the arrow origin
and the suitable layer parameter matrix) that is totalled based on the consecutive computation step taken
to evaluate them. Arrows (or operations) in similar computation steps are similar and point to the
resultant activation value evaluated. v corresponds to the detection network Qrecð Þ primary guess for the
mean-field, whereas l characterizes the real mean-field statistics. Fig. 2 showcases the infrastructure of AE.

To evaluate layer-by-layer activation value for the DHDAE, one uses the detection model to attain
primary guess for h1; h2

� �
.
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For optimal hyperparameter tuning of the DHDAE, the CSO algorithm is used. CSO algorithm
stimulates the hunting and food-searching method [20]. They are many specified classes of species that
can change colour to blend with their surroundings. They can live and survive in semi-desert areas,
lowlands, mountains, and deserts and usually eat insects. The food hunting procedure includes the
following phases: attacking, tracking, and pursuing the prey using their sight. The mathematical steps and
models are described in the succeeding subsections.

CSO algorithm was a population-related meta-heuristic that arbitrarily produces an initializing
population to begin the optimization procedure. The chameleon population having the size n was
generated in a d-dimension search region in which every individual of the population becomes a feasible
solution to the optimization issue. The position of the chameleon at iteration in the searching region can
be considered as follows:

yit ¼ yit;1; y
i
t;2; y

i
t;d

h i
(9)

where i ¼ 1; 2 . . . t characterizes the iteration count, yis;Error::0x0000 characterizes the chameleon location.

The initialized population is produced according to the problem dimension, and the chameleon count in
the searching region is shown below:

yi ¼ lj þ r uj 	 lj
� �

(10)

In Eq. (10), yi represents the primary vector of i-th chameleons, uj and lj denote the upper and lower
bounds of the searching region, correspondingly, and r shows a uniformly distributed value ranges from
[0, 1]. The solution quality in every step can be evaluated for every novel location according to the
assessment of objective function.

The chameleon movement behaviour in searching is represented according to the updated approach of
location as follows:

yiþjtþ1 ¼
yi;jt þ P1 Pi;j

s 	 Gj
s

� �
r2 þ P2 Gj

s 	 yi;js
� �

r1

yi ;jt þ l uj 	 ljð Þr3 þ ljbsn rand 	 0:5ð Þr1 ,P
r1�Pp
p

8<
: (11)

In Eq. (11), t and t þ 1ð Þ designate the tth and ðt þ 1Þth iterative phase correspondingly. i and j
characterize the ith chameleons in the jth parameter. yi;jt and yiþjtþ1 denote the existing and novel locations,
correspondingly. Pi;j

t and Gj
t suggest the finest and global finest locations, correspondingly.

Where P1 and P2 refer to a positive number that controls exploration capability. r1, r2; and r3 indicate
uniformly distributed arbitrary values ranging from [0, 1]. ri denotes a uniform distribution value generated at
index i ranges from [0, 1]. Pp shows the probability of the chameleon perceiving prey. Sgn(rand-0.5) denotes

Figure 2: Structure of autoencoder
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an effect on the direction of exploration and exploitation, and it ranges from [	1, 1]. l indicates a function of
the iteration variable, which decreases with iteration count.

Chameleon’s Eyes Rotation able to recognize prey location by rotating their eyes, and that feature assists
in spotting the target via 360 degrees steps are given below:


 The initial location was the focal point of gravity;


 The rotation matrix was found out that identifies the prey position;


 The situation is refreshed through a rotation matrix at the focal point of gravity;


 At last, they were resumed to the initial location position

Chameleon assaults its target once it excessively comes closer. The chameleon adjacent to the target is
the optimum chameleon and is regarded as the optimum outcome. Such chameleons assault the target
through the tongue. The chameleon situation is enhanced since it could prolong the tongue by double the
length. It assists the chameleon in exploiting the pursuit space and enables them to catch the target
sufficiently. The speed of the tongue, once it is protracted toward the target, is arithmetically given as follows:

vi;jtþ1 ¼ wvi;jt þ c1 Gj
t 	 yi;jt

� �þ c2 Pi;j
t 	 yi;jt

� �
r2 (12)

In Eq. (12), vi;jtþ1 denotes the novel velocity of ith chameleons in the jth parameter of t þ 1 iteration, and
vi;jt shows the existing velocity of ith chameleon in the jth parameter.

3 Experimental Validation

The experimental validation of the HTDHDAE-BCC method is tested utilizing the MIAS dataset. It
contains 322 images under three class labels, as depicted in Table 1. A few sample images are
demonstrated in Fig. 3.

Fig. 4 exhibits the confusion matrices generated by the HTDHDAE-BCCmodel under five runs. On run-1,
the HTDHDAE-BCC model categorized 62 samples into benign, 49 into malignant, and 207 samples into
normal. Temporarily, on run-2, the HTDHDAE-BCC approach has categorized 62 samples into benign,
48 samples into malignant, and 207 samples into normal. Meanwhile, on run-3, the HTDHDAE-BCC
technique has categorized 62 samples into benign, 48 samples into malignant, and 209 samples into normal.
Finally, on run-4, the HTDHDAE-BCC algorithm has categorized 62 samples into benign, 49 samples into
malignant, and 206 samples into normal.

Table 2 provides detailed BC classification outcomes of the HTDHDAE-BCC model under five distinct
runs.

Fig. 5 provides the overall classifier results of the HTDHDAE-BCC model on run-1. The figure shows
that the HTDHDAE-BCC model has enhanced results under all classes. For instance, the HTDHDAE-BCC
model has categorized benign images with accuy, sensy, specy, Fscore, and Gmean of 100%, 100%, 100%,

Table 1: Dataset details

Class No. of samples

Benign 62

Malignant 51

Normal 209

Total No. of samples 322
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100%, and 100%, respectively. Further, the HTDHDAE-BCC technique has categorized malignant images
with accuy, sensy, specy, Fscore, and Gmean of 98.76%, 96.06%, 99.26%, 96.08%, and 97.66%
correspondingly. In the meantime, the HTDHDAE-BCC technique has categorized normal images with
accuy, sensy, specy, Fscore, and Gmean of 98.76%, 99.04%, 98.23%, 99.04%, and 98.64% correspondingly.

Fig. 6 presents the complete classifier results of the HTDHDAE-BCCmethod on run-2. The figure displayed
the HTDHDAE-BCC approach has offered enhanced results under all classes. For example, the HTDHDAE-
BCC methodology has categorized benign images with accuy, sensy, specy, Fscore, and Gmean of 100%, 100%,
100%, 100%, and 100%, respectively. Additionally, the HTDHDAE-BCC technique has categorized
malignant images with accuy, sensy, specy, Fscore, and Gmean of 98.45%, 94.21%, 99.26%, 95.05%, and
96.66%, respectively. Meanwhile, the HTDHDAE-BCC algorithm has categorized normal images with accuy,
sensy, specy, Fscore, and Gmean of 98.45%, 99.04%, 97.35%, 98.81%, and 98.19% correspondingly.

Fig. 7 illustrates the inclusive classifier results of the HTDHDAE-BCC technique on run-3. The figure
represented the HTDHDAE-BCC approach has presented enhanced results under all classes. For example,
the HTDHDAE-BCC method has categorized benign images with accuy, sensy, specy, Fscore, and Gmean of
100%, 100%, 100%, 100%, and 100%, correspondingly. Moreover, the HTDHDAE-BCC methodology
has categorized malignant images with accuy, sensy, specy, Fscore, and Gmean of 99.07%, 94.12%, 100%,
96.97%, and 97.01% correspondingly. In parallel, the HTDHDAE-BCC approach has categorized normal
image with accuy, sensy, specy, Fscore, and Gmean of 99.07%, 100%, 97.35%, 99.29%, and 98.66%
correspondingly.

Figure 3: Sample images (a) Normal, (b) Benign, and (c) Malignant

2886 IASC, 2023, vol.36, no.3



Figure 4: Confusion matrices of HTDHDAE-BCC approach (a) Run1, (b) Run2, (c) Run3, (d) Run4, and
(e) Run5

Table 2: Result analysis of HTDHDAE-BCC approach with distinct measures and runs

Labels Accuracy Sensitivity Specificity F-score G-mean

Run-1

Benign 100.00 100.00 100.00 100.00 100.00

Malignant 98.76 96.08 99.26 96.08 97.66

Normal 98.76 99.04 98.23 99.04 98.64

Average 99.17 98.37 99.16 98.37 98.76

Run-2

Benign 100.00 100.00 100.00 100.00 100.00

Malignant 98.45 94.12 99.26 95.05 96.66

Normal 98.45 99.04 97.35 98.81 98.19

Average 98.96 97.72 98.87 97.95 98.28
(Continued)
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Fig. 8 portrays the general classifier results of the HTDHDAE-BCC methodology on run-4. The figure
denoted the HTDHDAE-BCC technique has provided enhanced results under all classes. For example, the
HTDHDAE-BCC approach has categorized benign images with accuy, sensy, specy, Fscore, and Gmean of
99.69%, 100%, 99.62%, 99.20%, and 99.81% correspondingly. Further, the HTDHDAE-BCC algorithm
has categorized malignant images with accuy, sensy, specy, Fscore, and Gmean of 99.76%, 96.08%, 99.26%,
96.08%, and 97.66% correspondingly. In the meantime, the HTDHDAE-BCC technique has categorized
normal images with accuy, sensy, specy, Fscore, and Gmean of 98.45%, 98.56%, 98.23%, 98.80%, and
98.40% correspondingly.

Table 2 (continued)

Labels Accuracy Sensitivity Specificity F-score G-mean

Run-3

Benign 100.00 100.00 100.00 100.00 100.00

Malignant 99.07 94.12 100.00 96.97 97.01

Normal 99.07 100.00 97.35 99.29 98.66

Average 99.38 98.04 99.12 98.75 98.56

Run-4

Benign 99.69 100.00 99.62 99.20 99.81

Malignant 98.76 96.08 99.26 96.08 97.66

Normal 98.45 98.56 98.23 98.80 98.40

Average 98.96 98.21 99.04 98.03 98.62

Run-5

Benign 100.00 100.00 100.00 100.00 100.00

Malignant 98.45 98.04 98.52 95.24 98.28

Normal 98.45 98.09 99.12 98.80 98.60

Average 98.96 98.71 99.21 98.01 98.96

Figure 5: Result analysis of HTDHDAE-BCC approach under run-1
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Figure 6: Result analysis of HTDHDAE-BCC approach under run-2

Figure 7: Result analysis of HTDHDAE-BCC approach under run-3

Figure 8: Result analysis of HTDHDAE-BCC approach under run-4
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Fig. 9 delivers an overall classifier fallout of the HTDHDAE-BCC approach on run-5. The figure
exemplified the HTDHDAE-BCC methodology has rendered enhanced results under all classes. For
example, the HTDHDAE-BCC algorithm has categorized benign images with accuy, sensy, specy, Fscore,
and Gmean of 100%, 100%, 100%, 100%, and 100% correspondingly. Additionally, the HTDHDAE-BCC
method has categorized malignant images with accuy, sensy, specy, Fscore, and Gmean of 98.45%, 98.04%,
98.52%, 95.24%, and 98.28% correspondingly. In the meantime, the HTDHDAE-BCC approach has
categorized normal image with accuy, sensy, specy, Fscore, and Gmean of 98.45%, 98.09%, 99.12%,
98.80%, and 98.60% correspondingly.

Fig. 10 demonstrates the average classification outcomes of the HTDHDAE-BCC model. On run-1, the
HTDHDAE-BCC model has attained average accuy, sensy, specy, Fscore, and Gmean of 99.17%, 98.37%,
99.16%, 98.37%, and 98.76% respectively. In line with, on run-2, the HTDHDAE-BCC approach has
gained average accuy, sensy, specy, Fscore, and Gmean of 98.96%, 97.92%, 98.87%, 97.95%, and 98.28%
correspondingly. Additionally, on run-4, the HTDHDAE-BCC model has obtained average accuy, sensy,
specy, Fscore, and Gmean of 98.96%, 98.21%, 99.04%, 98.03%, and 98.62%, correspondingly. At last, on
run-5, that the HTDHDAE-BCC approach has reached average accuy, sensy, specy, Fscore, and Gmean of
98.96%, 98.71%, 99.21%, 98.01%, and 98.96% correspondingly.

The training accuracy (TRA) and validation accuracy (VLA) obtained by the HTDHDAE-BCC method
on the test dataset is illustrated in Fig. 11. The experimental outcome inferred that the HTDHDAE-BCC
technique had achieved maximal values of TRA and VLA. Particularly the VLA seemed to be higher
than TRA.

The training loss (TRL) and validation loss (VLL) achieved by the HTDHDAE-BCC approach on the
test dataset are established in Fig. 12. The experimental outcome implied that the HTDHDAE-BCC
algorithm had accomplished the least values of TRL and VLL. In specific, the VLL is lower than TRL.

A brief ROC analysis of the HTDHDAE-BCC method on the test dataset is depicted in Fig. 13. The
results denoted the HTDHDAE-BCC approach has shown its ability to categorize distinct classes on the
test dataset.

Figure 9: Result analysis of HTDHDAE-BCC approach under run-5
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Figure 10: Average analysis of HTDHDAE-BCC approach (a) Run1, (b) Run2, (c) Run3, (d) Run4, and (e)
Run5
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To ensure the enhanced results of the HTDHDAE-BCC model, a brief comparative examination is
offered in Table 3 [21]. The outcomes inferred the improved outcomes of the HTDHDAE-BCC model
compared to existing techniques. Based on accuy, the HTDHDAE-BCC model has offered a higher accuy
of 99.38%, whereas the deep computer-aided diagnosis (deep-CAD), CNN, improved CNN, Opt. DL and
DL-TLT models have obtained lower accuy of 92.47%, 85.87%, 86.25%, 91.93%, and 98.90% respectively.

Figure 11: TRA and VLA analysis of HTDHDAE-BCC approach

Figure 12: TRL and VLL analysis of HTDHDAE-BCC approach
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Simultaneously, based on sensy, the HTDHDAE-BCC model has offered a higher sensy of 98.04%,
whereas the deep-CAD, CNN, improved CNN, Opt. DL and DL-TLT models have obtained lower sensy
of 97.70%, 88.52%, 94.54%, 91.52%, and 97.63%, respectively. Concurrently, based on specy, the
HTDHDAE-BCC model has offered a higher specy of 99.12% whereas the deep-CAD, CNN, improved
CNN, Opt. DL and DL-TLT models have obtained lower specy of 88.99%, 91.46%, 94.22%, 95.63%,
and 99.04%, respectively. These values ensured that the HTDHDAE-BCC model had shown effectual BC
classification outcomes over existing DL models.

4 Conclusion

In this paper, a novel HTDHDAE-BCC algorithm was projected for the classification of BC on digital
mammograms. In the HTDHDAE-BCC model, the initial stage of image pre-processing is carried out using
an average median filter. In addition, the deep convolutional neural network-based Inception v4 model is
employed to generate feature vectors. The parameter tuning process can be performed using the binary
spider monkey optimization (BSMO) algorithm. The HTDHDAE-BCC model exploits the CSO algorithm
with the DHDAE model for BC classification. The experimental analysis of the HTDHDAE-BCC model

Figure 13: ROC analysis of HTDHDAE-BCC approach

Table 3: Comparative analysis of HTDHDAE-BCC approach with existing algorithms

Methods Accuracy Sensitivity Specificity

HTDHDAE-BCC 99.38 98.04 99.12

Deep-CAD 92.47 97.70 88.99

CNN 85.87 88.52 91.46

Improved CNN 86.25 94.54 94.22

Opt. DL model 91.93 91.52 95.63

DL-TLT 98.90 97.63 99.04

IASC, 2023, vol.36, no.3 2893



is performed using the MIAS database. The experimental outcomes demonstrate the betterments of the
HTDHDAE-BCC model over other recent approaches. In the upcoming years, the performance of the
HTDHDAE-BCC technique can be boosted by a deep instance segmentation model.
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