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Abstract: The static nature of cyber defense systems gives attackers a sufficient
amount of time to explore and further exploit the vulnerabilities of information
technology systems. In this paper, we investigate a problem where multiagent sys-
tems sensing and acting in an environment contribute to adaptive cyber defense.
We present a learning strategy that enables multiple agents to learn optimal poli-
cies using multiagent reinforcement learning (MARL). Our proposed approach is
inspired by the multiarmed bandits (MAB) learning technique for multiple agents
to cooperate in decision making or to work independently. We study a MAB
approach in which defenders visit a system multiple times in an alternating fash-
ion to maximize their rewards and protect their system. We find that this game can
be modeled from an individual player’s perspective as a restless MAB problem.
We discover further results when the MAB takes the form of a pure birth process,
such as a myopic optimal policy, as well as providing environments that offer the
necessary incentives required for cooperation in multiplayer projects.

Keywords: Multiarmed bandits; reinforcement learning; multiagents; intrusion
detection systems

1 Introduction

In human society, learning is an essential component of intelligent behavior. However, each agent need
not learn everything from scratch through their discovery. Instead, agents can exchange information and
knowledge with each other and learn from their peers or teachers either directly or indirectly. When a
task is too large for a single agent to handle, multiple agents may cooperate to accomplish the task.
Applying this idea to the area of computer security opens the door to a new perspective on this debate.
Do multiple agents have sufficient incentive to cooperate? What would cooperative multiple agents learn
in the process? Will this cooperation result in quick and easy learning of attacker behavior? What insights
can we glean from the success or failure of agents that learn to cooperate? Answering these questions
would help us to re-evaluate current security solutions.
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In our application, an agent can be any tool, software, and/or appliances used for monitoring, detection,
and prediction such as the System Information and Event Monitoring (SIEM) solution, Endpoint Detection
and Response (EDR), and a threat intelligence platform. Agent cooperation means all agents that are
deployed and used to protect the monitored environment must cooperate to minimize the risk. They can
cooperate by integrating and their findings can be correlated by a centralized system.

Evaluation of the security of information technology systems considers the interactions between a
defender and an attacker. Attackers and defenders have opposite goals, where attackers aim, for example,
to find vulnerabilities and exploit them. On the other hand, defenders aim to deploy robust and secure
systems to reduce the attack surface, and this process usually starts by learning the attackers’ behaviors.

Current security solutions are mostly static and demand a long process to reconfigure if reconfiguration
is even possible [1]. This gives attackers a sufficient amount of time to explore and exploit vulnerable
systems. Defending against different types of attacks cannot be perfectly achieved by static security
techniques. This motivates the recent study of adaptive cyber defense (ACD) which creates a changing
attack surface based on information collected from an interactive environment. ACD-based solutions are
promising to the configuration stativity and homogeneity problem [2–5] and are the most similar to
human learning because the adaptive solutions can learn from their own experience by exploring and
exploiting the unknown environment [6]. However, for better utilization of this advantage, we believe
deploying multiple cooperating agents for the sake of increasing the quality of learning is essential,
especially in real-time and adversarial environments.

In this paper, we focus on investigating whether multiple agents should cooperate or work independently
to achieve a shared goal. We use the multiarmed bandits (MAB) decision-making strategy to show that
multiple agents cooperate to increase their revenue. The objectives of the multiagent are first, to gather a
body of useful information that when combined can draw a complete picture of the system threats. The
second objective is to employ the optimal defense policy that could result in increased system security
and a reduced attack surface.

In this paper, we do not consider a specific attack surface. However, we consider the attacker can
penetrate the environment by compromising a machine and then have full accessibility to the
environment. That said, the attacker then can apply a full cyber-attack kill chain [7] covering internal
reconnaissance, initial access, foothold establishment, lateral movement, and data exfiltration.

This information can be related to a system’s vulnerabilities, threats, malicious activities, and security
policy. We formulate the multiagent cooperation using a multiagent reinforcement learning strategy
(MARL). An agent is loosely defined as a program that can exercise an individual’s or organization’s
authority, work autonomously toward a goal, and meet and interact with other agents and their
environments [8,9].

We consider developing a learning-based defense that performs superior reconnaissance and possesses
greater understanding than a randomized defense policy. The idea is that multiagents sense and provide
information from an interactive environment to make changes to the system’s configuration every so
often based on observed and shared knowledge, which should reduce the attacker’s chances of success.
Our contributions in this paper can be summarized as follows:

� We provide insight into how multiplayer MAB is a desirable strategy for players’ cooperation.

� We demonstrate how multiagents can learn and communicate regarding sharing useful information
and cooperating to protect a targeted system and increase their rewards.

� We deploy a game-theory-based solution to minimize the attacker’s rewards.

� We implement our approach in a real OpenStack system to validate our defense strategy.
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The rest of the paper is organized as follows. In Section 2, the related work is presented. The system
model and problem formulation are presented in Section 3. Section 4 describes our approach. Finally,
Section 5 concludes this paper.

2 Related Work

Nicholas et al. [10] show that most multiagents have a common setting. As individuals, they have
incomplete information about the environment, no centralized control, and the information is distributed
and decentralized throughout the environment. Pamait et al. [11] detailed two features of multiagent
learning: (a) the search space in multiagent learning can be unusually large because it addresses problem
domains involving multiple agents, and due to the interaction of those multiple agents, small changes in
learned behaviors can often result in unpredictable changes in the resulting macro-level (“emergent”)
properties of the multiagent group as a whole; and (b) multiple learners can be involved in multiagent
learning, where each learns and adapts in the context of others.

Ming [12] reported that if cooperation is performed intelligently, each agent can benefit from other
agents’ instantaneous information, episodic experience, and learned knowledge. They identified three
means of cooperation among multiple agents: (a) agents can share instantaneous information such as
sensation, actions, or rewards; (b) they can communicate episodes, which are sequences of sensation,
action, and reward that have been experienced by agents; and finally, (c) agents can share the learned
decision policies. In [4], Xiaorui et al. surveyed several papers that applied reinforcement learning to
cybersecurity research issues. In [13], Aidin et al. modeled the interactions between two players (i.e., the
attacker and defender [Anti-Virus]), in a game-theoretic fashion by applying deep reinforcement learning
instead of directly deriving a solution based on the mixed-strategy Nash equilibrium analytics [14].

In [15,16], reinforcement learning methods were demonstrated to be effective in various intrusion
detection system (IDS) applications. However, the authors elaborated on the drawbacks of anomaly-based
and signature-based detection techniques. The authors then demonstrated a reinforcement learning-based
IDS where a collaboration of reinforcement learning methods, including rule learning and log correlation
techniques, enables the system to choose more appropriate log files in searching for traces of the attack.
In [17], Ravindra et al. proposed a multiagent intelligent system utilizing reinforcement learning and an
influence diagram. The proposed approach enables immediate responses against complex attacks where
all agents learn from shared information within the environment. However, the proposed approach was
not implemented to show how the agents can share information and reduce the attack surface. Abhishek
et al. [18] proposed a filtering scheme to detect corrupted measurements and mitigate the effects of
adversarial errors through state-based information, where the information obtained at each state is
considered as input to decide if a current state is damaged and whether a new state should be generated.

Although the idea of utilizing reinforcement learning and multiple agents in cybersecurity has been
discussed in previous research, we believe our proposed approach can act as a starting point for other
papers interested in sequential dynamic games.

3 System Model and Problem Formulation

3.1 Motivation Scenario

Current security solutions such as IDSs, intrusion prevention systems (IPSs), and firewalls are designed
to monitor incoming traffic and observe patterns of activity in user accounts and to generate alerts if unusual
activity is detected. These methods are “static” and cannot prevent possible information attacks beforehand.
Typically, they use predefined filtering rules to prevent illegal network access; however, implementing
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effective intrusion detection capability is an elusive goal that cannot be solved easily or with a single
mechanism.

For instance, firewalls do not inspect the contents of incoming traffic. Thus, if a valid application
contains malicious content such as viruses or worms they will not be detected. Furthermore, firewalls or
system guards cannot stop denial-of-service attacks and are ineffective in detecting internal attacks. IDSs
are designed to initiate detection of network intruders or hackers. IDSs usually audit records, network
packets, or any other observable activities to detect abnormal activities in the system or check them
against known intrusion patterns (signatures). The signature-based intrusion detection method does not
work against new or unknown forms of attack. The anomaly intrusion detection method is ineffective in
detecting inside attacks. Thus, any intrusion detection system that employs only one of these methods
will detect only a limited range of intrusions [19].

Furthermore, many sophisticated attacks, such as advanced persistent threats (APTs), have emerged with
a variety of different attack forms. APTs employ a wide range of sophisticated reconnaissance and
information-gathering tools, as well as attack tools and methods [7]. However, existing deployed security
systems are generally optimized for processing a large amount of system data (e.g., event logs) and are,
therefore, highly automated. This makes the detection of sophisticated, intelligent, and complex attacks
difficult. Although these systems can identify individual characteristics of an attack, it is often necessary
to perform an additional investigation of complex attacks to reveal all malicious activities. Thus, due to
the stealthy nature of APT attacks, where the sequence of malicious activities is performed at low
frequency, any proposed security system must be robust and able to accurately reveal important hidden
details in the system that can lead to detecting intelligent malicious activities.

Therefore, with the variety of possible defensive mechanisms and different detection techniques that can
be deployed to handle the aforementioned threats, a decision-making system that gathers information from
multiple agents becomes a necessary component for the following reasons:

a) Different detection techniques analyze different portions of enterprise traffic (e.g., network traffic and
system data) with different goals.

b) Different recommended security solutions issued by different security agents may enhance security
risk assessment when they are combined.

c) Peer relationships among cooperative multiple agents are needed when different administrations
manage portions of an enterprise network or distinct and separate networks [5].

d) Multiple agents can provide diversity in task handling—for example, having specialized agents
focused on specific classes of intrusion, such as coordinated attacks that occur over long periods
from multiple sources.

3.2 Reward Modeling

MAB is often used in dynamic decision-making systems to investigate the trade-off between exploring
and exploiting. It is presented with multiple slot machines, where, in each turn, the player can pull the arm of
one of the slot machines and receive a reward. Each arm is associated with observation, transition, and
reward. The player can play multiple trials to explore or exploit a system. Once they have explored the
system, they have to decide whether to exploit the found-well-paying-arm or to approach another set of
alternatives (arms) to maximize the total payoff.

The model in the literature is often introduced as a player who visits a casino and attempts to maximize
their profits by pulling the arms of different K “bandits” (a.k.a. slot machines). The player has to choose
between K bandits over many T turns. In each turn t 2 1; . . . ; Tf g, they will select one of the bandits
n 2 1; . . . ; Kf g, which then results in a reward cn;t from pulling its arm. This reward is decided upon by
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the slot machine n. In this paper, we study a related problem in which two players pull the arms of an MAB,
and each maximizes their reward.

Multiplayer MABs have seen limited study in terms of gaining insights into multiagent cooperation in
the recent literature. In [20] and [21] the authors investigated a multiplayer MAB in which at each time
epoch, users compete for arms of the MAB that yield independent and identically distributed (i.i.d.)
rewards for each pull. In this way, the players collectively and quickly learn the best arms, even with no
direct information sharing, by inferring the best actions based on the action profiles of other players. In
both works, the authors establish the policies that enforce a degree of “fairness” between players and
come up with lower bounds with respect to overall regret of the system. Although they do not explicitly
use the MAB formulation, [22] investigated cooperation in a cognitive system with learning. Similarly,
they found lower bounds on system regret with respect to throughput.

3.2.1 Multiplayer MAB
In this subsection, we begin by formulating the two-player MAB. At each time epoch t, the system state

for an n-bandit problem-is given by the vector X ¼ X1ð ÞX ¼ X1; X2; . . . ; Xnð Þ, where X is the state of
the ith bandit. Each player at each time epoch has n actions available, corresponding to each arm of the bandit.
Letting N ¼ 1; . . . ; nð Þ under action a 2 N , the system transitions from X ¼ X1; Xa; . . . ; Xnð Þ to
X 0 ¼ X1; X 0a; . . . ; Xnð Þ according to the Markov process of arma guided by transition matrix Y, and
the player who engaged in the action receives a reward c0Xa. Letting p be a policy that maps the system
state and letting X under action a 2 N , the expected reward for Player 1 in a t epoch game is generated
by Eq. (1)

max
p1

E
Xt

k¼1
bk
�1ð Þkþ1 þ 1

2
cX k

p1 Xkð Þ

" #
(1)

where X k is the system state at time k and b 2 0; 1ð � acts as a discounting factor. Note that the above
equation is nonzero only at odd epochs, which implies that Player 1 plays first. Furthermore, we suppress
the dependence of X on the policy since we will eventually show how to compute optimal strategies and
payoffs in a dynamic programming formulation. Now, from the perspective of a single player, since we
model this game assuming each player is rational and self-interested, their optimal strategies and expected
payoffs can be modeled using a restless MAB (RMAB).

Lemma 3.1 (RMAB Formulation). Each player’s optimal strategy and expected payoff can be modeled
using an RMAB.

Proof. Since each player is rational and tries to maximize their expected reward, at time t, the system
state transitions from X to X 0 according to Player 1’s optimal action a, after which Player 2 chooses an
optimal action that changes the system state to X 00. We can model this as an RMAB where, from the
perspective of Player 1, after any given action, each state of the system changes with probability 1 to a
state where each action other than the optimal action for Player 2 yields a reward of �1 and the reward
for choosing the optimal action for Player 2 yields a reward of 0, which transitions the system into a state
that again can yield rewards for Player 1. This is an RMAB since, after each action, the multiple arms of
the system change state and is possible since Player 2 is assumed to act optimally. This formulation gives
us some insight into the difficulty of the problem. RMABs themselves are in general NP-hard and
PSPACE-hard to approximate (see [23] for complexity details and proofs). Furthermore, to generate the
RMAB environment, the optimal policy for another player must be established, which further adds to the
complexity of the system. However, in small problem instances, our problem still maintains
computational tractability. We solve the system through the following dynamic program that operates
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backward in time. Thus, the optimal policy for Player i is determined by the dynamic program as shown in
Eq. (2)

V i
t ¼ min

a2N

X
X 0
YX ;X 0 ðcX 0a þ b2

X
X 00

YX 0;X 00V
i
t�1 X 00ð Þ (2)

with terminating state V i
0 ðXÞ ¼ 0 and where the outer summation is with respect to player i 0s action and the

inner summation is with respect to the opposite player’s optimal action. Thus, in solving for V 1
t , we must

solve V 2
t and V 1

t�1, and solving for V 2
t requires solving V 1

t�1 and V 2
t�1 since we assume Player 1 plays

before Player 2.

3.2.2 Birth Processes
Suppose that each arm i of our MAB operates as a pure birth process with retirement and its states are

labeled s1;i : : : smi;i as in Fig. 1. In this way, each state transitions only to itself and the state ahead of it with
positive probability, and after the state has reached smi;i, it is retired and can no longer be used as an action.
For this reason, we assume a dummy arm that generates zero rewards and has infinite states so that the players
always have a valid action.

In such a scenario, it would seem that the first player has an advantage over the second player since they
always have the option of waiting available to them, effectively “passing” their turn. Indeed, this turns out to
be true in the case of pure birth processes but is not necessarily true in the more general setting.

Lemma 3.2 (Player 1 Advantage). Player 1 receives a larger cumulative reward than Player 2.

Proof. The proof is immediate, noting that if there were any advantage to passing the first turn, Player
1 could simply choose to pull the dummy arm and delay their turn. Player 2 then either delays or obtains a
reward that is discounted by b from what Player 1 could have achieved.

In some applications, it is natural that the system experiences decreasing rewards over time for each arm.
This type of problem arises when each arm of the MAB experiences a positive probability of degrading each
time it is used. In the case of a system that experiences pure degradation, we find that the optimal policies for
both players are myopic.

Lemma 3.3 (Decreasing Rewards). If Cj;i . Cjþ1;i for each i 2 N and j 2 1; . . . ; mif g; each
player’s strategy is myopic.

Proof. The proof is obvious because each time an arm is pulled, the system state is worse for both
players. Since the entire system is degrading, any action will not yield a state for that player that is better
than the current state, which is the only incentive for not following a myopic discipline. Thus, both
players must play greedily. In this paper, we apply the reward modeling to an application where attacker
and defender obviously do not have to cooperate.

A pure birth process only experiences positive rewards when the system transitions to the final period
(i.e., when smi�1;i ! smi;i can be used to model events like job completion). However, in a two-player game,
the player who brings the system to state smi�1;i may be penalized since the other player, to maximize their
rewards, may bring the system to smi;i and take the completion rewards instead of the first player, regardless of

Figure 1: One arm of the MAB under a pure birth process. The arrows signify a positive probability of
transition after a “pull” of the MAB. We assume that the arm retires after transitioning to smi;i
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past efforts. Thus, for the purpose of designing a “fair” process for multiple players, we modify such a
modeling technique and let cmi�1;i ¼ cmi;i with the transition probability of smi�1;i ! smi;i ¼ 1:

Lemma 3.4 (Final State Rewards)

If Cj;i ¼ 0 if j 6¼ mi or mi � 1 and cmi;i ¼ cmi�1;i. 0 with the probability of smi�1;i ! smi;i ¼ 1; in an
infinite horizon setting, both players will choose to prioritize the same arm until it is retired.

Proof. The proof is obtained by a sample path argument. Suppose both players choose any policies that
are myopic when a state is in smi�1;i (which guarantees a reward of discounted cmi;i). In a given path, suppose
the first reward a player receives btcmi;i is for transitioning smi�2;i ! smi�1;i at time t. This guarantees the other

player a reward of btþ1cmi;i on the next epoch. If it took s, t “pulls” of class i to obtain this state, the rewards

are increased to bscmi;i and b
sþ1cmi;i, respectively, if both players work together without reducing their future

rewards (by working together in the future in a similar manner). This proves the assertion.

3.3 Reinforcement Learning (RL) Model

RL is used in cooperative multiagent systems for different problems [24]. In this paper, we formulate the
RL in MAB fashion, where multiagents are attempting to protect a virtualization networking system in cloud
computing and maximize the utility through learning from acting in their environment.

In the real world, the multiagents (i.e., security agents), for example, IDS agent, IPS agent, firewall
agent, and cybersecurity threat intelligence (CTI) agent, do not have to directly communicate to learn
from each other. Instead, they can provide their observations (explorations) to a single point (e.g., the
security operation center [SOC]). That said, we consider multiagents to work independently and each
agent can be configured to observe intrusions within its coverage; for example, having an IDS configured
to monitor either network traffic or system events to detect any intrusion that matches predefined rules. In
this case, if any suspicious activities are observed, then alerts will be generated. However, the security
team usually will deal with this alert as a single event. Another issue is that this alert might be a false
positive that could consume resources to figure out. With this same perspective, all other agents may
result in heavy resource consumption if not integrated. Therefore, applying RL can utilize different
reported alerts to increase the coverage and minimize the attack surface. In the following Eq. (3), we can
see how to maximize the value of each state based on actions taken and on rewards.

V � sð Þ  
X

s0
s s; a; s0ð Þ � R s; a; s0ð Þ þ dV � s0ð Þ½ � (3)

The interactions between multiagents can drastically increase the complexity with their action space.
However, investigating this point is beyond the scope of this paper.

For the goal of deploying MAB in our research area, we make the following assumptions on the model:

� Instead of having multiple agents explore and exploit, we decouple exploration and exploitation.

� Agents can still explore the system and report their findings to a centralized defender; in our system,
this task is assigned to the SOC.

� Agents’ observations are collected and processed by the SOC.

� The SOC can either exploit or wait for other explorations.

� The SOC calculates the global reward based on the received explorations from system security agents.

In each round of this game, every agent chooses an action a from its finite set of individual actions
(action space). In the learning process, these actions are executed simultaneously, and the reward that
corresponds to the joint action is exchanged with the centralized security center. A more formal account
of this type of problem was given by [25]. The security center should explore the use of moves that have
been attempted and exploit those for which the confidence of receiving a large reward is relatively high.
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Thus, the reward of the taken previous action ap can be formed by a score that can be used to decide whether
to explore or exploit. This cooperative game is designed based on an RL strategy. It concerns how to map
specific process conditions and then select a suitable policy to distribute learned malicious activities
(rewards) to maximize some notion of long-term reward to satisfy process performance goals.

Assume the multiagents act simultaneously, where each agent monitors different parts of the network to
lead to an immediate reinforcement that is used to build confidence in selecting optimal countermeasures and
policies. These interactions between the security center and its environment, through its embedded agents,
run continuously, to help the security center learn a decision-making strategy that maximizes the total
reward. Afterward, the security center can start implementing a sequence of actions based on the side
information learned from the environment. More formally, given a set of possible side information values
Y, a set of possible actions Y, and a set of reward functions R � r : y � a! Rf g at each time epoch,
the agent can learn some side information yt 2 Y . Then, they can take an action at 2 A based on the
gain, while the environment simultaneously chooses a reward function rt 2 R. Consequently, the agent
will receive a reward rt yt; rtð Þ.

The action selection strategy is an important step to avoid taking random action; for example, the
E� greedy strategy treats all of the actions, apart from the best action, equivalently. However, we could
select an action with a weighted probability depending on the value of {EV(action)}. This is known as
soft-max action selection, and the common approach to use is the Boltzmann strategy [26] which states
that an agent chooses an action to perform in the next iteration of the game with a probability that is
based on the agent’s current estimate of the usefulness of that action, denoted by EV(action) in this
Eq. (4) [27]:

P actionð Þ ¼
exp

EV actionð Þ
TP

action0 2 Ai exp
EV action0ð Þ

T

(4)

where T . 0 is the temperature specifying how randomly actions should be chosen. When T is high, actions
are chosen with almost equal probabilities. However, when the temperature is reduced, the highest-valued
actions are more likely to be chosen, and in the limit of T! 0, the best action is always chosen. The
expected cumulative regret for Boltzmann exploration is also linear.

One of the greatest advantages of the E� greedy strategy is that the information about the value of other
actions can be taken into consideration. For example, if multiple actions are available to Agent x, for
example, three actions, when applying the E� greedy strategy, two of the three actions are estimated to
be nonoptimal and considered equally. However, the Boltzmann strategy considers that the actions are
weighted by their relative value, which helps the security center to select the most promising action.

Fig. 2 presents the idea of deploying an interactive environment where multiple agents send their
observations to the security center. This model helps in learning and detecting malicious activities in the
monitored environment. It consists of several interrelated security modules (multiagent)
agenti; . . . ; agentnf g. These multiagents generate intrusion alerts based on their assigned tasks and

configurations. For example, if an EDR is deployed then it can be configured to monitor any intrusion at
the system level. In addition, other received alerts from other deployed agents can increase confidence
once all alerts are correlated at the security center. The security center inspects all received alerts to
extract useful information about attacker movements in the system, such as their target, preferences, and
launched attacks. Also, extracted information along with system static information “vulnerabilities” can
assist the security center to evaluate the countermeasure deployment process at present t. This helps us to
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analyze the attacks that occurred since the last countermeasure deployment at time t � 1 and deploy a new
countermeasure if necessary.

Developing observations (i.e., a knowledge base) can help in taking future actions and also avoiding
reprocessing of the same actions that harm the global reward. The security center can update the
knowledge base if new knowledge is observed. The knowledge base consists of reward tables, actions
that have been taken, system responses, previous state, and the current state. Since the security center has
a global view of all working agents and their responsibilities in terms of their tasks and which parts of
the system they monitor, updates to any agent’s configuration, if necessary, can be based on the
knowledge base. MARL problems are often framed in the context of Markov games, where n agents
cooperate in an environment with shared states. For simplicity, in this model, we consider the game
theory-based problem between cooperating multiagents (represented by a defender and an attacker).

4 Implementation and Evaluation

4.1 Game Theory Model

Since cyberspace involves various cyber components, reliable cyber security requires taking into
consideration the interactions among these components. Thus, the decision space increases considerably,
with many what-if scenarios when the system is large [4]. Therefore, game theory has been demonstrated
to be effective in solving large-scale problems. This is due to the ability to examine many scenarios to
derive the best policy for each player [28].

Since our multiagents are formed to only explore and report their findings to the centralized security
center, as discussed in Section 3.3, we consider the game theory-based problem between the centralized
security center (defender) and an (attacker) to establish a 2-player dynamic game model. The defender
and attacker interact in an adversarial environment involving defense solutions and attack events. Thus,
the defender and the attacker can repeatedly change their defense and attack strategies. To simplify the
analysis, this paper supposes that each player is only a single player (attacker or defender). However, the
defender is based on multiagents that are collaboratively working together following the concept in

Figure 2: Multiagent and security center interaction
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Lemma 4.3. The multiagents only can explore, as aforementioned, and the centralized security center (i.e.,
the single defender), can exploit based on the received information.

A multiagent game for two agents can be defined by the tuple (S, A1, A2, R, s, d). The variables that are
present in this tuple are defined as follows:

� S ¼ s1; s2; s3; . . . ; skf g are the finite states of the game.

� A1 ¼ a11; a
2
1; . . . ; a

m
1

� �
represents the possible finite action set for Agent x, “the defender.”

� A2 ¼ a12; a
2
2; . . . ; a

n
2

� �
is the finite action set for Agent y.

� s is the next state of the game provided Players x and y take actions ax and ay in state s based on the
received communication messages.

� R s; að Þ ¼ ðRx s; axð Þ; . . . ; Ry s; ay
� �

is the reward value for taking action ax by Agent x.

� d ! 0; 1ð � is the discount factor for future discount rewards.
Player 1 will try to maximize his expected discounted reward, while Player 2 will try to select actions

that minimize the expected reward for Player 1. We consider the min-max expected reward for a Markov
game. We can represent the expected value in the discounted Markov game as follows when the attacker
has available actions ai 2 A1 and the administrator has available actions aj 2 A2.

4.2 Value Iteration and Q-Learning

In this subsection, we present the analysis algorithms that model the defender’s behavior. We design two
algorithms (Algorithm 4.1 and Algorithm 4.2) to model the defender’s strategy, namely, the value iteration
algorithm and Q-learning algorithm. The algorithm for discounted reward shows a generalized idea of a
policy that the defender will take to learn the attacker’s exploration and exploitation in the system.
However, if the transition function is not known, then the function Q s; að Þ can be obtained through the
Q-learning algorithm to obtain the transition function through some processes, where the defender can
improve his knowledge by extracting useful information from reported alerts. Thus, at each time step in
the sequence, the defender chooses an action to incorporate the knowledge about previously experienced
states. Therefore, as the attacker takes multiple actions (attack sequences), the defender (utilizing
deployed MAS) will receive alerts indicating if the attacker succeeded in penetrating into the environment.
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4.3 Implementation

To implement the actual modified value iteration, it is necessary to solve a linear program for each state
after obtaining the updated Q values. However, this process becomes computationally inefficient for large
networks. Thus, two assumptions are made that provide us with an approximate strategy for the players.
First, we restrict the attacker to select a pure strategy (i.e., p sð Þ 8 s has the value of 1 for only one action
a 2 A2 that it can execute in certain states and zero for all other actions). Second, we consider that the
defender has observability of the attacker’s action and thus only uses action pairs ða1; a2Þ with respect
to the min-max strategy.

To evaluate this approach, we consider the game theory-based problem between the security solution
system (i.e., defender) and an attacker to establish a 2-player dynamic game model. To simplify the
analysis, this paper supposes each player is only a single player. However, for the defender, two sources
of threat information are selected. First, we utilize and collect the cybersecurity incidents information that
is usually obtained from the SOC, and in this scenario, we consider, as shown in Fig. 3, multiple
distributed SOCs (SOC-Di), where each is deployed in a network segment (i) and reports to the
centralized SOC-Brain. In the SOC-Brain, all received alerts are correlated for the goal of increasing the
defender’s global rewards and decreasing the attacker’s reward. Second, we utilize the CTI program,
which may provide additional information on ongoing threats inside the environment. Thus, when the
information received from both SOC-Brain and CTI is combined, it can increase the protection rewards
by enhancing the knowledge of the system administrators (security teams) to understand ongoing threats
to their organization.

To model the game, we design the environment depicted in Fig. 3 where we use an OpenStack SDN-
based environment with few virtual machines (VMs) in two different network segments (tenants). In each
segment, we deploy (a) Ubuntu 16.04, (b) Windows and vulnerable machine, and (c) metasploitable and
centralized SOC-D. We assume that the attacker’s goal is to obtain root-level privileges on the targeted
VMs by penetrating into the system and exploiting existing vulnerabilities such as buffer-overflow. We
assume the attacker is compromising an Ubuntu machine with user-level privileges on it. He or she uses
this VM as a starting point (foothold) to perform lateral movement. The attacker starts with information
gathering (internal reconnaissance) and conducts an nmap scan to enumerate the vulnerable system and
network services that are present on the host and the target VM. Our deployed IDS inside the SOC-Di

can observe such incidents and generate and send alerts to the SOC-Brain.

Our experimental environment contains multiple vulnerable services such as Mutillidae owasp, Damn
Vulnerable Web Application (DVWA), Metasploitable, and BadStore. Utilizing these vulnerabilities helps
us to emulate attackers’ behavior and also allows us to monitor the environment at the network level
using a network-based IDS. In addition, another virtual machine hosts Samba, WordPress, FTP, MySQL,
and Nexus. Each VM, therefore, has packet- and log-capturing abilities. A stack-based Elasticsearch-
Logstash-Kibana (ELK) log server was used for log storage and filtering.
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Utilizing our deployed CTI, we can observe the vulnerability-related information from open sources,
such as discussions on hacking forums, about an existing vulnerability on aforementioned services and
how it can be exploited. In addition, we gather vulnerability information from well-known vulnerability
databases such as Common Vulnerabilities and Exposures (CVE) which is deployed in our SOC
environment. The advantage of utilizing CTI is showing what vulnerabilities active actors are discussing
and how they exploit them. Furthermore, we can reflect this scenario on our multiagent interaction, where
we sum up multiple alerts, resulting from multiple actions taken by the attacker, to detect ongoing
attacks. The optimal goal is to minimize the reward of the attacker using a min-max strategy. The system
administrator should be able to select the optimal countermeasure once they collect significant
information on incidents within the organization. The collected incident information helps the
administrator to model the attacker’s policy. Thus, necessary countermeasures can be taken to minimize
the expected utility for the attacker.

4.4 Evaluation

We conducted Markov game cost-benefit analysis for the two players (attacker and defender). As shown
in Fig. 4, the reward value for the attacker decreases as we utilize value iteration and Q-learning algorithms
by observing and collecting alerts from multiple sources (agents). This means the defender increases his
attack surface coverage. In our implementation, we collect incident information from different sources, as
presented in Fig. 4 (i.e., CTI, SOC-Di, and SOC-Brain). The CTI provides more details on vulnerabilities
that were discussed in open-source platforms such as the dark web. We utilized TorBot which is an open-
source tool for the dark web. However, such intelligence may not lead to accurate detection or prediction
of an attack if it is considered separately. In addition, each distributed SOC-Di is configured to monitor
its local segmentation. However, their coverage is not efficient when they work separately as shown in
Fig. 4 where we can notice the attacker’s reward is still high. However, when we react to the alerts
received from multiple sources that are combined and correlated, we can notice that, as shown in Fig. 4,

Figure 3: System architecture
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the Q-learning shows how the attacker’s reward decreases over time. This is due to the ability to learn the
attacker’s behavior via multiagent RL.

5 Conclusion

To gain an understanding of how players cooperate or fail to cooperate in dynamic games, we
formulated a two-player MAB and provided various results, such as conditions for myopic optimality, the
first player’s advantage, and an environment that fosters cooperation between two players. Moreover,
many of these preliminary results appear to be generalizable to more players. Additionally, the framework
of this problem can act as a starting point for other researchers interested in sequential dynamic games.

We further presented a multiagent RL model where we deployed n agents cooperating in an environment
to minimize the attacker’s rewards. We presented a game theory-based problem between the attacker and
defender to perform a cost-benefit and min-max strategy. Our solution is deployed on an OpenStack-
based environment consisting of two tenants with the configuration of a centralized SOC inside each
tenant and a centralized SOC. Our approach showed that cooperating agents are a promising solution to
minimize the attacker’s exploration surface and rewards. In future work, we plan to address the limitation
of this work which is how to model the game when the number of players increases. In addition, we
further need to explore the complexity concerning reward distribution over an increased number of players.
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