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Abstract: Computed tomography has made significant advances since its intro-
duction in the early 1970s, where researchers have mainly focused on the quality
of image reconstruction in the early stage. However, radiation exposure poses a
health risk, prompting the demand of the lowest possible dose when carrying
out CT examinations. To acquire high-quality reconstruction images with low
dose radiation, CT reconstruction techniques have evolved from conventional
reconstruction such as analytical and iterative reconstruction, to reconstruction
methods based on artificial intelligence (AI). All these efforts are devoted to con-
structing high-quality images using only low doses with fast reconstruction speed.
In particular, conventional reconstruction methods usually optimize one aspect,
while AI-based reconstruction has finally managed to attain all goals in one shot.
However, there are limitations such as the requirements on large datasets, unstable
performance, and weak generalizability in AI-based reconstruction methods. This
work presents the review and discussion on the classification, the commercial use,
the advantages, and the limitations of AI-based image reconstruction methods in
CT.
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1 Introduction

The first CT examination of the brain was performed using Sir Geoffrey Hounsfield’s EMI scanner in
1972, and CT has evolved into a vital diagnostic tool in modern medicine [1]. Using an algebraic
reconstruction method, the first CT examination took over 5 min and about 2.5 h to reconstruct.
Nowadays, CT scans image the whole body in seconds with almost instantaneous reconstruction [2]. The
resolution of the CT image has also become higher, despite the long reconstruction time. In the past, CT
scans had fuzzy images with 80 × 80 pixels, while today’s CT scanners have images with 1024 ×
1024 pixels or more.

A growing use of CT has raised concerns, and the community is aware of the health risks of radiation
exposure. Scientists and the media are concerned that CT radiation might lead to cancer. CT does provide
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essential clinical information helping diagnosis. In spite of this, excessive or inappropriate use can result in
unnecessary radiation exposure. To minimizing radiation exposure, CT imaging should be discussed in
conjunction with the radiation risks and the benefits of the image, ensuring that the projected benefits
outweigh any projected radiation risks [3]. To conclude, the ALARA (as low as reasonably achievable)
principle should be applied to CT scans [4].

Initial efforts were made in transmission CT in the early 1970s to introduce the concept of iterative
reconstruction (IR), which was already well-established in the single-photon emission CT in the 1960s
[5]. However, due to a lack of computer capacity, IR was quickly supplanted by analytical approaches
such as filtered back projection (FBP). In 2009 until the first IR technique was introduced clinically,
analytical reconstruction methods have been the dominant type of reconstruction. Because of the rapid
growth in computer technology, it was only a matter of time before all of the leading CT vendors began
offering IR algorithms for clinical use, which was followed by increasingly sophisticated reconstruction
algorithms [6]. With the advancement of artificial intelligence technology, it has found its way into the
medical profession, with medical image processing being one of the most essential applications. Recent
developments in computer infrastructures, such as graphics processing units (GPUs) and cloud computing
systems, have allowed AI applications to become more prevalent in various fields of study, including the
reconstruction of medical images [7]. All these efforts are directed toward the construction of high-quality
images using only low doses and a fast reconstruction rate. In particular, conventional reconstruction
methods usually optimize one aspect, while AI-based reconstruction has finally managed to attain all
goals in one shot [8].

This article aims to give an overview of AI-based CT image reconstruction. This work presents the
review and discussion on the classification, the commercial use, the advantages, and the limitations of AI-
based CT image reconstruction.

2 Conventional Reconstruction Method

Conventional reconstruction algorithms can be divided into analytical reconstruction algorithm and
iterative reconstruction algorithm. Originally, CT images were reconstructed using the algebraic
reconstruction technique (ART) in an iterative fashion [9]. Since this technique lacked the necessary
computational power, it was quickly replaced by more simple analytical techniques, such as filtered back
projection (FBP). FBP is the most common analytical reconstruction algorithm. Since the introduction of
the first iterative reconstruction (IR) technique in 2009, it has been the method of choice for decades.
This caused a true hype in the CT-imaging domain. The major CT vendors began introducing IR
reconstruction algorithms for clinical use within a few years, which were quickly developed into more
complex algorithms. The purpose of this chapter is to provide a concise discussion of the conventional
CT reconstruction process.

2.1 Analytical Reconstruction

The main work is the mutual transformation of projection data and image data between object space,
Radon space, and Fourier space when scanning and reconstruction data.

Radon transform and central slice theorem are the theoretical basis of analytical reconstruction. In two-
dimensional imaging, CT reconstruction is the process of mutual transformation between object space and
Radon space. The central slice theorem of two-dimensional images reveals that Fourier space is a bridge
between Radon space and object space. The theorem states: The parallel beam projection pðt; hÞ of a two-
dimensional function f ðx; yÞ at an angle h, the one-dimensional Fourier transform p̂ðn; hÞ with respect to

the direction of the detector t gives a slice of the two-dimensional Fourier space f̂ ðnx; nyÞ of f ðx; yÞ that
passes through the origin parallel to the direction of the detector, and its mathematical expression is:
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p̂ðn; hÞ ¼ f̂ ðn cos h; n sin hÞ. Filtered back-projection (FBP) is the most commonly used analytical
reconstruction method, it is widely used because of its concise form, easy implementation, and fast
reconstruction speed.

Because different scanning modes have different geometric structures, their reconstruction methods are
also different. This section introduces the analytical reconstruction method according to the CT scan mode.
The table lists the partial reconstruction methods corresponding to each scan mode.

Due to different scanning modes with different geometric structures, their reconstruction methods are
also different. This section introduces the analytical reconstruction method according to the CT scan
mode. Table 1 lists the partial reconstruction methods corresponding to each scan mode.

In the first 30 years after the invention of CT, it has always been the dominant algorithm in the analytical
reconstruction method for CT image reconstruction because it is computationally efficient and highly
accurate. From the perspective of computational efficiency, the algorithm implements parallel processing
very well, that is, it allows the image to be reconstructed almost in real-time while scanning the patient.
From the perspective of accuracy, when the input original data such as sinogram is obtained under ideal
conditions, the algorithm can reconstruct an accurate copy image of the scanned object. However, in non-
ideal situations, FBP has obvious limitations. This algorithm is usually unable to simulate the
performance of CT systems under non-ideal conditions. Non-ideal states may result from several factors,
including the basic physics of X-rays, such as beam hardening and scattering, the statistics of data
collection, such as X-ray photon flux limitations and electronic noise, geometric factors associated with
the system, such as partial volume effects and smaller focal lengths and detector sizes, as well as patient
factors, such as positioning and movement. As a result of these limitations, patients are often required to
receive higher radiation doses to achieve an acceptable image quality [6].

2.2 Iterative Reconstruction

To overcome the shortcomings of the analytical reconstruction method, iterative reconstruction is
introduced into CT image reconstruction. Different from the closed solution method of analytical

Table 1: Analytical reconstruction method for different CT scan mode

CT scan mode Reconstruction method

Standard trajectory Circular trajectory FBP [10]
FDK [11]

Spiral trajectory PI-line [12]
Tam-Danielsson window [13]

Nonstandard
trajectory

Variable pitch
and radius spiral trajectory

Space-filling trajectory [14]

Saddle trajectory Back projection of locally filtered projections [15]

Tilted helical trajectory ASSR+ algorithm [16]
T-TCOT algorithm [17]

Reverse helical trajectory BPF-FBP tandem algorithm [18]

Linear trajectory Single-segment linear
scanning

Direct filtered-backprojection-type reconstruction
[19]

Multi-segment linear
scanning

FDK [20]
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reconstruction, iterative reconstruction adopts a progressive solution method, through preset reconstruction
model, and repeated iterations to find the optimal solution that can match the input data. In other words, the
iterative reconstruction algorithm is a method that drives image quality with modeling accuracy, and the
accuracy of the reconstruction model determines the best image quality that can be achieved. For the
purpose of simulating how the CT system will perform under non-ideal conditions, a complex
reconstruction model is usually used. The higher the requirements for image quality, the more complex
the model, and usually requires a longer reconstruction time [21].

There are two main classifications of iterative reconstruction techniques: hybrid iterative reconstruction (HIR)
and model-based iterative reconstruction (MBIR) [22]. Table 2 shows iterative algorithms for the major vendors.

Compared to FBP, MBIR reconstructs images with a higher signal-to-noise ratio(SNR) and requires a
lower radiation dose because it uses sophisticated algorithms to minimize the difference between real and
synthetic data, but it requires a high level of computing power and extensive reconstruction time [1]. Veo
(GE Healthcare) is the first MBIR [23]. In 2016, FIRST (Canon Healthcare), an image reconstruction
approach that is based on three-dimensional (3D) was developed [24]. Other MBIR algorithms include
IMR (Philips Healthcare), and ADMIRE (Siemens Healthineers).

Table 2: Iterative reconstruction algorithms offered by the major vendors

Vendor Algorithm Type Remarks

Canon healthcare AIDR3D [25]
(adaptive iterative dose reduction 3D)

HIR Strong denoising effect,
average reconstruction speed

FIRST [24] (forward projected model-
based iterative reconstruction solution)

MBIR Very strong denoising effect,
low reconstruction speed

GE healthcare ASIR [26]
(Adaptive statistical iterative
reconstruction)

HIR Strong denoising effect,
average reconstruction speed

Veo [27] MBIR Very strong denoising effect,
low reconstruction speed

ASIR-V [28] HIR Strong denoising effect,
average reconstruction speed

Philips healthcare iDose4 [29] HIR Strong denoising effect,
average reconstruction speed

IMR [30]
(iterative model reconstruction)

MBIR Very strong denoising effect,
low reconstruction speed

Siemens healthineers IRIS [31]
(iterative reconstruction in image space)

HIR Average denoising effect, fast
reconstruction speed

SAFIRE [32]
(sinogram-affirmed iterative
reconstruction)

HIR Strong denoising effect,
average reconstruction speed

ADMIRE [33]
(advanced modeled iterative
reconstruction)

MBIR Very strong denoising effect,
low reconstruction speed

(Continued)
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The HIR employs a combination of statistical system modeling and forward-projection steps in order to
reach a compromise between the MBIR and FBP. The first HIR, RIS (Siemens Healthineers) and ASIR (GE
Healthcare), was developed in 2008. Subsequently, several others were developed, such as iDose4 (Philips
Healthcare), ClearView (Neusoft Medical Systems, Shenyang, China), etc.

Although the use of iterative reconstruction methods reduces the radiation dose, their performance in
image quality is still unsatisfactory. Due to the limitations of modeling complexity, iteratively
reconstructed images often display a different aesthetic than images generated by FBP under ideal
circumstances, and the noise texture is often described as being blotchy, plastic or unnatural [1].

3 AI-Based Reconstruction

Artificial intelligence is widely used in various fields such as coverless information hiding techniques,
machine vision and so on [35–39]. Medical images or signals can be analyzed with the assistance of AI to
identify deviations from normal patterns that may indicate disease [40]. As an image processing technique,
object detection heavily relies on bounding boxes for object categories and classification confidences [37],
and is of great significance to medical image processing. AI-based CT reconstruction technology has been
instrumental in detecting pneumonia infections during the past two years, as the world has been hit by the
COVID-19 pandemic [41,42]. The emerging field of AI has attracted substantial interest due to its
potential for improving the reconstruction of CT images [43]. The application of AI to CT reconstruction
is being investigated by a number of research teams.

Neural network is one of the most popular artificial intelligence methods at present. And sparse-view CT
reconstruction helps reduce radiation exposure, but it’s still a struggle to obtain a high-quality image
reconstruction from only a few projections. As a result, the use of deep learning to rebuild sparse-view
CT scans is a hot topic of research. Fig. 1 shows the process of image reconstruction with neural
network. Input the low-dose sinogram into the neural network, and compare the resultant suboptimal
image with the real image of the equivalent high-dose data. Then compare these two images on the basis
of a variety of parameters such as image noise, low-contrast resolution, low-contrast detectability, etc.
Additionally, the output suboptimal image includes differences and updates based on the backpropagation
network. In this manner, the output image should be compared with the real image of the high-dose
version until a certain level of accuracy is reached [44–47].

While analytic reconstruction is efficient but requires proper sampling, and iterative reconstruction
considers the statistical and physical properties of the imaging device but there are discrepancies between
the model and physical factors, AI-based reconstruction can extract features from low-quality image data
to train learning with greater accuracy and speed.

Table 2 (continued)

Vendor Algorithm Type Remarks

United imaging,
Shanghai, China

KARL 3D iterative denoising [3] HIR Strong denoising effect,
average reconstruction speed

Neusoft medical
systems,Shenyang,
China

Clearview [34] HIR Very strong denoising effect,
low reconstruction speed
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3.1 Classification of AI-Based Reconstruction

3.1.1 Image to Image
One type of AI-based reconstruction is image-to-image which is also based on image-space. The main

idea of this reconstruction method is to train neural networks that can transform low-dose or sparse-view CT
images into acceptable images without requiring raw or sinogram data. Part of the studies on image-to-image
AI-based reconstruction are shown in Table 3. There are these image-to-image reconstruction methods: deep
convolutional neural network (DCNN) combined with FBP (FBPConvNet) [49], directional wavelet
transform based CNN [50], dual and tight frame U-Net [51] and so on. These methods produce high-
quality images at high speed. In most case, to reconstruct routine-dose CT images, CNNs are trained with
low-dose CT images.

Although these image-to-image reconstruction methods obtain good results, the results may be different
to the original measurement because the methods usually predict output with image-prior.

Low dose sinogram

Neural network

Suboptimal image

Neural network

Compare
High dose version
of the same data

N

Y

Ideal image 

Figure 1: Schematic view of the neural network-based reconstruction process

Table 3: Part of the studies on image-to-image AI reconstruction

Reference Remarks

Chen et al.
[48]

The DCNN is used to map low-dose CT images towards its corresponding normal-dose
counterparts in a patch-by-patch fashion.

Jin et al. [49] Propose FBPConvNet, which combines FBP with a multiresolution CNN. And CNN
structures are based on U-Nets, with residual learning added.

Kang et al.
[50]

Combine a CNN of residual learning architecture with a directional wavelet transform to
process low-dose CT images.

Han et al.
[51]

Combine dual and tight frame U-Net satisfying the frame condition which makes them
better for effective recovery of high-frequency edges in sparse-view CT.

Chen et al.
[52]

Consolidate the autoencoder, the deconvolution network, and the shortcut connections into
the RED-CNN for low-dose CT images.

Zhang et al.
[53]

Propose DD-Net which combines DenseNet and deconvolution networks for sparse-view
CT.
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3.1.2 Data to Image
Compared to the conventional reconstruction method, AI-based image reconstruction, especially deep

learning (DL), has more advantages as it can learn features when training based on raw input data.

The measurement can be directly converted into images using data-to-image reconstruction methods.
Zhu et al. [54] presented an image reconstruction framework called automated transform by manifold
approximation (AUTOMAP). AUTOMAP maps sensor domain to image domain via supervised learning
of sensor and image domain pairs, replacing the approach of sequential modular reconstruction chains
that may include discrete transforms such as Fourier or Hilbert, data interpolation techniques, nonlinear
optimization, and various filtering mechanisms.

He et al. [55] presented inverse Radon transform approximation (iRadonMAP) for trasferring randon
projections to an image. In addition to DL techniques, they utilized a sinusoidal back-projection layer and
a fully connected filtering layer to develop a Radon inversion strategy that is further enhanced by a
shared network structure.

3.1.3 Hybrid Method
The hybrid method mainly combines AI with iterative algorithms, which are inspired by the benefits of

iterative algorithms.

One idea of the hybrid method is based on the development of an iterative process into a network that
takes into consideration the geometric properties of the image. The learned experts’ assessment-based
reconstruction network (LEARN) is obtained by a data-driven training scheme based on iterative
reconstruction of experts [56]. In the manifold and graph integrative convolutional network (MAGIC),
the iterative scheme is unrolled and the network operates both on images and manifolds [57]. Alternating
direction method of multipliers (ADMM) is significantly better than the conventional iterative
reconstruction methods in recovering image details and improving low-contrast saliency [58].

Another hybrid method is iteratively using the trained networks. By rolling over proximal primal-dual
optimization methods to convolutional neural networks, the learned primal-dual hybrid gradient (PDHG)
algorithm accounts for a forward operator (possibly non-linear) in a deep neural network [59]. Using a
block-wise MBIR algorithm combining momentum and majorizer networks with regression networks,
Chun et al. present the first fast and convergent INN architecture, Momentum-Net [60]. In Deep BCD-
NET, CNNs are integrated into iterative image recovery [61].

Wu et al. [62] developed the ACID algorithm, which integrates analytic methods, compressed sensing,
iteration refinement and deep learning, in an effort to overcome the instabilities resulting from deep learning
in image reconstruction [63].

Table 4: AI reconstruction methods from the major vendors

Vendor Algorithm Remarks

Canon AiCE [64]
(Advanced
intelligent clear-IQ
engine)

Input low-dose images reconstructed, and output high-dose images which
have been reconstructed using Canon’s iterative reconstruction algorithm.

GE TrueFidelity™
[47]

GE developed a neural network that converts FBP images into images
reconstructed with the iterative Veo algorithm, one of MBIR.
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3.2 AI-Based Reconstruction for Commercial Use

There are at least two commercially available AI-based image reconstruction algorithms-Advanced
Intelligent Clear-IQ Engine (AiCE, Canon Medical Solutions) and TrueFidelity™ (GE Healthcare) as
shown in Table 4. The first commercialized deep learning reconstruction tool AiCE is based on DCNN
that trained on high-quality CT images collected under high radiation dose and then reconstructed low-
dose images with an MBIR algorithm [65]. In this way, training pairs of HIR images and high-dose
MBIR images help DCNN learns statistical features to distinguish signals from noise and artifacts during
the training process. And these learned features are incorporated into the DCNN for subsequent use on
the test data. As DCNN is trained with high-dose MBIR images, the experimental results indicate that
AiCE has better image reconstruction effects than MBIR, as well as a faster reconstruction speed [66].

In the TrueFidelity™ (GE Healthcare) algorithm, DCNN is used to feed highly noisy projection data into
its network and compare the output image with its low-noise counterpart by comparing a variety of attributes
such as image noise, low contrast detectability, etc. Both phantom and clinical studies show that the
TrueFidelity images greatly improved image quality, including low-dose imaging, high-resolution
imaging, and the evaluation of overweight individuals. Further, it offers the potential to lower the
radiation dose during CT acquisition procedures without sacrificing the quality of images. This
application is particularly relevant for screening examinations, pediatric imaging, and repeat exams [47].

3.3 Advantage of AI-Based Reconstruction

The advantages of AI reconstruction are lower noise, higher contrast spatial resolution, and better
detectability than other reconstruction technology.

The purpose of medical imaging phantoms is to ensure that methods of imaging the human body are
capable of working properly. These objects serve as stand-ins for human tissues in biomedical research.
Usually, phantom studies are first performed to verify hypothesis while patient studies are conducted to
determine if the theory could be realistic. Therefore, in this section, the advantages of AI-based
reconstruction method are shown from both phantom and patient studies.

(1) In Phantom studies, AI-based image reconstruction demonstrated improved performance over
alternative iterative reconstruction techniques for low-dose CT.

Racine et al. [67] compared FBP, HIR (ASiR-V, GE), and AI-based reconstruction (TrueFidelity™, GE)
at three different dose levels. Based on simulated abdominal lesions like appendicitis, colonic diverticulitis,
and calcium-containing urinary stones, they computed noise power spectra and target transfer functions. The
results demonstrate significant reductions in noise with AI-based reconstructions while maintaining noise
texture and enhancing overall spatial resolution. TrueFidelity™ outperformed ASiR-V for simulated
clinical results at different dose levels.

Higaki et al. [64] reconstructed Phantom images with FBP, HIR (AIDR3D, Canon), MBIR (FIRST,
Canon), and AI-based reconstruction (AiCE, Canon). Using the same CT scanner, the researchers scanned
a phantom containing cylindrical modules of different contrasts. The noise power spectrum (NPS), the
10% modulation-transfer function (MTF) level, and the model observer are used to evaluate noise
characterization, spatial resolution, and task-based detectability. On AI-based reconstruction images, all
aspects of image performance are better.

Greffier et al. [68] compared AI-based image reconstruction algorithm (TrueFidelity™, GE) with
convelutinal reconstruction method-FBP and HIR (ASiR-V, GE) at seven doses levels to assess the
impact on image quality and dose reduction. The results demostrated that noise magnitude was reduced,
spatial resolution was improved, and detectability was improved without affecting noise texture by
applying artificial intelligence-based image reconstruction algorithms.
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(2) In the patient studies, AI-based image reconstruction shows better image quality than other
reconstruction methods.

Akagi et al. [66] examined the clinical applicability of abdominal ultrahigh-resolution CT (U-HRCT)
exams reconstructed with an AI reconstruction (AiCE, Canon) in comparison to HIR (AIDR3D, Canon)
and MBIR (FIRST, Canon) in 46 patients. The standard deviation of attenuation was recorded as the
image noise, and the contrast-to-noise (CNR) was calculated. In the study, AI-based reconstruction
resulted in significantly lower image noise and higher CNR than HIR and MBIR.

Similarity, in the study by Tatsugami et al. [69], they used CNN to reconstruct images of 30 adult
patients who had undergone clinically-indicated CT coronary angiography. In this study, a comparison
was made between a HIR reconstruction and one using AI-based image reconstruction, and it was
determined that AI-based image reconstruction provided lower image noise, a better CNR, and better
image quality.

An analysis of 59 adult CT scans was conducted by Singh et al. [65] to assess the effects of AI-based
image reconstruction. The study compared image quality and clinically significant lesion detection between
AI-based reconstruction (AiCE, Canon) and IR images of submillisievert chest and abdomen CT images. The
study showed that 97% of low-dose abdominal CT scans and 95% to 100% of low-dose chest CT scans are
sufficient for the diagnostic interpretation of images obtained following the use of low-dose AiCE.

3.4 Limitations of AI-Based Reconstruction

While AI-based reconstruction methods produce better quality images than conventional reconstruction
methods such as analytical and iterative reconstruction, they do have certain limitations. The limitations
include: requiring large datasets compared to the conventional reconstruction method, unstable
performance, and weak generalizability [7]. In the following section, we discuss these shortages in detail.

3.4.1 Requirements of Large Datasets
Artificial intelligence especially deep learning methods are highly dependent on the number of datasets

to train the models. The quality and the number of training datasets have a huge impact on the reconstruction
result. The datasets should coverage multifold variations in patient size, shape, as well as attenuation and
margins of diffuse abnormalities detected in true clinical data and so on so that we can use these datasets
to cross-validate the AI-based reconstruction method. Usually, large datasets mean a large amount of
labels which is time-consuming and labor-intensive. Also, when using clinical image data in commercial
applications, there are legal and ethical issues.

3.4.2 Unstable Performance
The results of artificial intelligence aren’t always ideal, they are unstable. Antun et al. [63] demonstrated

the instability of deep learning image reconstruction usually occurs in three forms. The first form is that tiny
or almost undetectable perturbations may cause severe artefacts to the result of reconstruction. The second is
that deep learning method may omit some small structural changes such as tumor, which can result in severe
medical accidents because of the neglecting lesions. The last is the reduction in algorithm performance with
increasing samples, it is counterintuitive, but Antun et al. confirmed the conclusion by stability test with
algorithms and easy-to-use software.

3.4.3 Weak Generalizability
Generalizability may be a significant problem when applying a certain AI-based reconstruction method to

different datasets or scanners [70]. In Section 3.2, the AI-based reconstruction methods are only available for a
few CT scanners of a few commercial CT vendors. CT vendors are likely to create different AI-based
reconstruction methods based on their CT scanners, which may increase the complexity of CT image
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reconstruction. Although it is unrealistic to train a universal model which can work at any datasets and scanners,
we are supposed to find ways to increase the generalizability of the AI-based reconstruction method.

4 Conclusion

During this study, we reviewed the AI-based CT image reconstruction. As technology develops rapidly,
medical data continues to expand, and hardware equipment is becoming better and better, AI combined with
medical treatment is becoming more diversified. Due to the advantages of improving image quality and
reducing image noise, AI-based CT image reconstruction is increasingly popular compared to
conventional reconstruction method such as analytical and iterative reconstruction. Presently, some AI-
based reconstruction methods are availabele from some commercial CT vendors, formally used in clinical
application, but these reconstruction methods have issues such as the requirements of large datasets,
unstable performance, and weak generalizability. The application prospects of AI-based image
reconstruction are broad, but further research is needed. Since this paper comprehensively analyzed the
AI-based CT reconstruction from aspects of classification, commercial use, advantage and limitations, it
may be used as a reference point.
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