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Abstract: Directly applying the B-spline interpolation function to process plate
cams in a computer numerical control (CNC) system may produce verbose
tool-path codes and unsmooth trajectories. This paper is devoted to addressing
the problem of B-spline fitting for cam pitch curves. Considering that the B-spline
curve needs to meet the motion law of the follower to approximate the pitch
curve, we use the radial error to quantify the effects of the fitting B-spline curve
and the pitch curve. The problem thus boils down to solving a difficult global
optimization problem to find the numbers and positions of the control points or
data points of the B-spline curve such that the cumulative radial error between
the fitting curve and the original curve is minimized, and this problem is
attempted in this paper with a double deep Q-network (DDQN) reinforcement
learning (RL) algorithm with data points traceability. Specifically, the RL envir-
onment, actions set and current states set are designed to facilitate the search of
the data points, along with the design of the reward function and the initialization
of the neural network. The experimental results show that when the angle division
value of the actions set is fixed, the proposed algorithm can maximize the number
of data points of the B-spline curve, and accurately place these data points to the
right positions, with the minimum average of radial errors. Our work establishes
the theoretical foundation for studying spline fitting using the RL method.

Keywords: B-spline fitting; radial error; DDQN RL algorithm; global optimal
policy

1 Introduction

Plate cam is a significant part of mechanical design and manufacturing field [1]. It can not only help
virtually specify any desirable output function, but also be used to ensure a curved surface to generate the
output function of the follower in motion. The polynomial and simple harmonic motion (SHM)
expressions with third-order or higher continuity are widely applied for the cam design [2]. As the
computer numerical control (CNC) system does not come with a polynomial or SHM interpolation
function, it is essential to adopt a computer-aided manufacturing (CAM) tool to discretize the cam profile
into several linear segments presented as a sequence of G01 G-codes. Unfortunately, the tool-path code
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tends to be verbose and the G01 tool path does not go beyond G0 continuity, which may give rise to feed rate
and acceleration fluctuation and produce machinery vibration and unexpected slowdowns during the process
[3].

To smoothly match the CNC curves, and improve the quality of B-spline tool paths, Min et.al. [4]
proposed a method that takes into account the arc-length-based parameter setting, G2 continuity, and the
numerical measure. In another study, Jiang put forward a set of approaches for contour error prediction
and compensation on the basis of deep learning and reinforcement learning (RL) [5]. Under the chord
error constraint, Bi [6] presented a general, fast and robust B-spline fitting scheme for high-speed
interpolation of a micro-line tool path. In [7], a progressive and iterative approximation for least squares
(LSPIA) method is applied to avoid numerical instability, and lessen chord errors by applying stretching
energy terms. All the above studies adopted online or offline optimization approaches to smooth the B-
spline tool path locally or globally when the CNC is in operation. Actually, it is preferable to convert the
polynomial or SHM expression of the cam into a B-spline expression before CNC machining so that one
can directly use the spline interpolation function to operate the plate cam. To this end, this paper
concentrates on the B-spline fitting of the plate cam pitch curve.

For a B-spline curve with a fixed degree, it is a complex nonlinear optimization problem to deal with the
numbers and positions of knots or control points of the B-spline curve under the error constraints. While
fitting the complex heat treatment curves or noise signal curves with multiple data points, the fitting
performance is largely impacted by the appropriate numbers and positions of knots [8], and the methods
suggested in [9–11], were thus focused on obtaining the numbers and positions of optimized knots, with
little discussion on how to obtain these so-called appropriate number and position of data points.

Although one can create a B-spline curve that approximates the pitch curve by placing as many control
points as possible, too many control points will lead to lengthy spline parameters, which is almost the same as
using a large number of linear segments to approximate the curve. Instead, we intend to create a B-spline
curve that meets the error requirements with the smallest possible number of the control points at the
right positions. In practical terms, unless enough information about the shape of the original curve can be
obtained a priori can one identify the high-quality feature points on the pitch curve [12]. In a nutshell,
we can transform the problem of finding the number and position of control points into the problem of
finding the number and position of data points on the pitch curve, and use these data points to determine
the control points needed to construct the B-spline curve.

In light of the path planning of the unmanned surface vehicle (USV) [13], we shall be able to obtain the
relevant data points for the construction of the B-spline curve. In this case, a pitch curve is treated as an ideal
path, and an RL algorithm is applied to find an optimal policy that obtains the appropriate number and
position of the data points on the ideal path (i.e. the pitch curve). When the actions set is discrete and the
number of states set is limited, a Q-learning algorithm can be adopted to find the rough position of the
probe point [14]. Similarly, it is possible to use the visualization table of Q-learning to obtain the
optimum data points from the pitch curve. Note that accurately estimating the number and position of
data points of an unknown curve that can fit a B-spline is mathematically infeasible. Correspondingly, the
dimensions of the Q-table built from the numbers and positions of data points should be discrete in
nature, and the searching process of the data points should be made model-free. As the framework of
deep Q-network (DQN) is basically the same as that of Q-learning, and DQN adopts a neural network to
replace the Q-table in Q-learning, DQN is suitable for model-free control problems with discrete
variables. Furthermore, the double deep Q-network (DDQN) algorithm with model-free techniques is
found to enhance the robustness of curve matching than supervised machine learning algorithms [15].
Compared with the advanced actor-critic (A2C) algorithm of on-policy, the proximal policy optimization
(PPO) algorithm of off-policy and the deep deterministic policy gradient (DDPG) algorithm applicable to
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continuous and high dimensional action space, DDQN algorithm has a simple framework, fast convergence
speed, and the ability to deal with the optimal solution of discrete variables under uncertain dimensions. In
simple terms, the DDQN algorithm is more suitable for obtaining the optimal policy through the maximum
Q-value, and it is thus adopted as the B-spline fitting algorithm of the pitch curve, as proposed in this paper.

In this paper, we propose a DDQN algorithm with data points traceability to cope with the B-spline
fitting of the pitch curve. We take the pitch curve expression as the system environment of RL (see
Section 2.1), and the agent applies the actions set A which covers a 360-degree circle to search for
interpolation points (see Section 2.2). We then use these interpolation points as the data points on the B-
spline curve, and define column vector S which is composed of all the data points’ coordinates, the
number of data points and the termination criterion as the current state of the agent (see Section 2.3).
Meanwhile, a memory area Ttrack is applied to store the trajectory of data points obtained by every
episode iteration for the inverse calculation of B-spline knot vectors and control points. Section
2.4 studies the reward function which is the key part in an RL, and designs single-objective and double-
objective reward functions to reduce the radial error of spline fitting. In Section 2.5, we design a neural
network for DDQN algorithm, and use a small batch of training sets to train the initial network of
DDQN. At the end of Section 2.5, we summarize the detailed procedure of the algorithm put forth in this
paper. In Section 3, we select the 5th degree polynomial rise function of a cam for B-spline fitting test.
Through the iterative calculation, the control objective of constructing a B-spline curve satisfying the
fitting error with a small number of data points is realized. Finally, Section 4 summarizes the paper.

2 Modeling and Training Using RL

2.1 Environment Build

2.1.1 Pitch Curve Expression
To find the data points on the pitch curve, the pitch curve expression is inputted to the RL environment.

Let H ’ð Þ and S ’ð Þ represent the displacements of the follower under respective polynomial and SHM
expressions, where ’ is the cam shaft angle. The n-degree polynomial or SHM function expression of the
rise or fall segments adopted by conventional pitch curve is given by

H ’ð Þ ¼ D0 þ D1’þ D2’
2 þ � � � þ Dn’

n (1)

S ’ð Þ ¼ D0 þ D1 cos D2’ð Þ (2)

The geometry of plate cam is shown in Fig. 1. Here, ’ falls into the range of start angle ’0 and end angle
’e.The polynomial coefficients Dn can be obtained by the boundary conditions, and the SHM coefficients Dn

can be obtained by adopting the laws of SHM and cycloidal motion.

Figure 1: Geometry of plate cam
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2.1.2 B-spline Curve Expression
The expression of the B-spline curve is simple and has a favorable local modification. The local shape of

the curve can be modified by changing the position of the control points, which meets the fitting requirements
of the pitch curve. B-spline curve expression B uð Þ with parameter u as its variable and its basis function
Ni;p uð Þ are:
B uð Þ ¼

Xn

i¼0 Ni;p uð Þdiu 2 0; 1½ � (3)

Ni;p uð Þ ¼ u� Ui

Uiþp � Ui
Ni;p�1 uð Þ þ Uiþpþ1 � u

Uiþpþ1 � Uiþ1
Niþ1;p�1 uð Þ

Ni;0 uð Þ ¼ 1 ui � u, uiþ1
0 otherwise

�

set
0

0
¼ 0

8>>>>>><
>>>>>>:

(4)

In Eqs. (3) and (4), Ni;p uð Þ is the basis function, di is the control point, Ui is the knot and U is the knot
vector consisting of all the knots. The parameters of B-spline curve are selected as follows:

Number of knots: mþ 1;

Knot vector: U ¼ U0;U1; � � � ;Umð Þ;
B-spline degree: p = 3;

The number of basis functions Ni;p uð Þ and control points Pcon: nþ 1;

The number of data points Pin: n� 1.

2.1.3 B-Spline Curve Expression as the Inverse of B-spline Knot Vector and Control Points
To ensure that the B-spline curve and the adjacent curve are G1 continuous at the joint points, the first

and last data points on B-spline curve are included as the first and last points on the pitch curve. Next, the
clamp property of B-spline is applied to make the positions of the first and last control points coincide with
the positions of first and last data points. Correspondingly, the value of the first pþ 1 knots is set to be 0, and
the value of the last pþ 1 knots is 1. In accordance with the property of B-spline, i.e., m ¼ nþ pþ 1, the
number of interior knots is: mþ 1� 2 pþ 1ð Þ ¼ m� 2p� 1 ¼ nþ pþ 1� 2p� 1 ¼ n� p. The knot
vector U can be written as:

U ¼ 0 . . . 0|fflffl{zfflffl}
pþ1

Upþ1 . . .Um�p�1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
n�1

1 . . . 1|fflffl{zfflffl}
pþ1

� �
(5)

The non-uniform interior knots Upþ1 � � �Um�p�1 are calculated with reference to accumulative chord
length method given in Eq. (6) through Eq. (8).

lj ¼ Pjþ1Pj

�� �� j ¼ 0; 1 . . . n� 3 (6)

L ¼
Xn�3

j¼0 lj (7)

Uiþ1 ¼ Ui þ li�p�1
L

ði ¼ pþ 1; � � � ; nþ p� 3Þ (8)

Here, Pj is the data point, lj is the chord, and L is the total length of accumulative chord.

After the knot vector is determined, the control points of the B-spline can be solved by applying Eqs. (9)
and (10) [16]:
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d0 ¼ P0
1

g2 b2 c2
� � �
gn�2

� � �
bn�2 cn�2

1

2
6664

3
7775

d1
d2
:

dn�2
dn�1

2
6664

3
7775 ¼

D1

D2
:

Dn�2
Dn�1

2
6664

3
7775

dn ¼ Pn�2

8>>>>>>><
>>>>>>>:

(9)

Di ¼ Uiþ1 � Ui i ¼ 0; � � � ;m� 1ð Þ
gi ¼ Diþ2ð Þ2

Di þ Diþ1 þ Diþ2

bi ¼ Diþ2 Di þ Diþ1ð Þ
Di þ Diþ1 þ Diþ2

þ Diþ1 Diþ2 þ Diþ3ð Þ
Diþ1 þ Diþ2 þ Diþ3

ci ¼ Diþ1ð Þ2
Diþ1 þ Diþ2 þ Diþ3

T1 ¼ P0 � D3

3
P00

Dn�1 ¼ Pn�2 � Dnþ1
3

P0n�2
Di ¼ Diþ1 þ Diþ2ð ÞPi�1 i ¼ 2; � � � ; n� 2ð Þ

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

(10)

Here, d0 � � � dn are the control points. P00 and P0n�2 is the tangent vector of the first and last data point,
respectively, which ensures that the B-spline curve meets G1 continuity at the joint points.

In the next, we will show how to use the RL method to search for the data points with appropriate
numbers and positions.

2.2 Action Modeling

2.2.1 The Set of Actions
One iteration of RL is shown in Fig. 2. Here the agent starts from the initial point P0 of the pitch curve,

and adopts action at to seek the data points in the counter-clockwise direction.

Figure 2: Actions of agent
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In Fig. 2, We define the t-th action at of the agent as the linear motion at an angle hi with respect to the
horizontal line. We divide (0, π] into k segments, and define the actions set A as:

A ¼ a1; a2 � � � ak�1; akð Þ ¼ h1; h2 � � � hk�1; hkð Þ ¼ p
k
;
2p
k
� � � k � 1ð Þp

k
;p

� �
(11)

Here, hi is the angle between the search line and the horizontal line when the agent applies action at to
seek the data points. The agent may seek the data points along or opposite to the direction of the arrow in
Fig. 2. Hence, the actions set A ensures that the search range of agent is [0,2π]. The larger the value of k
in Eq. (11) is, the smaller the angle division value between adjacent actions is, and the more data points
the agent can obtain. In a simple term, we can adjust the maximum number of data points obtained by
the agent by varying the value of k.

2.2.2 Solving Data Points Using the Actions Set
We assume that in an iterative calculation, the agent selects an action at to perform a linear motion from

the current data point Pt in Fig. 2. If the straight line and the pitch curve have an intersection point Ptþ1, the
agent updates the Ptþ1 to the current data point. Eq. (12) is established by adopting the coordinates of points
Pt and Ptþ1 and the slope of the straight line connecting the two points. After replacing coordinates of the
data point in Eq. (12) with the projection correlation between the cam stroke and the cam shaft angle in
Eqs. (13) and (12) only contains parameters ’ that is still unknown. Next, the cam shaft angle and stroke
corresponding to the current data point can be dealt with from the deformed Eq. (12), and the coordinate
of the current data point Ptþ1 will be figured out by substituting ’tþ1 and H ’tþ1ð Þ into Eq. (13).

Ytþ1 � Yt ¼ tan
i � 180�

k

� �
Xtþ1 � Xtð Þ (12)

Xtþ1 ¼ H ’tþ1ð Þ cos ’tþ1 � ’0ð Þ
Ytþ1 ¼ H ’tþ1ð Þ sin ’tþ1 � ’0ð Þ

�
’e ’0; ’e½ � (13)

The two nonlinear equations, Eqs. (12) and (13), are solved with the agent applying action at from
actions set A to find intersection Ptþ1 and taking it as the current data point. The solution process requires
numerical iteration, and the following points shall be noted in the solution process:

(1) The cam shaft angle ’ should locate in the range ’0; ’e

	 

, and the data points exceeding this range

shall be removed. Next set Ptþ1 ¼ Pt, and terminate the search process;

(2) When the equations have no solution, set Ptþ1 ¼ Pt, and then terminate the search process;

(3) When the updated data point Ptþ1 is very close to the end point Pe of the pitch curve, the search
process terminates;

(4) When the action at obtains the intersection point Ptþ1 as exhibited in Fig. 3, since this type of
intersection point does not conform to counter-clockwise direction, taking this type of
intersection point as a data point will result in a singular structure of the B-spline curve. As a
result, we specify that when OPtþ1 < OPt, action at is an invalid action that cannot find a new
data point. We thus set Ptþ1 ¼ Pt, and end the search process.
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2.2.3 Greedy Strategy
Agent adopts a greedy strategy to select the action at in the current state from the actions set A. We define

the greedy strategy pg as:

pg atjSð Þ ¼
1

Nnow
0:2 at ¼ random Að Þ

1� 1

Nnow
0:2 at ¼

argmaxQ S; aið Þ
aiEA

8>><
>>: (14)

Here, Nnow is the current sequence number during RL iterative calculation. For instance, when
Nnow ¼ 300; 1

Nnow
0:2 ¼ 0:3196, the agent is in the exploration stage, and has a high probability to conduct

random exploration. When Nnow ¼ 18000, 1
Nnow

0:2 ¼ 0:1409, the agent is at the end of the iteration, and has

a small probability to select actions other than the maximum Q-value.

2.3 Current State Feature Model Build

2.3.1 The Set of States
When the agent adopts the actions defined in Section 2.2 to explore the environment defined in

Section 2.1, it should obtain as much current information as possible. We define the set of all states S as:

S ¼ x y f e½ �T (15)

Here, x, y are the coordinates of the current data point, and f is adopted to record the number of data
points in the current state of the agent. When a new data point is determined from the next state S0, we
set f 0 = f þ 1. Next, the agent updates the current state and continues to search the next data point;
otherwise, we set f 0 ¼ f , and terminate the state update. e in Eq. 15 is the termination criterion needed to
check whether the current data point is close enough to the end point of pitch curve. From Fig. 2, one
can see that e is calculated as below:

e ¼ 1 if PeO� PtO, 0:5
0 if PeO� PtO. 0:5

�
(16)

2.3.2 The Traceback of Data Points
Since the state vector S records the current state, when e ¼ 1, the coordinates of all the data points

obtained by the agent before the terminal state need to be obtained to find out the knot vector and the
control points. In each iteration, since the number of actions t in each episode is the same as the number

Figure 3: Intersection point that does not conform to counterclockwise direction
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of data points f in the current state vector St, the state vector St in Eq. (17) can be encoded using the parameter
t or f and mapped to Ttq, as given in Eq. (17).

Ttq ¼ xt yt ft et q½ �T (17)

In Eq. (17), Ttq is adopted to store the state vector St of the f -th acquisition data point in the q-th episode
iteration. We use a memory Ttrack to store the trajectories of all completed sequences Ttq for the agent to be
able to trace back all the calculated data points.

Due to the mapping correlation between the state vector S and the vector Ttq, each sample can be
recorded as St; at;Rt; Stþ1; qð Þ during the experience replay of the DDQN algorithm. Fig. 4 shows the
traceback process to with the help of memory Ttrack to find all the data points obtained by the agent in the
q-th episode at terminal state (etþ1 ¼ 1).

2.4 Reward Method

2.4.1 Reward Function for Obtaining the Maximum Number of Data Points
The reward function is of paramount importance to whether or not the agent can learn effective knowledge

from the environment and evolve correctly. Regardless whether it is designed as single objective or multi-
objective [17], a reward function must meet its control objectives to achieve an expected convergence effect
[18]. The control objective in this paper is to construct a spline curve satisfying the fitting error with fewer
data points. When the value of k in Eq. (11) is fixed, the angle division value between consecutive actions
is unchanged. Although there are many possible combinations for the data point sequences that the agent
may obtain, there is at least one combination that can obtain the maximum number of data points. In this
case, the fitted B-spline curve is closest to the pitch curve. In order to find the maximum number of data
points under a fixed angle division, the reward function R1 is given as:

R1 ¼

�10 if f1 ¼ 0

0 if
f1 ¼ 1

ftþ1 � ft ¼ 0

�

10 if
f1 ¼ 1

ftþ1 � ft ¼ 1

�

8>>>><
>>>>:

(18)

The reward function defined by Eq. (18) indicates that:

(1) If the agent fails to find the first data point, it will be given a penalty −10 which is the same order of
magnitude as the reward value. The larger penalty will encourage the agent to find the first data point in
the exploration to speed up the RL algorithm assurance that the agent finds the data points effectively;

(2) If the agent finds the data point after the first action, but cannot find the data point in its current action,
it will be rewarded with 0;

(3) When the agent finds the data point after the first action and also finds the new data point in current
action, it will be given 10 rewards to encourage the agent to obtain as many data points as possible.

Figure 4: Traceback of the data points through memory Ttrack
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The DDQN algorithm using R1 as the reward function will obtain the following convergence effects
after a multitude of iterative calculations: The agent starts from the initial point P0 of the pitch curve, and
employs the trained neural network to determine if the action a�1 can obtain the maximum Q-value in the
actions set A in the current state S0. Thus, the first data point P1 can be determined, and the current state
is updated to S1. Next, the agent continues to use the trained neural network to check the action a�2 that
obtains the maximum Q-value in the actions set A in the S1 state, and determines the second data point
P2. After that, the agent repeats the above operations until the current data point approaches the end point
Pe of the pitch curve. The above process is actually a generalized policy iteration (GPI) process using the
maximum Q-value. The sequence of actions ða�0; a�1 . . . a�nÞ together constitutes an optimal policy p�1 using
R1 as the reward function. The Bellman Equation for calculating the Q-value is expressed as:

Q St; atð Þ ¼ E Rt þ cQ Stþ1; atþ1ð Þ½ � (19)

where c 2 0; 1½ � is the discount factor, and E :½ � is the expectation operation. In this case, Q-value is the
mathematical expectation of the algebraic sum of the current reward and the discounted Q-value of the
subsequent state. Hence, p�1 is a global optimal policy, which ensures that the optimal action a�i applied
by each state transition of the agent is the action that can obtain the largest number of data points in the
actions set A in the future. The maximum number of data points thus obtained will ensure the minimum
fitting error.

2.4.2 Reward Function for Adjusting the Position of Data Points
Although the reward function R1 can encourage the agent to decrease the fitting error by increasing the

number of data points, the only reward R1 determines that the Q-value does not contain the data for
calculating the fitting error. When there are many sets of action sequences that can find the same number
of data points, the agent is unable to identify which set of action sequence really gives the smallest fitting
error. As a result, we need to ameliorate the reward function R1.

If the eccentricity E of the cam follower is zero, the polar radius q formed by connecting a straight line
between the rotation center of the cam and any point on the pitch curve equal to the displacement of the
follower, i.e. q ¼ H ’ð Þ. If the eccentricity of the cam follower is not zero, the polar radius is

q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ H ’ð Þp

. As a result, one can use the length value of the polar radius to describe the motion law
of the cam follower, and the error of the polar radius can reflect the displacement error of the cam
follower. In the plate cam with non-offset follower, we choose the radial error to study the fitting effect of
B-spline curve, and use it to construct the new reward function R2.

We replace the parameter u in Eqs. (3) and (4) as
’� ’0

’e � ’0
to convert B uð Þ into B ’ð Þ. Next, we define a

function F ’ð Þ shown in Eq. (20) as the cumulative radial error of pitch curve H ’ð Þ and spline curve B ’ð Þ ,
when e ¼ 1.

F ’ð Þ ¼
XN

j¼1 H ’j

� 
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B ’j

� 
2
xþB ’j

� 
2
y

q����
���� (20)

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B ’j

� 
2
xþB ’j

� 
2
y

q
is the polar radius of B-spline when the camshaft angle is ’j, H ’j

� 

is the polar

radius of the pitch curve at the same angular ’j, and N is the number of discrete sampling points on two
curves, and its value is set to be 1000. For smaller F ’ð Þ, the spline curve is closer to the pitch curve, and
the agent should get more positive rewards. Thus, we include F ’ð Þ to be the denominator of the new
reward function R2. In order to quantify the value R2 and make it match the output Q-value of the neural
network when there is just R1, to avoid the value of R2 being ignored or excessively amplified, a weight
coefficient k is introduced to define reward function R2 as below:
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R2 ¼ kN=F ’ð Þ if e ¼ 1
0 if e ¼ 0

�
(21)

After several experiments, the value of � is set to be 10.

2.5 The Neural Network of Agent

2.5.1 Neural Network Modeling
Since the number of discrete actions of an agent is limited, it is appropriate to choose an artificial neural

network (ANN) with a simple structure. Following the method to setting the number of hidden layers in [19]
and testing several dissimilar types of network structures and layers, we select the backward propagation
ANN that has an input layer, an output layer, and two hidden layers, as depicted in Fig. 5. The 5 inputs
xt yt ft et ID atð Þ½ �T are composed of the current state vector St and the sequence number ID atð Þ of the
action at. The output layer is the value of Q St; atð Þ. The sizes of the two hidden layers are set to be 20,
which can meet the Q-value calculation for 1000 states or more.

2.5.2 Neural Network Initialization
The initial value of neural network remarkably affects the control performance and training convergence

speed [20,21]. At the initial stage of agent searching the data points, if the Q-value estimated by the initial
neural network is far from the ideal Q-value, the RL algorithm needs more samples and longer training time
to converge.

After several experiments, we find that for constrained input and output variables of the initial neural
network, there is no noticeable correlation between them, the convergence speed of the algorithm can be
accelerated. Correspondingly, we apply only a small batch of training set to tune the initial parameters of
the neural network. In reference to Fig. 5, we define the input and output value range of the training set
as:

xtrain 2 H ’0ð Þ cos’0;H ’eð Þ cos’e½ �
ytrain 2 H ’0ð Þ sin’0;H ’eð Þ sin’e½ �
ftrain 2 0; 20½ �
etrain ¼ 0 or 1
ID atð Þtrain 2 1; k½ �
Qtrain 2 0; 0:01½ �

8>>>>><
>>>>>:

(22)

Here, ftrain; etrain; ID atð Þtrain are integers. xtrain and ytrain are the coordinates of any random point on the
pitch curve. ftrain is a guessed number of data points in current state. etrain is the termination flag. ID atð Þtrain is
the random sequence number of the action at. Qtrain is the output value of training set, and its interval is
0; 0:01½ �. In order to randomize the training set, a random number v within the range of 0; 1½ � is utilized to

Figure 5: The artificial neural network model
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define the value of training set as:

xtrain ¼ H v ’e � ’0ð Þ½ � cos ’0 þ ’e � ’0ð Þv½ �
ytrain ¼ H v ’e � ’0ð Þ½ � sin ’0 þ ’e � ’0ð Þv½ �
ftrain ¼ random 0; 20½ �
etrain ¼ 0 if H vð Þ � H 1ð Þj j. 0:5

1 if H uð Þ � H 1ð Þj j, 0:5

�
ID atð Þtrain ¼ random 1; k½ �
Qtrain ¼ 0:01v

8>>>>>>><
>>>>>>>:

(23)

We replace xt, yt, ft, et, ID atð Þ and Q St; atð Þ in Fig. 5 with xtrain, ytrain, ftrain, etrain, ID atð Þtrain and Qtrain in
the training set, respectively, so as to train the initial neural network for the DDQN algorithm. Since the
output Q-values of the training samples are randomly spread over the range of 0; 0:01½ �, they are much
smaller than the rewards R1 and R2. As a result, when the DDQN algorithm employs the initial neural
network and regards it as the predicted network and the target network, the estimation of Q-value is
noticeably affected by the rewards R1 and R1 at the initial stage of iterative calculation, and the agent can
converge towards the ideal result at a faster speed.

In summary, the DDQN algorithm with data points trajectory traceback function put forward in this
paper is detailed in Algorithm 1.

Algorithm 1 DDQN algorithm with data point trajectory traceback function for B-spline fitting.

1: Initialize replay memory D to capacity ND;

2: Initialize action-value function Q with random weights x;

3: Initialize target action-value function Q̂ with weights x�  x;

4: for 1 q = 1, Ntotal do

5: Set the initial state as:

S0 ¼ x0; y0; f0; e0½ �T ¼ P0 xð Þ;P0 yð Þ; 0; 0½ �T ;
6: for 2 t = 0, T do

7: Following a greedy strategy, select an action at;

8: Search for data point Ptþ1 xtþ1; ytþ1ð Þ;
Set

xtþ1 ¼ Xtþ1 the solution of Eqs: ð12Þ and ð13Þ
Xt Eqs: ð12Þ and ð13Þ have no solution

�
;

ytþ1 ¼ Ytþ1 the solution of Eqs: ð12Þ and ð13Þ
Yt Eqs: ð12Þ and ð13Þ have no solution

�
;

ftþ1 ¼ t þ 1 if Eqs: ð12Þ and ð13Þ have solution
t otherwise

�
;

etþ1 ¼ 1 if PeO� Ptþ1O, 0:5
0 if PeO� Ptþ1O. 0:5

�
;

Stþ1 ¼ xtþ1 ytþ1 ftþ1 etþ1½ �T ;
Ttþ1q ¼ xtþ1 ytþ1 ftþ1 etþ1 q½ �T ;

9: Store Ttþ1q in Ttrack ;

(Continued)
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10: Set

Rt ¼ R1 ¼

�10 if f1 ¼ 0

0 if
f1 ¼ 1

ftþ1 � ft ¼ 0

�

10 if
f1 ¼ 1

ftþ1 � ft ¼ 1

�

8>>>><
>>>>:

;

11: Store transition St; at;Rt; Stþ1; qð Þ in D;

12: Sample random mini-batch of transition Sj; aj;Rj; Sjþ1; q
� 


from D;

13: Suppose Sjþ1 ¼ xjþ1 yjþ1 fjþ1 ejþ1
	 
T

;

14: if ejþ1 = 1

Check the data points Pin ¼ P1 . . .Ptþ1½ � from Ttrack according to the value of q;

Complete the data point Pin ¼ P0 P1 . . .Ptþ1 Pe½ �;
Calculate the knot vector and control points by Eqs. (5)~(10);

Calculate R2 by Eqs. (20) and (21);

Rj = R1 þ R2;

Else

Rj = R1;

15: Set

yj ¼ Rj if episode terminates At step jþ 1
Rj þ ymax Q̂ Sjþ1; a0; x�

� 

otherwise

�
;

16: Perform a gradient descent step on

yj � Q Sj; aj;x
� 
� 
2

with respect to the network parameters x;

17: For every C steps reset x� ¼ x;

18: if xtþ1 ¼ Xt break;

else if etþ1=1 break;

19: end for 2

20: end for 1

3 Experiment Results

3.1 R1 Reward

We select the 5th degree polynomial rise function of a plate cam as the experiment curve of B-spline
fitting. The basic parameters of the cam are: base circle radius rb ¼ 17mm, total rise H ¼ 10mm,
eccentricity of cam-follower e ¼ 0, start angle ’0 ¼ 0�, end angle ’e ¼ 160�, the tangent vectors of the
first and last data point are P

0
0 ¼ 0; 1ð Þ and P

0
e ¼ �0:9397; 0:3424ð Þ.

Algorithm 1 (continued)
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And the other boundary conditions of the cam are:

dH

d’
j’¼’0

¼ 0

dH

d’
j’¼’s

¼ 0

d2H

d’2
j’¼’0

¼ 0

d2H

d’2
j’¼’s

¼ 0

8>>>>>>>>>><
>>>>>>>>>>:

(24)

By substituting the basic parameters and boundary conditions of the cam into Eq. (1), the pitch curve
H ’ð Þ can be solved as:

H ’ð Þ ¼ 17þ 100
9

8p
’� 1

� �3

� 150
9

8p
’� 1

� �4

þ 60
9

8p
’� 1

� �5

(25)

The rise segment of pitch curve is shown in Fig. 6.

The actions set A is established by applying the adjacent action angle division of 3°, i.e., k ¼ 60. The
maximum number T of data points in Algorithm 1 is 20. The discount factor c=0.9. The number of neural
network initialization training samples is 400, and the online neural network training set contains
400 samples. The target neural network update frequency is 1200. The memory D capacity for storing
mini-batch of transition St; at;Rt; Stþ1; qð Þ is 400. The memory Ttrack capacity for storing all complete
sequences Ttq is the same with the total number of RL iterative calculations Ntotal, both of which are set
to be 20,000.

When R1 is utilized as the sole reward function, the 14th step of Algorithm 1 is no longer needed. The
number of data points obtained in each episode is shown in Fig. 7. In the first 10000 episodes shown in Fig. 7,
the agent can obtain 6 data points as the maximum. Since 14000-th episode, the agent can obtain more than
8 data points. At the 19870-th episode, the agent obtains the 12 data points, which is the largest number in
this experiment. As demonstrated by the iterative calculation process, the Algorithm 1 can train an ideal
neural network to guide the agent to obtain more data points as the interaction progresses.

The relationships between the sequence numbers of all actions and the predicted values Q S;Að Þ of the
neural network during the first four state transitions are plotted in Fig. 8. Table 1 tabulates the maximum
output values Q S;Að Þ in Fig. 8 and the sequence numbers of optimal action ID a�ð Þ, the coordinates of
the data points obtained by applying optimal actions a� and the maximum values Q S;Að ÞL.

Figure 6: The pitch curve of the plate cam of the rise segment
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From Table 1, one can see that going from state S0 to state S4, the predicted values Q S;Að Þ of the neural
network are very close to the training sample label values Q S;Að ÞL, and the sequence numbers of optimal
action corresponding to the maximums of these two values in each state are identical. This indicates that
the neural network trained by Algorithm 1 has good fitting effect and has the ability to obtain the optimal
policy by predicting the maximum Q-value. Since only R1 was adopted as the reward function, the
optimal policy p�1 is geared towards obtaining the most data points. For instance, from S0 state to S1 state,
the neural network predicts that the maximum Q-value is 55.894, and the corresponding sequence
number of optimal action is 34. This indicates that when the agent moves along the straight line with an
angle of 102° (i.e. 34 � 3�)with the horizontal line from the initial point, the agent will definitely obtain
the most data points in the future. The above process also demonstrates that the optimal policy obtained
by the maximum Q-value is a global optimization policy. We tabulate the optimal policy p�1 and the
coordinates of all the data points obtained by this policy as Table 2.

Figure 7: The number of data points obtained in each episode

Figure 8: The predicted values Q S;Að Þ by neural network during the first four state transitions

Table 1: The maximum Q-value and its optimal action during the first four state transitions

S0	S1 S1	S2 S2	S3 S3	S4

maxQ S;Að Þ 55.894 55.891 55.304 49.893

ID a�ð Þ 34 39 42 45

xtþ1 15.138 12.843 10.846 7.859

ytþ1 8.762 13.265 16.014 19.001

maxQ S;Að ÞL 59.787 59.765 55.082 49.714
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With all the data points P0 � � �P12 in Table 2, one can build the knot vector , the basis functions Ni;p uð Þ
and the control points Pcon, after which the B-spline curve expression B uð Þ can be obtained. We plot B uð Þ
together with H ’ð Þ in Fig. 9a, and then have, B uð Þ converted to B ’ð Þ. In this case,B ’ð Þ and H ’ð Þ with
respect to cam shaft angle ’ are plotted in Fig. 9b.

From Figs. 9a and 9b, one can see the followings.

When ’ is within the range of 0°∼20°, due to the long distance between the first data point P1 of B-
spline curve and its initial point P0, the value of B ’ð Þ is not only smaller than the value of H ’ð Þ, but
also exhibits a downward trend, which does not correspond with the motion law of increasing
displacement of the cam follower in the rise segment. After sampling, the maximum radial error between
these two curves in this range is 0.221 mm.

Table 2: The optimal policy p�1 with only R1 as the reward

t ID a�ð Þ maxQ S;Að Þe xtþ1 ytþ1

0 0 0 17 0

1 34 55.894 15.138 8.761

2 39 55.891 12.843 13.265

3 42 55.304 10.846 16.014

4 45 49.893 7.859 19.001

5 48 44.238 5.522 20.699

6 51 38.073 2.067 22.459

7 54 33.231 −0.498 23.293

8 57 23.984 −4.195 23.879

9 60 17.878 −6.821 23.879

10 7 17.278 −18.049 19.569

11 16 2.333 −23.02 14.047

12 0 0 −25.372 9.235

Figure 9: B-spline fitting effect of pitch curve
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When ’ is within the range of 20°∼110°, the B-spline curve has 9 data points and is closely distributed.
The B-spline curve nearly perfectly match the pitch curve, with the maximum radial error between these two
curves less than 0.002 mm.

When ’ is within the range of 110°∼160°, the B-spline curve has no more than three data points, and the
distribution is non-uniform. Compared with the pitch curve, the B-spline curve has a fluctuation.

Through sampling calculation, when only R1 was applied as the reward function, the average radial error
between the B-spline curve obtained by the optimal policy p�1 and the pitch curve tends to be large at
0.183 mm. This B-spline curve does not quite conform to the motion law of the cam follower and the
radial profile fluctuation. As a consequence, the positions of these data points need to be further optimized.

3.2 R1+R2 Reward

To further lessen the fitting error, we take R2 together with R1 as the reward function to optimize the
positions of data points. The iterative calculation in this section adopts the neural network trained in
Section 3.1. In this case, steps 2 and 3 of Algorithm 1 should be removed from the iterative process. The
number of data points obtained in each episode is shown in Fig. 10.

As illustrated in Fig. 10, the agent can find 9 data points in the 1000-th episode. Starting from 4000th-
episode, the agent can obtain 10 data points several times and find the most 12 data points in 8239th episode.
After 10000 episodes, the agent can stably obtain more than 10 data points which indicates that the algorithm
has converged. The convergence speed of RL learning in this section is faster than that in Section 3.1. This is
because the neural network adopted in Section 3.1 only went though a basic training. At the beginning of
iterative calculation, the agent clearly knows which action can obtain more data points, which contributes
to the reduction of the number of blind exploration and invalid exploration. Since the reward R2 is added,
Algorithm 1 now is getting additional, new training samples. After the neural network parameters are
recalculated, we obtain the new optimal policy p�2, and present it in Table 3.

Figure 10: The number of data points obtained in each episode

Table 3: The optimal policy p�2 with R1 þ R2 as the reward

t ID a�ð Þ maxQ S;Að Þe P
0
x P

0
y

0 0 0 17 0

1 32 61.031 16.582 3.981

2 23 59.027 12.843 13.265

3 42 58.829 10.846 16.014

4 45 52.928 7.859 19.001
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By comparing the optimal policies presented in Tables 3 and 2, one can see that the maximum number of
data points obtained by p�1 and p�2 are the same, but the optimal actions a�1, a

�
2, a

�
7, a

�
8, a

�
9, a

�
10 and a�11 are

different. The Q-value in Table 3 is larger than that in Table 2 due to the addition of reward function R2.
The ameliorated B-spline curve B uð Þ is constructed by the data points in Table 3. We plot the new B uð Þ
together with H ’ð Þ in Fig. 11a. Once B uð Þ is converted to B ’ð Þ, we plot the rules of B ’ð Þ and H ’ð Þ vs.
cam shaft angle ’ in Fig. 11b.

The data points in Fig. 11 are more evenly distributed than those in Fig. 9, and the radial error in Fig. 11
is further reduced. When ’ is within the range of 0°∼20°, the B-spline curve matches the pitch curve. When
’ is within the range of 20�n	40�, although the value of B ’ð Þ is slightly larger than H ’ð Þ, it conforms to the
motion law of increasing displacement of the cam follower in the rise segment. When ’ is within the range of
40°∼140°, the B-spline curve has 8 data points, and they are uniformly distributed. The B-spline curve
completely perfectly matches the pitch curve. The maximum radial error between these two curves of this
range is less than 0.002 mm. When ’ is within the range of 140°∼160°, the B-spline has three data
points. Compared with the fitting results in Fig. 9, the profile fluctuation is substantially suppressed, with,
the average radial error between the B-spline curve and the pitch curve is only 0.012 mm. This clearly
indicates that after adding R2, the Algorithm 1 can not only obtain the most data points, but also adjust
the positions of these data points, with the minimal radial error between the B-spline curve constructed
from these data points and the pitch curve.

Table 3 (continued)

t ID a�ð Þ maxQ S;Að Þe P
0
x P

0
y

5 48 50.269 5.522 20.699

6 51 45.261 2.067 22.459

7 55 39.799 −2.61 23.713

8 60 34.755 −8.403 23.713

9 6 29.881 −14.914 21.597

10 12 20.221 −19.748 18.084

11 17 20.167 −23.029 14.033

12 0 0 −25.372 9.235

Figure 11: B-spline fitting effect of pitch curve
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As experimentally constructed in Section 4.2, the B-spline curve satisfies the motion law of the cam
follower. The average radial error between the B-spline curve and the pitch curve is 0.012 mm, which is
the smallest fitting error obtained under the angular division of 3�. This value conforms with the F
tolerance level of ISO2786. To further suppress the fitting error, we can use a smaller angle division
value in the search of data points. Tab. 4 lists the comparison of B-spline fitting results using Algorithm 1
under three angle division values.

From Table 4, one can see that the smaller the angle division value is, the more data points obtained by
the optimal policy. As a result, the fitting error of the B-spline curve gets even smaller a cost of longer
computation time.

4 Conclusion

This paper presented an improved DDQN algorithm for fitting cam pitch curve with B-spline curve. In
order to run and train the algorithm better, the environment modeling, actions set, states set, reward method
and neural network were discussed in detail. This algorithm was found to automatically obtain the optimal
numbers and positions of the data points on the pitch curve, and the fitting error of the B-spline curve
constructed from these data points conform with the tolerance requirement. Specific contributions and
discoveries were summarized below:

1. The theoretical basis of RL method for the B-spline fitting was established, and it was proved to be
feasible to use RL algorithm to search for the optimal data points for curve fitting;

2. With reference to the path planning method in USV, the discrete actions set was designed to search for
the optimal data points on the ideal path (the pitch curve in our case). The maximum number of data
points can be controlled by scaling the angle division value of the actions set;

3. The DDQN algorithm with data point traceability was designed to accurately calculate the fitting error
of the B-spline curve. The initial neural network of the proposed DDQN algorithm could be trained by
a small batch of samples of which input values are randomized and output value is much smaller than
the reward, to accelerate the convergence speed.

4. Two kinds of reward functions were designed in this paper. When the algorithm adopted the single
objective reward function of obtaining data points, the optimal policy maximized nothing but the
number of data points. When the algorithm adopted the double objective reward function of
obtaining data points and calculating radial error, the optimal policy can maximize the number of
data points and at the same time automatically adjust the position of data points to minimize the
radial error.

Funding Statement: This research work is supported by Fujian Province Nature Science Foundation under
Grant No. 2018J01553.

Table 4: Comparison of B-spline fitting results using Algorithm 1 under three angle division values

Division
value(deg)

The total number
of data points

Max
radial errors

Average
radial errors

Calculation
time (min)

4� 10 0.241 mm 0.034 mm 30

3� 12 0.158 mm 0.012 mm 42

2� 16 0.037 mm 0.004 mm 64
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