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Abstract: Lithium-ion batteries are commonly used in electric vehicles, mobile
phones, and laptops. These batteries demonstrate several advantages, such as
environmental friendliness, high energy density, and long life. However, battery
overcharging and overdischarging may occur if the batteries are not monitored
continuously. Overcharging causes fire and explosion casualties, and overdischar-
ging causes a reduction in the battery capacity and life. In addition, the internal
resistance of such batteries varies depending on their external temperature, elec-
trolyte, cathode material, and other factors; the capacity of the batteries decreases
with temperature. In this study, we develop a method for estimating the state of
charge (SOC) using a neural network model that is best suited to the external tem-
perature of such batteries based on their characteristics. During our simulation, we
acquired data at temperatures of 25°C, 30°C, 35°C, and 40°C. Based on the tem-
perature parameters, the voltage, current, and time parameters were obtained, and
six cycles of the parameters based on the temperature were used for the experi-
ment. Experimental data to verify the proposed method were obtained through
a discharge experiment conducted using a vehicle driving simulator. The experi-
mental data were provided as inputs to three types of neural network models: mul-
tilayer neural network (MNN), long short-term memory (LSTM), and gated
recurrent unit (GRU). The neural network models were trained and optimized
for the specific temperatures measured during the experiment, and the SOC
was estimated by selecting the most suitable model for each temperature. The
experimental results revealed that the mean absolute errors of the MNN, LSTM,
and GRU using the proposed method were 2.17%, 2.19%, and 2.15%, respec-
tively, which are better than those of the conventional method (4.47%, 4.60%,
and 4.40%). Finally, SOC estimation based on GRU using the proposed method
was found to be 2.15%, which was the most accurate.

Keywords: Lithium-ion battery; state of charge; multilayer neural network; long
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GRU Gated recurrent unit
SOC State of charge
MAE Mean absolute error
ReLU Rectified linear unit
RMSprop Root mean square propagation
RNN Recurrent neural network
HWFET Highway fuel economy test
MSE Mean squared error

1 Introduction

Currently, lithium-ion batteries are the most widely used batteries, and they are environmentally friendly
and possess a high energy density, high charge and discharge efficiency, and long battery life. They serve as
primary energy storage systems for a wide variety of devices, such as electric vehicles, mobile phones,
laptops, and power storage systems [1–3]. However, overcharging and overdischarging may occur if
lithium-ion batteries are not continuously monitored. Overcharging may result in a fire or explosion,
whereas overdischarging can cause an increase in the internal resistance of the batteries, which may result
in a decrease in battery capacity and life [4–5]. In addition, the internal resistance, which shortens the life
of a lithium-ion battery, varies depending on the temperature. As the temperature decreases, the internal
resistance increases, thereby decreasing battery capacity [6]. The characteristics of the battery vary with
temperature, and if the acquired data are used without considering the temperature at the time of data
acquisition, the state of charge (SOC) estimation can be inaccurate. Therefore, to improve the accuracy of
SOC estimation, it is necessary to classify the data according to appropriate temperatures, and it is
important to accurately estimate the SOC of the battery using the classified data. The SOC is an
important concept that represents the remaining capacity of a battery. When the SOC is 100%, the battery
is completely charged, and when the SOC is 0%, the battery is completely discharged. Thus,
overcharging and overdischarging can be prevented by accurately estimating the SOC of the battery,
thereby preventing battery damage and accidents.

SOC estimation methods consist of model-based and data-driven approaches [7–16]. Model-based
methods create a model suitable for the data and estimate the SOC using the generated model; they can
estimate the SOC with high accuracy. However, users must possess specialized battery knowledge to
create models that fit their battery characteristics. In addition, the designing of such models is time-
consuming. Model-based methods include the equivalent circuit model, electrochemical model, and the
Kalman filter. In contrast, data-driven methods do not require model design; therefore, they do not require
specialized knowledge of the battery characteristics. In addition, the development time for data-driven
methods is much shorter than that for model-based methods. However, data-driven methods require a
large amount of data, and such methods include machine learning.

In this study, we develop a model using the temperature measured during a discharge experiment and
select a relevant model to estimate the SOC of a battery. The discharge experiment was conducted using
a vehicle driving simulator that simulated the output of an actual vehicle. The vehicle driving scenario
applied to the simulator employed the highway fuel economy test (HWFET) cycle, which is typically
used to measure fuel efficiency in the United States. The SOC estimation model used a multilayer neural
network (MNN), long short-term memory (LSTM), and gated recurrent unit (GRU). The MNN model is
used as a popular model. Because the data used in this study are time-series data, we selected the LSTM.
In addition, the dataset is small; therefore, we select the GRU, which is advantageous for small datasets.
The experimental procedure was as follows: First, the data acquired by the vehicle driving simulator are
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classified based on the measured temperature and learned using each model. Subsequently, the SOC is
estimated using the model, and the results are transferred to the user.

The remainder of this paper is organized as follows. In Section 2, the proposed method is described.
Sections 3 and 4 discuss the vehicle driving simulator and the models used for learning, respectively.
Section 5 describes the experimental process and results. Finally, Section 6 presents the conclusions of
this study.

2 Proposed SOC Estimation Method

2.1 Definition of the SOC

The SOC represents the capacity remaining in a battery, which is an important measure of the battery
state [17]. In this study, the SOC was calculated using Coulomb counting to confirm the error and results
of the proposed SOC estimation method. Notably, Coulomb counting is expressed as follows:

SOC tð Þ ¼ SOC 0ð Þ �
Z t

0

I tð Þ
Cn

dt (1)

where SOC(0) denotes the initial measured capacity of the battery (%), Cn denotes the rated capacity of the
battery (Ah), I(t) denotes the current at time t(A), and SOC(t) denotes the SOC at time t (%).

2.2 Battery SOC Estimation Method

This paper develops a method for estimating the SOC by selecting different models depending on the
measured temperature. Fig. 1 illustrates the proposed SOC estimation method.

The proposed method classifies data depending on the temperature at which the simulator is operated
and learns the data using each temperature model. Herein, 25°C, 30°C, 35°C, and 40°C models were
generated for each temperature dataset, and the model that best suited the temperature was selected to
estimate the SOC depending on the measured temperature. The operational process of the proposed
method was as follows: first, battery data are acquired using a vehicle driving simulator. During the
simulation, the acquired data are fed into a model that is well suited to the measured temperature. Next,
the SOC is estimated using the model, and the results are transferred to the user.

Figure 1: Proposed SOC estimation method
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3 Vehicle Driving Simulator

This paper develops a vehicle driving simulator to estimate the SOC by simulating the output of an
actual vehicle. The configuration of the vehicle driving simulator is illustrated in Fig. 2.

The simulator consisted of two direct current (DC) motors, each with a rated voltage of 12 V and
6,000 rpm speed, an MDD3A motor driver, a DC converter, an Arduino Pro Mini Module, a remote-
control car frame, four batteries, and four tires. Table 1 lists these items and their specifications. Each
battery has a nominal voltage of 3.7 V and a rated capacity of 2,000 mAh. The four batteries activate the
motors through a DC converter in the simulation.

The voltage supplied by the four batteries connected in series is adjusted to 12 V using a DC converter,
and it is used as the input. The output of the simulator represents the Hyundai Avante Sports AD 1.6 model
with 255/40/18 tires driving in the HWFET cycle. The HWFET is a highway driving scenario defined by the
United States Environmental Protection Agency to measure the fuel efficiency of a vehicle. The motor output
simulates the third-gear ratio of the model and tires, and the speed of the model is controlled by the Arduino
and the motor driver. The HWFET is shown in Fig. 3.

Figure 2: Configuration of the vehicle driving simulator

Table 1: Specifications of items used for the vehicle driving simulator

Item Motor driver Micro-controller Motor Battery

Specifications MDD3A Arduino Pro Mini DC 12 V, 6,000 rpm, 0.15 A 2,000 mAh, 3.7 V

Figure 3: Highway fuel economy test cycle
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4 Deep Neural Network Algorithms

4.1 MNN

The MNN is a neural network that adds one or more hidden layers to a single perceptron. As the
perceptron cannot classify nonlinearly, an MNN can be used to solve the problems presented by the
perceptron [18]. The structure of the MNN is illustrated in Fig. 4.

The MNN uses feedforward and backpropagation; it calculates the output through the feedforward
mechanism and corrects the error through backpropagation. For the SOC estimation model, the voltage,
current, temperature, and time data are used as the input layer, and the SOC is the output obtained from
the output layer. The rectified linear unit (ReLU) function is used as the activation function in the MNN.
Compared with the sigmoid function, the ReLU function demonstrates the advantages of possessing a
nonvanishing gradient and fast convergence [19]. The equation for the ReLU function is defined as
follows:

f xð Þ ¼ x; for x > 0
0; otherwise

�
(2)

Adam is used as the optimizer for the MNN. Adam is a first-order gradient-based optimization algorithm
that combines momentum and root mean squared propagation (RMSprop). It is easy to implement and
efficient because it requires only a small amount of computation [20]. The equations for Adam are as
follows.

m0 ¼ 0; v0 ¼ 0; t ¼ 0 (3)

gt ¼ rhft ht�1ð Þ (4)

mt ¼ b1mt�1 þ 1� b1ð Þgt (5)

vt ¼ b2vt�1 þ 1� b2ð Þg2t (6)

bmt ¼ mt

1� bt1
� � ; bvt ¼ vt

1� bt2
� � (7)

ht ¼ ht�1 � a
bmtffiffiffiffibvtp þ E

(8)

Figure 4: Structure of the MNN
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Here, m0; v0; and t are initialized to 0 gt denotes the gradient of the network, mt denotes the 1
st moment

vector, vt denotes the 2
nd moment vector, and b1 and b2 denote the exponential decay rates for the moment

estimates, and they assume the following values: b1 ¼ 0:9 and b2 ¼ 0:999. At the beginning of the learning
process, mt and vt are close to 0. A bias correction is applied to m̂ and v̂ to render them unbiased.
Additionally, herein, ht denotes the update of the weight, and a denotes the learning rate. The value of a
was 0.001, and the value of e was 10�8.

4.2 LSTM

The LSTM is a recurrent neural network (RNN) in which past outputs affect current input data [21].
RNNs demonstrate the advantage of predicting time-series data. However, the gradient may vanish as
learning time increases, which presents a problem. The LSTM solves the vanishing gradient problem by
adding a cell state and three different gates (forget, input, and output gates) to the RNN; it solves the
problems of the RNN by using a cell to determine whether the data from past and current cells are to be
used. The structure of the LSTM is shown in Fig. 5.

The equations of an LSTM are as follows.

Step 1) Forget gate

ft ¼ r wf � Ht�1; xt½ �� �þ bf (9)

Step 2) Input gate

it ¼ r i � Ht�1; xt½ �ð Þ þ bi (10)

~Ct ¼ tanh wC � Ht�1; xt½ �ð Þ þ bC (11)

Step 3. Cell state update

Ct ¼ ft � Ct�1 þ it � ~Ct (12)

Step 4) Output gate

Ot ¼ r wO � Ht�1; xt½ �ð Þ þ bO (13)

Ht ¼ Ot � tanh Ctð Þ (14)

Figure 5: Structure of an LSTM
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where Ht�1 denotes the data of the previous cell, xt denotes the current input data, w denotes the weight, b
denotes the bias, ft denotes the forget gate value, eCt denotes the value of the previous cell calculated using
tanh, Ct denotes the updated value of the cell state,Ot denotes the value of the output gate, andHt denotes the
output.

For the LSTMmodel employed for SOC estimation, Adam was used as the optimizer, and tanh was used
as the activation function. Tanh performs better than the sigmoid function with respect to the vanishing
gradient problem, whereas when using the ReLU in the LSTM, the data diverge as the output value of
the previous cell increases. The tanh function is expressed as follows:

tanh xð Þ ¼ 1� e�x

1þ e�x
(15)

4.3 GRU

The GRU is an RNN that simplifies the LSTM. The LSTM network suffers from two issues: vanishing
gradient and a long learning time owing to its complex structure [22]. The GRU addresses these problems by
determining the amount of data to be used from the previous cell using the update and reset gates. In addition,
the GRU performs well even when using small datasets [23]. The GRU structure is shown in Fig. 6.

The equations of a GRU are as follows.

Step 1) Reset gate

rt ¼ r W rð Þxt þ U rð Þht�1

� �
; (16)

Step 2) Update gate

zt ¼ r W zð Þxt þ U zð Þht�1

� �
(17)

Step 3) Candidate hidden state

eht ¼ tanh W hð Þxt þ rt � U hð Þht�1

� �
(18)

Figure 6: Structure of a GRU
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Step 4) Hidden state/Output

ht ¼ zt � eht þ 1� ztð Þ � ht�1 (19)

where rt denotes the value of the reset gate, zt denotes the value of the update gate, W and U denote the
weights, ht�1 denotes the output of the previous cell, xt denotes the input data of the current cell, eht
denotes the candidate value of the hidden state, and ht denotes the output. The GRU represents ht by
selecting the necessary parts of eht and ht�1.

5 Experimental Process and Results

5.1 Experimental Process

The experimental procedure followed in this study is as follows. First, the four lithium-ion batteries used
in the experiment are completely charged at a constant voltage of 4.2 V. The batteries used in this study are
lithium-ion polymer batteries. These are full-cell batteries. The cathode is Li(NiCoMn)O2, and the anode is
graphite. The capacity corresponding to a completely charged state was defined as 100% SOC. The batteries
are stabilized for 1 h after charging was completed. Next, these batteries are connected in series and set to
produce a voltage output of 12 V using a DC converter. Finally, the external temperature of the batteries
is set using a thermostat, and a discharge experiment is conducted using the vehicle driving simulator.

The discharge experiment continues until the motor of the vehicle driving simulator stopped, and the
data acquired during the experiment were defined as one cycle of battery data. The data acquired
constitutes the voltage, current, temperature, and time datasets. Battery data from six cycles are used for
the experiment depending on the temperature set during the operation of the vehicle driving simulator.
The acquired data are used as inputs for the MNN, LSTM, and GRU, and the SOC is estimated using the
generated models. The SOC estimation model is created using TensorFlow and Keras based on Python.

5.2 MNN Model for SOC Prediction

This section describes the MNN model generated for SOC estimation. The input parameters acquired
during the discharge experiment are voltage, current, time, and external battery temperature. Five voltage
datasets, five current datasets, one time dataset, and one temperature dataset are used as inputs to the
MNN. The structure of the MNN is 12-256-128-1, and it consists of an input layer, two hidden layers,
and one output layer. The number of epochs was 15,000. The ReLU function is used as the activation
function, and Adam is used as the optimizer of the MNN. Learning is considered complete when the
mean squared error (MSE) is less than 10−6. The structure of the MNN for SOC estimation is illustrated
in Fig. 7, and a loss graph of the proposed model is shown in Fig. 8.

In Figs. 7, 9, and 10, t denotes the time dataset, V denotes the voltage data, I denotes the current data, and
T denotes the temperature data. In Fig. 8, train MSE denotes the training data MSE, and test MSE denotes the
test data MSE.

5.3 LSTM Model for SOC Prediction

Next, we describe the LSTM model used to estimate the SOC. The inputs are the same as those used for
the MNN. The structure of the LSTM for SOC estimation is 12-256-128-64-1, and it consists of an input
layer, three hidden layers, and one output layer. The number of epochs was 5,000. Tanh is used as the
activation function, and Adam is used as the optimizer. The structure of the LSTM for SOC estimation is
shown in Fig. 9.
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5.4 GRU Model for SOC Prediction

Finally, we describe the GRUmodel used to estimate the SOC. The input data for the GRUmodel are the
same as those used for the MNN. The GRU structure for SOC estimation is 12-256-128-64-1, and it consists
of an input layer, three hidden layers, and one output layer. The number of epochs was 5,000. The activation
function is tanh, and the Adam algorithm is used as the optimizer. The structure of the GRU model used to
estimate the SOC is shown in Fig. 10.

5.5 Experimental Results

The SOC is estimated using a suitable MNN, LSTM, or GRU model, depending on the temperature
measured during the discharge experiment. To evaluate the performance of the proposed method, the
SOC is also estimated using a conventional method, which used a model generated using all datasets
including the 25°C, 30°C, 35°C, and 40°C temperature parameters and the corresponding voltage
parameters, for comparison. Figs. 11–13 show a comparison of the SOC estimation results obtained using

Figure 7: Structure of the MNN for SOC estimation

Figure 8: Loss graph of the proposed MNN model
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the MNN, LSTM, and GRU. Each figure consists of the calculated SOC, the SOC of the proposed method,
and the SOC of the conventional method. Tables 2–7 present the results of the SOC estimation using each
model. The estimated error rates in Tables 2–9 were calculated using the mean absolute error (MAE). The
MAE equation is as follows.

MAE ¼ 1

n

Xn
i¼1

xi � x̂j j (20)

where n denotes the total number of parameters, xi denotes the target value, and x̂ denotes the estimated value.

Figure 9: Structure of the LSTM model for SOC estimation

Figure 10: Structure of the GRU model for SOC estimation
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Tables 2 and 3 present the SOC estimation error rates obtained using the proposed and conventional
MNN methods, respectively. The method proposed in this study demonstrates a minimum estimation
error of 0.98% and a maximum estimation error of 3.89%. The average error of the model based on
temperature is the highest at 1.86% at 40°C. The total average error of the proposed method is 2.17% and
that of the conventional method is 4.46%.

Figure 11: SOC estimation results of MNN using the proposed and conventional methods

Figure 12: SOC estimation results of LSTM using the proposed and conventional methods
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Figure 13: SOC estimation results of GRU using the proposed and conventional methods

Table 2: SOC error produced by the MNN using the proposed method

Temperature Battery 1 Battery 2 Battery 3 Battery 4

25°C 2.00% 2.46% 1.97% 1.87%

30°C 1.65% 1.63% 2.40% 2.03%

35°C 2.09% 2.77% 3.89% 2.53%

40°C 0.98% 2.22% 2.00% 2.24%

Table 3: SOC error produced by the MNN using the conventional method

Temperature Battery 1 Battery 2 Battery 3 Battery 4

25°C 3.77% 1.54% 4.19% 2.21%

30°C 1.86% 1.53% 2.33% 2.15%

35°C 8.45% 8.16% 11.52% 7.81%

40°C 4.30% 4.12% 2.39% 5.04%

Table 4: SOC error produced by the LSTM using the proposed method

Temperature Battery 1 Battery 2 Battery 3 Battery 4

25°C 2.26% 2.83% 1.87% 2.06%

30°C 1.96% 1.72% 2.40% 1.72%

35°C 2.12% 2.96% 3.31% 2.54%

40°C 0.93% 2.13% 2.07% 2.17%
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Tables 4 and 5 present the SOC estimation error rates obtained using the proposed LSTM method and
conventional LSTM method, respectively. The lowest estimated error of the proposed method is 0.93%,
whereas the highest estimated error rate is 3.31%. The average error based on temperature is the best at
1.82% at 40°C. The total average error of the proposed method is 2.19% and that of the conventional
method is 4.60%.

Table 5: SOC error produced by the LSTM using the conventional method

Temperature Battery 1 Battery 2 Battery 3 Battery 4

25°C 3.97% 1.69% 5.00% 2.58%

30°C 1.88% 1.60% 2.85% 2.02%

35°C 8.63% 8.24% 12.41% 8.09%

40°C 3.97% 3.55% 2.07% 5.00%

Table 6: SOC error produced by the GRU using the proposed method

Temperature Battery 1 Battery 2 Battery 3 Battery 4

25°C 2.43% 2.67% 2.05% 1.85%

30°C 1.94% 1.57% 2.50% 1.29%

35°C 2.13% 2.90% 2.72% 2.47%

40°C 1.18% 2.35% 2.01% 2.31%

Table 7: SOC error produced by the GRU using the conventional method

Temperature Battery 1 Battery 2 Battery 3 Battery 4

25°C 3.58% 1.61% 4.62% 2.38%

30°C 1.69% 1.50% 2.19% 1.84%

35°C 8.31% 8.23% 11.38% 7.80%

40°C 4.42% 3.82% 2.05% 4.95%

Table 8: Battery average error produced using the generated models

Temperature Errors of proposed methods Errors of conventional methods

MNN LSTM GRU MNN LSTM GRU

25°C 2.07% 2.26% 2.25% 2.93% 3.31% 3.05%

30°C 1.93% 1.95% 1.82% 1.97% 2.09% 1.81%

35°C 2.82% 2.73% 2.56% 9.00% 9.34% 8.93%

40°C 1.86% 1.82% 1.96% 3.96% 3.65% 3.81%

Average 2.17% 2.19% 2.15% 4.47% 4.60% 4.40%
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Tables 6 and 7 present the SOC estimation error rates obtained using the proposed and conventional
GRU methods, respectively. The lowest estimated error of the proposed method is 1.18%, whereas the
highest error is 2.90%. The average error based on temperature is the highest at 1.82% at 30°C. Table 8
summarizes the average battery errors estimated using the generated models. It is confirmed that the
average error of the proposed method is more than 2% lower than that of the conventional method for all
models, with GRU demonstrating the best performance. The average errors of the GRU and conventional
methods are 2.15% and 4.40%, respectively.

Table 9 lists the MAEs obtained for estimations based on the temperature parameters. Regardless of the
suitability of the model, the results of using the temperature parameters are better, and the MAE of 30°C
without selecting a suitable model owing to the absence of the temperature is confirmed to be worse than
that at 25°C with selecting the suitable model. Fig. 14 shows a graph of the average MAE of the
proposed and conventional methods presented in Table 8. Thus, we demonstrate that the proposed
method is superior to the conventional method.

6 Conclusion

This study has developed a method for estimating the SOC by selecting a suitable model depending on
the temperature measured during the experiment. To estimate the SOC, a discharge experiment has been
conducted using a custom vehicle driving simulator. The data acquired during the experiment have been
classified based on temperature and used for the MNN, LSTM, and GRU models. Finally, the SOC has
been estimated using a model generated from the data.

During the experiment, four temperatures have been measured, and the SOC has been estimated using
the MNN, LSTM, and GRU models appropriate for the temperatures. Most of the proposed methods have
exhibited lower errors than the conventional methods. The proposed MNN method has exhibited an
average error of 2.17%, which is superior to the average error of 4.46% obtained by the conventional

Table 9: MAE for estimations based on temperature parameters using LSTM

Temperature 25°C 30°C

MAE (without temperature) 2.41% 5.14%

MAE (with temperature) 2.26% 5.12%

Figure 14: MAE produced by the proposed and conventional methods
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MNN method. The LSTM method has exhibited an average error of 2.19%, which is superior to the average
error of 4.60% produced by the conventional LSTMmethod. In the case of the GRU, the average error of the
proposed method has been 2.15%, which is superior to the average error of 4.40% produced by the
conventional GRU method. The average error of the GRU is the lowest among the three models.

In future research, we plan to estimate the SOC by using data acquired using the Jetson Nano developer
kit developed by NVIDIA for application in a real environment. Subsequently, we plan to implement a
graphical user interface to display the SOC estimation results, express the SOC and error rate of the
battery in real time, and verify its performance. We expect that the proposed method is applicable to the
SOC problem of actual systems using batteries, such as unmanned aerial vehicle and smart assistive
system [24,25].
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