
ProbD: Faulty Path Detection Based on Probability in Software-Defined
Networking

Jiangyuan Yao1, Jiawen Wang1, Shuhua Weng1, Minrui Wang1, Deshun Li1,*, Yahui Li2 and
Xingcan Cao3

1School of Computer Science and Technology, Hainan University, Haikou, 570228, China
2School of Software, Beijing Jiaotong University, Beijing, 10004, China

3University of British Columbia, Vancouver, V5K1K5, Canada
*Corresponding Author: Deshun Li. Email: lideshun@hainanu.edu.cn

Received: 12 July 2022; Accepted: 27 August 2022

Abstract: With the increasing number of switches in Software-Defined Network-
ing (SDN), there are more and more faults rising in the data plane. However, due
to the existence of link redundancy and multi-path forwarding mechanisms, these
problems cannot be detected in time. The current faulty path detection mechan-
isms have problems such as the large scale of detection and low efficiency, which
is difficult to meet the requirements of efficient faulty path detection in large-scale
SDN. Concerning this issue, we propose an efficient network path fault testing
model ProbD based on probability detection. This model achieves a high prob-
ability of detecting arbitrary path fault in the form of small-scale random sam-
pling. Under a certain path fault rate, ProbD obtains the curve of sample size
and probability of detecting arbitrary path fault by randomly sampling network
paths several times. After a small number of experiments, the ProbD model can cor-
rectly estimate the path fault rate of the network and calculate the total number of
paths that need to be detected according to the different probability of detecting
arbitrary path fault and the path fault rate of the network. The final experimental
results show that, compared with the full path coverage test, the ProbD model based
on probability detection can achieve efficient network testing with less overhead.
Besides, the larger the network scale is, the more overhead will be saved.

Keywords: Probability detection; faulty path detection; software-defined networking

1 Introduction

With the continuous development of the modern network, people put forward higher requirements for
network stability and intelligence. As a new type of network architecture, the SDN network separates the
control plane and data plane of network equipment. Compared with the traditional network, an SDN
network can provide better service quality for existing fields such as Edge Computing and the Internet of
Things [1]. In emerging fields such as the 5G network, Fog Computing [2], and Internet of Vehicles
(IoV) [3], the SDN network has broader application prospects, and it can combine with Network
Function Virtualization (NFV), Machine Learning [4], Load Balancing [5] and other technologies to

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Intelligent Automation & Soft Computing
DOI: 10.32604/iasc.2023.034265

Article

echT PressScience

mailto:lideshun@hainanu.edu.cn
https://www.techscience.com/journal/IASC
http://dx.doi.org/10.32604/iasc.2023.034265
https://www.techscience.com/
https://www.techscience.com/doi/10.32604/iasc.2023.034265


generate greater potential value. Therefore, it has extremely high value to research the test work of SDN
networks.

The data plane in the SDN network expands rapidly, the number of switches and links continues to
increase, and the programmable feature of SDN brings both flexibility and certain risks to the network.
However, due to the existence of link redundancy and multi-path forwarding mechanisms, it is difficult to
find faults in the network in time. In software testing and network testing, specific test coverage
guidelines should be followed to adequately find bugs. The full path test coverage is the best in theory
among them, but its overhead is also the largest, which is the reason why it is difficult to apply to large-
scale network testing.

At present, the test work for the SDN data plane can be roughly divided into two categories. One is to use
formal methods to construct data plane models for verification [6,7], and the other is to generate test packets
and forward them in the real data plane [8]. For the former, the modeling process needs to collect the flow
table information of the entire data plane. For the latter, the test traffic should cover the network topology as
much as possible, and the cost of these two methods is relatively high.

Therefore, this paper proposes ProbD, an efficient network testing model based on Probability
Detection. It reduces the overhead of full path coverage testing and achieves high confidence in detection
by small-scale random sampling. The ultimate goal of the ProbD model is to complete the detection of
the SDN data plane while saving the test cost. The core idea is as follows:

In the full path set, a certain number of test paths are randomly selected for testing, and the test results
and the communication status of the network are recorded. The above steps are repeated several times till the
fluctuation of the probability curve of detecting arbitrary path fault becomes stable. Through the curve, we
can judge the quality of the network communication status. Experiments show that when the total sample size
of random sampling is small, the obtained curve of the probability of detecting arbitrary path fault fluctuates
greatly. After multiple rounds of testing, the total sample size reaches a certain level, which reduces the
occasionality of the test results, and the curve of the probability of detecting arbitrary path fault fluctuates
less. Finally, we can formulate the optimal coverage testing schemes based on the estimated path fault
rate and the expected probability of detecting arbitrary path fault, which will be described in detail later.
Overall, the contributions of this study are mainly in three aspects:

1) The probability detection method is creatively introduced into the test coverage of the SDN data plane.
2) To evaluate the reliability of the network, we calculate and draw the curve of the probability of

detecting arbitrary path fault through multiple random sampling.
3) We propose the probability detection model ProbD, which can achieve high confidence in the

detection of the large-scale network by detecting a small number of samples.

The structure of this paper is as follows: Section 2 introduces the related work of SDN data plane testing,
Section 3 introduces the ProbD probability detection model, which explains the design of the model and the
factors that affect testing, and Section 4 presents the experimental results and analysis, and Section 5 is a conclusion.

2 Related Work

So far, SDN data plane testing is the most intuitive and effective way to find faults in the network. The
reason is that all forwarding policies made by the controller are ultimately manifested through the forwarding
of data flow in the data plane. At the same time, the data flow is a kind of structured data that can be easily
monitored and managed by the operator.

However, data plane fault detection also faces challenges. In the SDN network, how to achieve fast and
effective detection of the forwarding equipment and transmission links of the data plane is still an issue worth

1784 IASC, 2023, vol.36, no.2



studying, and we need accurately find the network faults to ensure the normal forwarding of data flow. Most
of the existing detection schemes are targeted at link or transmission path failure.

2.1 Faulty Link Detection

In terms of faulty link detection of SDN networks, Kozat et al. proposed a solution to add an optimal
number of static forwarding rules in data plane switches [9]. The link failure can be quickly located
without relying on the status updates of other controllers in the case of multiple controllers, but their
approach does not take into account faults due to switch priority. Bu et al. proposed a more
comprehensive forwarding rule solution, namely, RuleScope [10]. It can detect the actual forwarding
behavior of the switches by tracking specific data packets in real-time and searching for the faults caused
by the priority at the same time. However, as the scale of the data plane grows, it is also a challenge to
ensure that the tracked information is consistent with the data plane state.

Kempf et al. [11] and Guo et al. [12] proposed a solution to insert probe data packets into business traffic,
which can effectively reduce the controller load brought by the traditional link monitoring method, thereby
reducing the overhead of faulty link detection. Jia et al. focused on faulty link detection in a hybrid network
with both SDN switches and non-SDN switches [13]. Besides, reducing computation time and detection
overhead is the emphasis of their research.

At the same time, there is also a part of the work focusing more on realizing the efficient recovery of the
detected faulty links [14–16], which will not be described here.

2.2 Faulty Path Detection

In SDN networks, except for faulty link detection, faulty path detection between switches is also an
important research problem. In an ideal situation, the switch always receives the flow table issued by the
controller and forwards the data packet by matching it with the header field of the flow table entry.
However, the situation where the actual forwarding behavior of the data plane does not match the
forwarding policy of the control plane will always occur in fact. For example, when multiple controllers
update the flow table of the switch at the same time, there is a possibility of conflict, and the data flow
may not be transmitted as expected. Aimed at this situation, transmission path tracing is considered a
good solution.

Agarwal et al. designed the SDN Traceroute tool [17], which can query the current transmission path of
any data packet in the SDN network without changing the forwarding rules, and can help the operator
understand the actual transmission path of the packet to find the existing transmission path failure. Zhang
et al. designed the PathletTracer program and proposed a new layer 2 paths tracking method [18], which
can encode the data packets that need to be forwarded, and consider the scalability and flexibility of
the program while detecting the transmission path failure. Narayana et al. monitored the traffic on the
transmission path by introducing a declarative query language [19], and they were able to reconstruct
the transmission trajectory of the data packet by the specific label.

Wang et al. proposed a method capable of tracing data flow in a large-scale multi-domain SDN network
[20], which applied transmission path tracing to a larger and more complex network. Gao et al. proposed a
Universal and RObust in-band PackEt trajectory tracing approach for SDN-enabled networks (UniROPE)
[21], which shifted the focus of packet tracing from supporting a single network topology to supporting
various network topologies. Xiong et al. proposed a path tracing method based on the Bloom Filter [22],
which can adaptively encode the path information into the Bloom Filter so that the path tracing is
independent of the bottom network topology and routing strategy.

Having studied the previous work, we found that as the scale of the network continued to increase,
researchers gradually shifted the focus from searching for the link failure to the transmission path failure.

IASC, 2023, vol.36, no.2 1785



Existing work about detecting transmission path failure focuses more on how to find it rather than
considering the cost. Therefore, this paper proposes a probability detection model ProbD, which can
achieve high-level detection of large-scale networks with less overhead.

3 Model

With the expansion and complication of the SDN network, the possibility of erroneous conversion
between the policy of the high-level controllers and the forwarding behavior of the low-level switches
continues to increase. Therefore, it is necessary to detect path faults in the network. Full path detection
has extremely high accuracy, but its detection cost is too high, which makes it impractical to apply in
large-scale networks. Therefore, an alternative path detection scheme suitable for large-scale networks
with high reliability is urgently needed.

3.1 Motivation

Full path detection is a test that traverses all possible paths between hosts, and it has the characteristics of
high coverage and sufficient testing. As shown in Fig. 1, an error occurs when the controller issues the flow
table (for brevity, the interaction between the controllers and the switches is omitted), and the flow table entry
running in S5 is different from the expected one. If we use edge coverage testing, it means that the test paths
cover each edge in the network at least once. We will find that when the paths S7-S5-S3 and S7-S8-S5-S2 are
tested, even if both edges S7-S5 and S5-S2 are covered, there is no guarantee that errors will be found, only
when the test path is S7-S5-S2, the problem that the actual forwarding path is different from expectation can
be found. Therefore, it is necessary to perform full path detection to increase the intensity of testing.

Although the full path detection is accurate, with the increase of switches and links in the network, the
number of test paths explodes, and the cost of the test is huge. For a fully connected network with the number
of switches n, the number of full paths between two switches can be calculated by the expression

Figure 1: An example of transmission path failure

1786 IASC, 2023, vol.36, no.2



Pn�2
i¼0 ðCi

n�2 � i!Þ. The number of full paths of the network, which means that the cumulative sum of the
number of full paths between arbitrarily two switches, can be calculated by the expression
n n� 1ð Þ

2

Xn�2

i¼0
ðCi

n�2 � i!Þ.
When n = 100, the number of full paths of the fully connected network can reach 1.27×10158, it is

unrealistic to perform such a large-scale test in a real environment. Therefore, we propose a method of
multiple random sampling detection. Under the circumstance of ensuring network test coverage, it takes
advantage of full path detection and completes network testing with less overhead.

3.2 The Proposed Model

In this section, for a better understanding of the ProbD probability detection model, we analyze the
factors affecting the model and describe the ProbD model, then explain the model algorithm.

3.2.1 Impact Factors
In our ProbD model, several key factors affect the reliability of test results. We introduce and analyze

these impact factors as follows:

1) Path fault rate R: In a given network, the path fault rate R has a decisive influence on the communication
state. When the path fault rate R is high, the average transmission bandwidth between nodes is narrow;
when the path fault rate R is low, the average transmission bandwidth between nodes is wide. During the
network test, the fault rate of the path is constant at a certain moment, so the path fault rate R remains
unchanged during the test period. However, the full path detection has no concern with the path fault rate
R. It needs to detect all paths, and the test overhead is high. According to the path fault rate R, we adopt
multiple random sampling detection methods to reduce the test cost.

2) Single sample size k: In path detection, the number of test samples k, which is generated by random
sampling, directly affects the current test cost. Assuming that the number of test samples in a single
sampling is k. When k is large, the probability of each path being detected is higher, but the test cost
also increases exponentially; when k is small, the test coverage of the network is relatively lower, and
the test cost will be less. We adopt multiple sampling with a small sample size to achieve a balance
between test overhead and test coverage.

3) Sampling rounds m: Given the number of test samples k in a single round, we can increase the
difference of samples by increasing the rounds of random sampling. Meanwhile, the network test
coverage rate will be improved. Assuming that the sampling round is m, the probability of each
path being detected increases as m increasing. In a given scale of the network, we can adjust the
values of k and m to achieve a balance between test coverage and test overhead.

In a random network with a given path fault rate R, we detect network path faults by randomly sampling
m times with a single sample size k. It can reduce the test overhead caused by a large test sample size in the
testing process.

3.2.2 ProbD Model
An SDN network topology can be abstracted into a graph G V ; Eð Þ. Through the analysis of the

influencing factors above, we propose ProbD, an efficient network testing model based on probability
detection.

Given:

Given a network topologyG V ; Eð Þ, where vi 2 V represents a set of switches and eij ¼ e vi; vj
� � 2 E i 6¼ jð Þ

represents a set of switch edges. Given the network path fault rate R, perform random sampling m times and
randomly select k test paths each time.

IASC, 2023, vol.36, no.2 1787



Solve:

Given the path fault rate R, randomly sampling k test samples each time, and performing random
sampling m times, the probability of detecting arbitrary path fault Pd is detected.

In our ProbD model, the single sample size k is negligible compared with the total test sample size of full
path detection (even after multiple rounds of sampling). Multiple rounds of sampling will increase the
difference of test samples and reduce the occasionality of test results. Properly adjusting the size
relationship between single sample size k and sampling rounds m can achieve high test coverage and high
reliability of the test. Based on the model above, we give Theorem 1.

Theorem 1. Given path fault rate R, the probability of detecting arbitrary path fault Pd of single sample
size k in random sampling rounds m is:

Pd ¼ 1� 1� Rð Þk
� �m

(1)

Proof. Given path fault rate R, performing a random sampling of k test paths, and the probability of the
selected paths are all correct Pk is:

Pk ¼ 1� Rð Þk (2)

Under the independent random sampling method above, after m rounds of sampling, the probability of
the selected paths are all correct Pkm is:

Pkm ¼ 1� Rð Þk
� �m

(3)

Therefore, after m rounds of sampling, the probability of detecting arbitrary path fault Pd is:

Pd ¼ 1� Pkm ¼ 1� 1� Rð Þk
� �m

(4)

The proof of Theorem 1 is now complete.

Pd represents the probability of detecting arbitrary path fault in a network with real path fault rate R. It
can be detected afterm rounds of path testing when the single sample size is k. When the value of Pd is high, it
means that the current test policy has a high probability of detecting arbitrary path faults in the network. On
the contrary, when the value of Pd is low, it means that the intensity of the current test is not enough to detect
path fault existing in the network.

Given path fault rate R and probability of detecting arbitrary path fault Pd, we give Theorem 2.

Theorem 2. Given path fault rate R and probability of detecting arbitrary path fault Pd, the total number
of paths that need to be detected is:

km ¼ log1�R 1� Pdð Þ (5)

Proof. It can be known from Theorem 1 that:

Pd ¼ 1� 1� Rð Þk
� �m

(6)

Shift term and simplify to:

1� Rð Þk
� �m

¼ 1� Pd (7)

1788 IASC, 2023, vol.36, no.2



Therefore, the total number of paths that need to be detected km is:

km ¼ log1�R 1� Pdð Þ (8)

The proof of Theorem 2 is now complete.

km as the product of single sample size k and sampling roundsm represents the total number of paths that
need to be detected. According to the expectation of probability of detecting arbitrary path fault Pd and path
fault rate R, we can get the expectation of the total number of paths that needs to be detected at a certain
moment, and the scale of the expected number will not change as the scale of network increasing.
Besides, the larger the scale of the network, the less the ratio of test path number to full path number, and
the more overhead can be saved compared with the full path detection.

3.3 Testing Method

3.3.1 Testing Process
As shown in Fig. 2, there are the general processes in the ProbD model:

1) Obtain the topology information of the data plane through the controller, convert it into a graph
structure, and input it into the model as data.

Controller ProbD Model Test Hosts

Start

Analyze Topology 
Information of Data 

Plane

Generate Graph 
Structure

Select Test hosts

Calculate Full Paths 
and Generate Test 

Path Set M

Select k Test Paths 
from M

Accept Test Flow 
Table from 
Controller

Generate Test 
Traffic

Mark the 
Correctness of Test 

Paths

If Test m Times?

N
Analyze Information 

of Faulty Paths

Finish

Y

Figure 2: Graph of testing process of ProbD model

IASC, 2023, vol.36, no.2 1789



2) In the graph structure, randomly select two hosts as the test hosts, generate the traffic required for the
test, and calculate all possible paths between the two test hosts. It means traversing the graph structure
and obtaining the test path set.

3) Randomly select k test paths from the test path set. The controller sends the test flow table to the
switches, and the test hosts will generate the test traffic. The test traffic will be matched and
forwarded by the flow table entry and complete the test coverage of the tested path finally. We can
judge whether there is a fault according to the test result and record it. If the test result matches
the expected result, mark the tested path as the correct path. Otherwise, mark it as a faulty path.

4) Repeat the process of randomly sampling k test paths for m times to achieve a high probability of
detecting arbitrary path fault.

3.3.2 Detection Algorithm
In the ProbD probability detection algorithm, the data plane is tested and covered by the method of

randomly sampling m times with a single sample size k to find out whether there is a fault in the network
and mark it.

Algorithm: ProbD probability detection algorithm

Input: G; R; k; m

Output: Pd; Pk ; Pkm; SETT ; SETF

1 Select the test host and calculate the test path set M

2 k paths are randomly selected from set M for testing

3 Test each path

4 if the test path is true:

5 Put the test path into SETT

6 else:

7 Put the test path into SETF

8 Out Pk

9 Repeat line 2–8 m times and output Pkm

10 Calculate probability Pd

11 Output the current network Pd curve and SETT ; SETF

In the graph structure, the test path set M of all possible paths is calculated by iteration (line 1).
Randomly select k paths from the test path set M for detection (line 2). The controller sends the test flow
table to the switches, and the test hosts will generate test traffic to communicate according to the flow
table entry (line 3). The test results are fed back to the application layer through bandwidth, delay,
throughput, and other information to determine whether the tested path is qualified. If the test passes,
mark the path as T (line 4-5). Otherwise, mark the path as F (line 6-7), and record the result of a
sampling of the probability of detecting arbitrary path fault Pk (line 8). Repeat the process of randomly
sampling k test paths for m times in the test path set M (line 9), and calculate the probability of detecting
arbitrary path fault Pd in the network (line 10). At the end of the test, output the probability of detecting
arbitrary path fault Pd, correct paths, and faulty paths (line 11).

We can know that the complexity of the algorithm is O k � mð Þ from the analysis. In the algorithm, the
switches and links of the data plane are input to the model and generate a full path test set. We can randomly

1790 IASC, 2023, vol.36, no.2



select k paths from the full path test set and detect them one by one to judge if the path fault exists. After the k
paths are tested, the first round of probability of detecting arbitrary path fault Pk and partial faulty paths are
obtained. After repeating m rounds of testing, the curve of the probability of detecting arbitrary path fault and
the found faulty paths are obtained.

4 Simulation Experiment

By simulating the ProbD model, we can get the relationship between the probability of detecting arbitrary
path fault Pd, sampling rounds m, and single sample size k under different path fault rates R. It is also able to
obtain the relationship between the number of full paths p and the number of test paths q under different path
fault rates R and the probability of detecting arbitrary path fault Pd. We use PyCharm Community Edition
2021.2.1 with Python 3.8 to simulate experiments, and use Excel to achieve auxiliary analysis.

4.1 Experimental Settings

Experiment 1. Set the number of full paths p to 10000, the path fault rate R of the network to 0.001 or
0.003, and the single sample size k to 200. Observe the degree of dispersion of the estimated probability of
detecting arbitrary path fault from the ideal probability under a different number of experiments n when the
sampling rounds m changes from 1 to 10.

Set the single sample size k to 200. Observe the change of the probability of detecting arbitrary path fault
Pd under different path fault rate R when the sampling rounds m changes from 1 to 10.

Set the sampling rounds m to 10. Observe the change of the probability of detecting arbitrary path fault
Pd under different path fault rate R when the single sample size k changes from 100 to 1000.

Experiment 2. Set the number of full paths p to 10000, the path fault rate R of the network to 0.003 or
0.005, the single sample size k to 100 or 200, and the sample rounds m to 5 or 10. Observe the degree of
dispersion of the estimated path fault rate from the real path fault rate when the number of experiments n
changes from 1 to 100.

Set the path fault rate R of the network to 0.003. Observe the change of the number of full paths p under the
different probability of detecting arbitrary path fault Pd when the number of test paths q changes from 0%∼20%.

Set the path fault rate R of the network to 0.03. Observe the change of the number of full paths p under the
different probability of detecting arbitrary path fault Pdwhen the number of test paths q changes from 0%∼6%.

4.2 Experimental Results

In experiment 1, we take the number of experiments n, sampling rounds m, and single sample size k as
the main independent variables. Observe the change of probability of detecting arbitrary path fault Pd.

Fig. 3 shows that when a single sample size k is constant, the more sampling rounds m is, the higher the
probability of detecting arbitrary path fault Pd will be. The larger the number of experiments n is, the better
the estimated probability of detecting arbitrary path fault fits the ideal probability of detecting arbitrary path
fault when the path fault rate R is 0.001 or 0.003. All test results show that the estimated probability of
detecting arbitrary path fault fits the ideal probability best when the number of experiments n is 1000.

The ideal probability can be calculated by the formula Pd ¼ 1� 1� Rð Þk
� �m

.

Fig. 4 shows that when a single sample size k is constant, the more sampling rounds m is, the higher the
probability of detecting arbitrary path fault Pd will be. The higher the path fault rate R is, the higher the
probability of detecting arbitrary path fault Pd will be under the same sampling rounds m. When the path
fault rate R is 0.005, the curve of the probability of detecting arbitrary path fault approaches 1 fastest.

IASC, 2023, vol.36, no.2 1791



Fig. 5 shows that, when sampling rounds m is constant, the more single sample size k is, the higher the
probability of detecting arbitrary path fault Pd will be. The higher the path fault rate R is, the higher the
probability of detecting arbitrary path fault Pd will be under the same single sample size k. When the path
fault rate R is 0.005, the curve of the probability of detecting arbitrary path fault approaches 1 fastest.

Figure 3: The relationship between estimated Pd and n under different R

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

P
ro

ba
bi

lit
y 

of
 d

et
ec

tin
g 

ar
bi

tr
ar

y 
pa

th
 

fa
ul

t P
d

Sampling rounds m

R=0.001 R=0.002 R=0.003 R=0.004 R=0.005

Figure 4: The relationship between Pd and m under different R

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 200 400 600 800 1000

P
ro

ba
bi

lit
y 

of
 d

et
ec

tin
g 

ar
bi

tr
ar

y 
pa

th
 

fa
ul

t P
d

Single sample size k

R=0.001 R=0.002 R=0.003 R=0.004 R=0.005

Figure 5: The relationship between Pd and k under different R

1792 IASC, 2023, vol.36, no.2



In experiment 2, we take the number of experiments n, path fault rate R, and probability of detecting
arbitrary path fault Pd as the main independent variables and observe the specific performance of the
ProbD model under different network scales.

Fig. 6 shows that when the path fault rate R is 0.003 or 0.005, in the case of any combination of single
sample size k is 100 or 200 and sampling rounds m is 5 or 10, the estimated path fault rate will be constantly
close to real path fault rate as the increase of the number of experiments n. Among them, given the single
sample size k and sampling rounds m, the estimated path fault rate is the average of the ratio of the
number of faulty paths to the number of test paths in all experiments.

Fig. 7 shows that, under the same probability of detecting arbitrary path fault Pd, the larger the scale of
the network is, meaning that the network has more the number of full paths p, the lower the ratio of the
number of test paths q to the number of full paths p will be. Compared to full path detection, more test
overhead is saved. On the contrary, the smaller the network scale is, the higher the ratio of the number of
test paths q to the number of full paths p will be. Under the same network scale, the higher the
probability of detecting arbitrary path fault Pd, the higher the ratio of the number of test paths q to the
number of full paths p.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 50 100 150 200 250 300 350 400 450 500

P
at

h 
fa

ul
t r

at
e 

R

The number of experiments n

k = 100, m = 5 k = 100, m = 10 k = 200, m = 5 k = 200, m = 10

Figure 6: The relationship between the estimated R and n under different real R

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 2 4 6 8 10 12 14 16 18 20

T
he

 n
um

be
r 

of
 fu

ll 
pa

th
s 

p

The number of test paths q (as a percentage of p)

Figure 7: The relationship between p and q when R = 0.003

IASC, 2023, vol.36, no.2 1793



The experimental result of Figs. 7 and 8 has the same characteristics, so we will not reiterate them here.
Comparing Fig. 8 with Fig. 7, we can find that, under the same network scale, the lower the path fault rate R
is, the higher the ratio of the number of test paths q to the number of full paths p will be. For example, Set the
expected probability of detecting arbitrary path fault Pd is 0.1, when the number of full paths p is 1000 and
the path fault rate R is 0.03, the rate of several test paths q is 0.3%. However, when the path fault rate R is
0.003, the rate of several test paths q becomes 3.5%, and it means more test overhead.

4.3 Experimental Analysis

In Experiment 1, we first demonstrated that, as the number of experiments n increased, the estimated
probability of detecting arbitrary path fault would eventually fit the ideal probability, and it proved the
correctness of the ideal probability. Secondly, we considered two cases. One was to increase the sampling
rounds m under the same single sample size k; the other was to increase the single sample size k under
the same sampling rounds m. In both cases, the probability of detecting arbitrary path fault Pd would
eventually tend to 1 to find the path fault as the independent variable increases. Besides, the higher the
path fault rate R of the network was, the less test overhead was required to find path fault.

In Experiment 2, we first demonstrated that, with a small number of experiments, we could correctly
estimate the path fault rate of the network, which laid the foundation for calculating the total number of
paths that needed to be detected. Secondly, we obtained the total number of paths needed to be detected
according to the different probability of detecting arbitrary path fault Pd by the formula
km ¼ log1�R 1� Pdð Þ. The total number of paths would not be affected by the scale of the network.
Finally, through simulation experiments, we found that the larger the network scale, the lower the ratio of
the number of test paths q to the number of full paths p in the ProbD model. Compared with the full path
detection, the ProbD model could save more test overhead and show better performance in the large-scale
SDN network.

5 Conclusion

We propose an efficient network fault testing model ProbD based on probability detection. It completes
the testing of the SDN data plane with a small scale of samples by randomly sampling from the set of full
paths. By simulating the ProbD model, we demonstrate the correctness and effectiveness of the ProbD model
in Experiment 1, and we show the trend of the probability of detecting arbitrary path fault Pd under different
test intensities. Secondly, we demonstrate the practicality of the ProbD model in Experiment 2, which means
the model is capable of estimating path fault rate and designing the solutions. We also demonstrate that the

0

500

1000

1500

2000

2500

3000

3500

4000

0 1 2 3 4 5 6

T
he

 n
um

be
r 

of
 fu

ll 
pa

th
s 

p

The number of test paths q (as a percentage of p)

Figure 8: The relationship when R changed from 0.003 to 0.03

1794 IASC, 2023, vol.36, no.2



ProbD model can achieve high confidence in the detection of large-scale networks. Besides, with the increase
of network scale, the advantages of the probability detection method of the ProbD model become more and
more obvious compared with full path detection.

Acknowledgement: We are thankful to all the collaborating partners.

Funding Statement: This work was supported by the Fundamental Research Funds for the Central
Universities (2021RC239), the Postdoctoral Science Foundation of China (2021 M690338), the Hainan
Provincial Natural Science Foundation of China (620RC562, 2019RC096, 620RC560), the Scientific
Research Setup Fund of Hainan University (KYQD(ZR)1877), the Program of Hainan Association for
Science and Technology Plans to Youth R&D Innovation (QCXM201910) and the National Natural
Science Foundation of China (61802092, 62162021).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] M. Beshley, N. Kryvinska, H. Beshley, M. Medvetskyi and L. Barolli, “Centralized QoS routing model for delay/

loss sensitive flows at the SDN-IoT infrastructure,” Computers, Materials & Continua, vol. 69, no. 3, pp. 3727–
3748, 2021.

[2] G. R. Sreekanth, S. Ahmed, M. Sarac, I. Strumberger, N. Bacanin et al., “Mobile fog computing by using SDN/
NFV on 5G edge nodes,” Computer Systems Science and Engineering, vol. 41, no. 2, pp. 751–765, 2022.

[3] A. Tariq, I. U. Din, R. A. Rehman and B. Kim, “An intelligent forwarding strategy in SDN-enabled named-data
IOV,” Computers, Materials & Continua, vol. 69, no. 3, pp. 2949–2966, 2021.

[4] S. Shahzadi, F. Ahmad, A. Basharat, M. Alruwaili, S. Alanazi et al., “Machine learning empowered security
management and quality of service provision in SDN-NFV environment,” Computers, Materials & Continua,
vol. 66, no. 3, pp. 2723–2749, 2021.

[5] R. Malavika and M. L. Valarmathi, “Adaptive server load balancing in SDN using PID neural network controller,”
Computer Systems Science and Engineering, vol. 42, no. 1, pp. 229–243, 2022.

[6] R. Stoenescu, M. Popovici, L. Negreanu and C. Raiciu, “Wavelength-switched passively coupled single-mode
optical network,” in Proc. of the 2016 ACM SIGCOMM Conf., Florianopolis, Brazil, pp. 314–327, 2016.

[7] E. Al-Shaer and S. Al-Haj, “FlowChecker: Configuration analysis and verification of federated OpenFlow
infrastructures,” in Proc. of the 3rd ACM Workshop on Assurable and Usable Security Configuration,
Chicago, Illinois, USA, pp. 37–44, 2010.

[8] C. Rotsos, G. Antichi, M. Bruyere, P. Owezarski and A. W. Moore, “An open testing framework for next-
generation OpenFlow switches,” in Proc. of the 2014 Third European Workshop on Software Defined
Networks, Budapest, Hungary, pp. 127–128, 2014.

[9] U. C. Kozat, G. Liang and K. Kökten, “On diagnosis of forwarding plane via static forwarding rules in software-
defined networks,” in Proc. of the IEEE INFOCOM 2014-IEEE Conf. on Computer Communications, Toronto,
ON, Canada, pp. 1716–1724, 2014.

[10] K. Bu, X. Wen, B. Yang, Y. Chen, L. E. Li et al., “Is every flow on the right track?: Inspect SDN forwarding with
rule scope,” in Proc. of the IEEE INFOCOM 2016-the 35th Annual IEEE Int. Conf. on Computer
Communications, San Francisco, CA, USA, pp. 1–9, 2016.

[11] J. Kempf, E. Bellagamba, A. Kern, D. Jocha, A. Takacs et al., “Scalable fault management for OpenFlow,” in
Proc. of the 2012 IEEE Int. Conf. on Communications (ICC), Ottawa, ON, Canada, pp. 6606–6610, 2012.

[12] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang et al., “Pingmesh: A large-scale system for data center network
latency measurement and analysis,” in Proc. of the 2015 ACM Conf. on Special Interest Group on Data
Communication, London, United Kingdom, pp. 139–152, 2015.

IASC, 2023, vol.36, no.2 1795



[13] X. Jia, Y. Jiang and J. Zhu, “Link fault protection and traffic engineering in hybrid SDN networks,” in Proc. of the
IEEE INFOCOM 2018-IEEE Conf. on Computer Communications Workshops (INFOCOMWKSHPS), Honolulu,
HI, USA, pp. 853–858, 2018.

[14] S. Sharma, D. Staessens, D. Colle, M. Pickavet and P. Demeester, “OpenFlow: Meeting carrier-grade recovery
requirements,” Computer Communications, vol. 36, no. 6, pp. 656–665, 2013.

[15] N. L. M. V. Adrichem, B. J. V. Asten and F. A. Kuipers, “Fast recovery in software-defined networks,” in Proc. of
the 2014 Third European Workshop on Software Defined Networks, Budapest, Hungary, pp. 61–66, 2014.

[16] D. Liang, Q. Liu, B. Yan, Y. Hu, B. Zhao et al., “Low interruption ratio link fault recovery scheme for data plane in
software-defined networks,” Peer-to-Peer Networking and Applications, vol. 14, no. 6, pp. 3806–3819, 2021.

[17] K. Agarwal, E. Rozner, C. Dixon and J. Carter, “SDN traceroute: Tracing SDN forwarding without changing
network behavior,” in Proc. of the Third Workshop on Hot Topics in Software Defined Networking, Chicago,
Illinois, USA, pp. 145–150, 2014.

[18] H. Zhang, C. Lumezanu, J. Rhee, N. Arora, Q. Xu et al., “Enabling layer 2 pathlet tracing through context
encoding in software-defined networking,” in Proc. of the Third Workshop on Hot Topics in Software Defined
Networking, Chicago, Illinois, USA, pp. 169–174, 2014.

[19] S. Narayana, M. T. Arashloo, J. Rexford and D. Walker, “Compiling path queries,” in Proc. of the 13th USENIX
Symp. on Networked Systems Design and Implementation (NSDI 16), Santa Clara, CA, USA, pp. 207–222, 2016.

[20] Y. Wang, J. Bi and K. Zhang, “A tool for tracing network data plane via SDN/OpenFlow,” Science China
Information Sciences, vol. 60, no. 2, pp. 1–13, 2017.

[21] Y. Gao, Y. Jing and W. Dong, “UniROPE: Universal and robust packet trajectory tracing for software-defined
networks,” IEEE/ACM Transactions on Networking, vol. 26, no. 6, pp. 2515–2527, 2018.

[22] S. Xiong, Q. Cao and W. Si, “Adaptive path tracing with programmable bloom filters in software-defined
networks,” in Proc. of the IEEE INFOCOM 2019-IEEE Conf. on Computer Communications, Paris, France,
pp. 496–504, 2019.

1796 IASC, 2023, vol.36, no.2


	ProbD: Faulty Path Detection Based on Probability in Software-Defined Networking
	Introduction
	Related Work
	Model
	Simulation Experiment
	Conclusion
	flink6
	References


