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Abstract: The human immunodeficiency viruses are two species of Lentivirus
that infect humans. Over time, they cause acquired immunodeficiency syndrome,
a condition in which progressive immune system failure allows life-threatening
opportunistic infections and cancers to thrive. Human immunodeficiency virus
infection came from a type of chimpanzee in Central Africa. Studies show that
immunodeficiency viruses may have jumped from chimpanzees to humans as
far back as the late 1800s. Over decades, human immunodeficiency viruses slowly
spread across Africa and later into other parts of the world. The Susceptible-
Infected-Recovered (SIR) models are significant in studying disease dynamics.
In this paper, we have studied the effect of irresponsible immigrants on
HIV/AIDS dynamics by formulating and considering different methods. Euler,
Runge Kutta, and a Non-standard finite difference (NSFD) method are developed
for the same problem. Numerical experiments are performed at disease-free and
endemic equilibria points at different time step sizes ‘ℎ’. The results reveal that,
unlike Euler and Runge Kutta, which fail for large time step sizes, the proposed
Non-standard finite difference (NSFD) method gives a convergence solution for
any time step size. Our proposed numerical method is bounded, dynamically con-
sistent, and preserves the positivity of the continuous solution, which are essential
requirements when modeling a prevalent disease.
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1 Introduction

Acquired Immunodeficiency Syndrome (AIDS) is caused by the Human Immunodeficiency Virus
(HIV). HIV/AIDS is the most destructive disease faced by humanity. There are serious consequences for
the community, economy, and public health. People infected with Human Immunodeficiency Virus (HIV)
may harbor the virus for many years without clinical signs of disease. Eventually, it destroys the body’s
immune system, increases the risk of certain diseases, damages body organs such as the brain, kidneys,
and heart, and results in death. Human Immunodeficiency Virus (HIV) deteriorates the blood deformation
of some commonly used immune systems, which protect the body from disease. HIV/AIDS currently
kills approximately 2 million people worldwide each year. Sexual relations with an infected person and
exchanging infected blood normally cause Human Immunodeficiency Virus (HIV) transmission. The
infected mother also transfers Human Immunodeficiency Virus (HIV) to her newborn. People with
Acquired Immunodeficiency Syndrome (AIDS) are susceptible to many disease infections that do not
normally cause disease in healthy people [1]. Mathematical and Numerical models have demonstrated
importance in figuring out the dynamics of Human Immunodeficiency Virus (HIV) disease. These models
have been widely used in HIV/AIDS epidemiological research to improve our understanding of the major
factors contributing to a disease epidemic. Many researchers have worked intensively on various aspects
of this dangerous disease. Busenberg et al. presented a simple model for the transmission of HIV/AIDS
in India, and he concluded that the main reason for the spread of HIV/AIDS in the community was the
sexual interaction between a core group of prostitutes and young unmarried men [2]. Coutsoudis et al.
discussed the effects of free formula milk on infants of Human Immunodeficiency Virus (HIV) infected
women [3]. Although it eliminates Human Immunodeficiency Virus (HIV) transmission but carries a risk
of increased mortality, breastfeeding has several benefits but carries a risk of Human Immunodeficiency
Virus (HIV) transmission. Ogundele et al. studied the mother-to-child transmission (MTCT) of HIV
through breastfeeding [4]. Dunn et al. developed a Human Immunodeficiency Virus (HIV) transmission
[5]. Newell studied the Human Immunodeficiency Virus (HIV) and concluded that its transmission can
occurs before, during, or after birth [6]. An important impact on dangerous sexual behavior is the lack of
awareness about HIV/AIDS. Zaleta studied heterosexual disease transmission and proposed a model for a
heterosexually transmitted disease [7]. Greenhalgh et al. examined the effects of condom use on the
sexual transmission of Human Immunodeficiency Virus (HIV) and Acquired Immunodeficiency
Syndrome (AIDS) in a homogeneous male homosexual population [8]. Mukandavire et al. studied a
model for heterosexual transmission of HIV/AIDS in a community and formulated a model [9]. The
model divided the population into a gendered structure of males and females. The threshold and
equilibria of the model were determined, and the stability was examined. The model has been expanded
to focus on the impact of condom use as a unique strategic approach to HIV prevention without
treatment. Male condom use was initially modeled, and the model was later expanded to include male
and female condom use. Basic reproduction numbers were calculated for these models, and the models
were analyzed numerically. Din et al. presented a modified model of Human Immunodeficiency Virus
(HIV) CD4+T-cells [10]. Abueldahab et al. studied an epidemic model to observe the spread of Human
Immunodeficiency Virus (HIV) in Khartoum [11]. Sanusi et al. developed a epidemic model to study and
predict the spread of HIV/AIDS [12]. Shaikh et al. proposed the model of the dynamics of HIV/AIDS
transmission in the existence of a conscious community using a fractional differential operator [13]. The
conditions of existence and uniqueness of the model were obtained. The conditions necessary for disease
control were examined to determine unconscious infectious agents’ role in spreading HIV/AIDS. Mickens
introduced the concept of Nonstandard finite difference (NSFD) theory [14]. The theory has been widely
used to solve mathematical models. Patidar studied developments and applications of Non-standard finite
difference (NSFD) methods [15]. Jodar et al. developed two finite difference schemes based on the
Nonstandard finite difference (NSFD) theory for an influenza mathematical model [16]. Raza et al.
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examined a stochastic model of HIV/AIDS based on Nonstandard finite difference (NSFD) theory in a
bisexual population considering counseling and antiretroviral therapy. They concluded that the stochastic
model of the HIV/AIDS epidemic is relatively more pragmatic than the deterministic model of
HIV/AIDS. HIV/AIDS epidemic [17]. The Nonstandard finite difference (NSFD) stochastic scheme
retained all the important properties of the disease dynamical model. Jawaz et al. studied a delay
epidemic model with diffusion and developed Nonstandard finite difference (NSFD) based scheme to
study HIV/AIDS, a delayed reaction-diffusion epidemic model [18]. Iqbal et al. studied a fractional-order
HIV/AIDS transmission based on Nonstandard finite difference (NSFD) theory [19]. Ahmed et al.
introduced a new Human Immunodeficiency Virus (HIV) CD4+T cells reaction-diffusion model [20].
Arifeen et al. studied the numerical techniques for the higher-order boundary value problems [21]. Shah
et al. studied the fractional dynamics of HIV with source term for the supply of new CD4+ T-Cells
depending on the viral load via Caputo Fabrizio derivative [22,23]. The well-known methods and
infectious diseases models are studied in [24–35]. The rest of the paper is designed: An HIV/AIDS model
is considered in Section 2. The existence analysis of the model is also studied in this section. Section 3 is
devoted to numerical modeling. Sections 4 and 5 contain the simulation results and conclusions, respectively.

2 HIV/AIDS Model

In this work, we consider the HIV/AIDS model presented by [36] for the existence of a solution and
reliable numerical study.

dS

dt
¼ Qo � C b1I1 þ b2I2ð ÞS

N
� lS (1)

dI1
dt

¼ C b1I1 þ b2I2ð Þ
N

S � cI1 � ðhþ dþ lÞI1 (2)

dI2
dt

¼ hI1 � ðdþ lÞI2 (3)

dA

dt
¼ dðI1 þ I2Þ � aþ lð ÞA (4)

With initial conditions S 0ð Þ ¼ S0 � 0, I1 0ð Þ ¼ I10 � 0; I2ð0Þ ¼ I20 � 0, Að0Þ ¼ A0 � 0, b1 .b2.

The system (1)–(4) is developed assuming that HIV may be transferred in the population through sexual
interaction and through infected blood or needle. Also, it is considered that the rate of irresponsible infective
infecting people with the disease is higher than that of responsible infective. In the system (1)–(4), N
represents the total size of the population, S is the variable that denotes the susceptible individuals, I1
represents the individuals who are irresponsible and infective, I2 is the infective people who are
responsible, A is the size of the full-blown Acquired Immunodeficiency Syndrome (AIDS) populace, c
represents the infective individuals who have sexual partners, b1 demonstrates the rate of contact of
irresponsible infective, b2 is the rate of contact rate responsible infective, l is the parameter which
represents the natural rate of death. h is the rate of conversion of irresponsible infective to responsible
infective, δ represents the rate of the conversion rate of infective to full-blown Acquired
Immunodeficiency Syndrome (AIDS), a is the Acquired Immunodeficiency Syndrome (AIDS)-induced rat
of mortality, Qo represents the recruitment rate of susceptible into the population, γ is the recruitment rate
of infective immigrants? Note that S ¼ SðtÞ, I1 ¼ I1ðtÞ, I2 ¼ I2ðtÞ, A ¼ AðtÞ, where t represents the time
and N ¼ S þ I1 þ I2 þ A: Since N ¼ S þ I1 þ I2 þ A the system (1)–(3) can be modified as,
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dN

dt
¼ Q0 � lN � aAþ cI1 (5)

dI1
dt

¼ C b1I1 þ b2I2ð ÞðN � I1 � I2 � AÞ
N

� cI1 � ðhþ dþ lÞI1 (6)

dI2
dt

¼ hI1 � ðdþ lÞI2 (7)

dA

dt
¼ dðI1 þ I2Þ � a� lð ÞA (8)

and non-negative initial conditions are given as, N 0ð Þ ¼ N0; I1 0ð Þ ¼ I10; I2 0ð Þ ¼ I20;A 0ð Þ ¼ A0; b1 .b2.

2.1 Existence of the Solution

The model modified into total population N by the system (5)–(8) can be inverted in the form of Volterra
integral equations,

N tð Þ ¼ N0 þ
Z t

0
F 1ðI2;N ;A; I1ÞðsÞds (9)

I1 tð Þ ¼ I10 þ
Z t

0
F 2ðN ; I1; I2;AÞðsÞds (10)

I2 tð Þ ¼ I20 þ
Z t

0
F 3ðN ; I1; I2;AÞðsÞds (11)

N tð Þ ¼ N0 þ
Z t

0
F 4ðN ; I1; I2;AÞðsÞds (12)

For the sake of simplicity, the above system can be re-written as

xi tð Þ ¼ xi0 þ
Z t

0
Fiðx1; x2; x3; x4ÞðsÞds; i ¼ 1; 2; 3; 4: (13)

where x1 ¼ NðtÞ, x2 ¼ I1ðtÞ, x3 ¼ I2ðtÞ and x4 ¼ AðtÞ.
The classical solution of the deterministic model (5)–(8) together with the initial conditions xi0 demands

the solutions xi ¼ 1; 2; 3; 4, be continuously differentiable in the time domain. We supposed that the solution
vector x1 tð Þ; x2 tð Þ; x3 tð Þ; x4 tð Þð Þ 2 C½0;q�. If each xi; i ¼ 1; 2; 3; 4 is continuously differentiable, then the
right-hand side F i turns out to be continuous. Further, we assume that the RHS F i satisfies the Lipschitz
conditions,

F i xi1
� �� F iðxi2Þ

�� �� � Li rð Þ xi1 � xi2
�� ��; i ¼ 1; 2; 3; 4 (14)

The goal of the current section is to show the unique existence of the solution by the well-known Banach
fixed theorem stated as.

Theorem (Contraction Mapping Principle)1. Let B be a closed-convex-bounded subset of a Banach
space C and f be a continuous mapping B into itself. Further, if f has a contraction, then f has one and
only one fixed point in B. To ensure the unique existence and corresponding explicit estimates for the
system (9)–(12), we re-write the integral Eq. (13) in the operator notation
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X i ¼ xi0 þ
Z t

0
Fðx1; x2; x3; x4ÞðsÞds; (15)

and we choose the space of continuous functions C0½0;q� as the target Banach space, equipped with the
supremum norm ▀

�� �� ¼ max½0;q� ▀
�� ��. Further, we consider the closed convex and bounded subset B of the

Banach space C0½0; q� defined by

Br �ð Þ ¼ xi; xi 2 C0 0;q½ �; xi
�� �� � r

� �
: (16)

The application of the contraction mapping principle seeks the following two conditions,

� X i:Br �ð Þ ! Brð�Þ,
� X i is the contraction

for the operators (15). We see the two conditions in the next two subsections.

2.2 Self-Mapping

In this subsection, we show the explicit estimates for X i: Br �ð Þ ! Brð�Þ, i.e.,
X i ¼ xi0 þ

R t
0 F iðx1; x2; x3; x4ÞðsÞds.

) X ik k � xi0
�� ��þ R t

0 F i
�� ��ds � Ci þKi rð Þq � r,

q � 1

KiðrÞ r � Ci� 	
(17)

Here, xi0 � 0; xi0
�� �� ¼ xi0 ¼ XCi; i ¼ 1; 2; 3; 4 and F i

�� �� � KiðrÞ. For positive length of continuity the
following conditions is necessary,

r � Ci > 0; or r > Ci; (18)

The sufficiently small initial conditions can be considered. For arbitrary initial needs, one may choose a
larger ball radius. Still, the permissible restriction on the radius can be obtained after the second condition on
the contractility of the operator.

Remark 1. The existence of the Schauder fixed point theorem can be guaranteed with the same
conditions (17) and (18) with another state of relative compactness using the concepts of equicontinuity
and the subsequent Arzela-Ascoli-Theorem.

2.3 Continuity

For the contraction condition, we consider the following two elements from Eq. (15),

X i
1 ¼ xi01 þ

Z t

0
F iðxi1; :; :ÞðsÞds (19)

X i
2 ¼ xi02 þ

Z t

0
F iðxi2; :; :ÞðsÞds (20)

From (19) and (20)

X i
1 � X i

2

�� �� ¼ R t
0 F i xi1; :; :; :

� �� F i xi2; :; :; :
� �� 	ðsÞds�� �� � R t

0 F i xi1; :; :; :
� �� F i xi2; :; :; :

� ��� �� � Li rð Þ:q:

xi1 � xi2
�� ��; i ¼ 1; 2; 3; 4.
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The Lipschitz constants Li in this case will be estimated in the ball (16) using the radius of the ball. For
contraction Li rð Þq, 1

) q,
1

LiðrÞ : (21)

Condition (21) provides the second restriction on the choice of the length of the interval of continuity
together with inequality (17). If both conditions are full-filled, then the following result has been established.

Theorem 2. Let the state functions xi; i ¼ 1; 2; 3; 4 being the solutions of initial value problem (5)–(8)
are Lipschitz continuous. The underlying problem possesses a unique solution vector ðN; I1; I2;AÞ provided
the conditions (17) and (21) are satisfied.

2.4 Analysis of Two Conditions of Contraction Mapping Principle

To understand the optimal behavior of the solution vector ðN ; I1; I2;AÞ, we again consider the
inequalities (17) and (21)

q � 1
KiðrÞ r � Ci� 	

, q, 1
LiðrÞ

Let us have a comparison of the two functions appearing on the RHS of the above inequalities

1

KiðrÞ r � Ci� 	 ¼ 1

LiðrÞ
The functions have a specific intersection point r�. This particular point r� is optimal radius, and using

this exceptional value of the radius, we can use the following inequality for the unique solution and its length
of continuity, i.e., q < 1

Kðr�Þ r� � Ci� 	 ¼ 1
Liðr�Þ :

The above important consideration leads to the important result of an optimal solution.

Theorem 3. Suppose the RHS of (5)–(8) are Lipschitz continuous (14), then the unique solution is

continuous in the interval 0; 1
Kiðr�Þ r� � Ci� �h i

, where r� is the solution of the equation

1

KiðrÞ r � Ci� 	 ¼ 1

LiðrÞ :

2.5 Equilibrium Analysis

This section is dedicated to discussing the steady states of the system (5)–(8) and their stability analysis.

For the steady states put
dS

dt
¼ dI1

dt
¼ dI2

dt
¼ dA

dt
¼ 0. This implies that

Qo � C b1I1 þ b2I2ð ÞS
N

� lS ¼ 0,
C b1I1 þ b2I2ð Þ

N
S � cI1 � hþ dþ lð ÞI1 ¼ 0, hI1 � dþ lð ÞI2 ¼ 0,

dðI1 þ I2Þ � aþ lð ÞA ¼ 0.

For the disease-free steady states, there are no infective and full-blown Acquired Immunodeficiency

Syndrome (AIDS) patients. Hence I1 ¼ 0; I2 ¼ 0;A ¼ 0 and N ¼ Qo

l
, the DFE is Eo; I1; I2;Að Þ ¼

ðQo

l
; 0; 0; 0Þ. The Jacobian matrix corresponding to Eo is given by
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J ¼
�l c
0 b1c� hþ dþ l� cð Þ

0 �a
cb2 0

0 h
0 d

�ðdþ lÞ 0
d � aþ lð Þ

2
64

3
75

¼ b1c� hþ dþ l� cð Þ cb2
h �ðdþ lÞ


 �

From this, we obtain the reproduction number Ro ¼ hcb2 þ dþ lð Þðcþ cb1Þ
dþ lð Þ hþ dþ lð Þ .

The disease persists at the endemic equilibrium state, and E*= gives the equilibrium point

ðN�; I�1 ; I
�
2 ;A

�Þ. Where N� ¼ c½b1 dþ lð Þ þ b2h� hþ dþ lð Þ aþ dþ lð Þ
dþ lð Þ dþ lð Þ

I�1 ¼ Qo dþ lð Þ dþ lð Þn
cl b1 dþ lð Þ þ b2h½ � hþ dþ lð Þ aþ dþ lð Þ þ ad hþ dþ lð Þn� dþ lð Þ dþ lð Þnc

I�2 ¼ h
dþ lð Þ I

�
1 ;A

� ¼ dðdþ lþ hÞ
ðaþ lÞ dþ lð Þ I

�
1

We note here that E� is positive only when n. 0 or Ro. 1

Ro ¼ hcb2 þ dþ lð Þðcþ cb1Þ
dþ lð Þ hþ dþ lð Þ :

3 Numerical Modeling

3.1 Forward Euler’s Scheme

The Euler method for the studied model can be obtained as follows

Nnþ1 ¼ Nn þ h½Qo � lNn � aAn þ cIn1 � (22)

Inþ1
1 ¼ In1 þ h

C b1I
n
1 þ b2I

n
2

� �
Nn � In2 � An
� �

Nn
� C b1I

n
1 þ b2I

n
2

� �
Nn

In1 þ cIn1 � hþ dþ lð ÞIn1

 �

(23)

Inþ1
2 ¼ In2 þ h½hIn1 � ðdþ lÞIn2 � (24)

Anþ1 ¼ An þ h½d In1 þ In2
� �� a� lð ÞAn� (25)

3.2 Fourth Order Runge-Kutta Method

In this section, we make RK- 4 scheme for the studied model. Considering the system of Eqs. (5)–(8), we
have,

Step-1

l1 ¼ Nn þ h Qo � lNn � aAn þ cIn1
� 	

m1 ¼ In1 þ h
C b1I

n
1 þ b2I

n
2

� �
Nn � In2 � An
� �

Nn
� C b1I

n
1 þ b2I

n
2

� �
Nn

In1 þ cIn1 � hþ dþ lð ÞIn1

 �

n1 ¼ In2 þ h½hIn1 � ðdþ lÞIn2 �
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Step-1I

l2 ¼ Nn þ l1
2

� 

þ h Qo�l Nn þ l1

2

� 

� a An þ p1

2

� �
þ c In2 þ

n1
2

� �
 �

m2 ¼ ðIn1 þ m1

2
Þ þ h



C b1ðIn1 þ m1

2 Þ þ b2ðIn2 þ n1
2 Þ

� � ðNn þ l1
2Þ � In2 þ n1

2

� �� ðAn þ p1
2 Þ

� �
ðNn þ l1

2Þ

�C b1ðIn1 þ m1
2 Þ þ b2ðIn2 þ n1

2 Þ
� �

ðNn þ l1
2Þ

ðIn1 þ
m1

2
Þ þ cðIn1 þ

m1

2
Þ � hþ dþ lð ÞðIn1 þ

m1

2
Þ
�

n2 ¼ In2 þ
n1
2

� �
þ h h In1 þ

m1

2

� �
� dþ lð Þ In2 þ

n1
2

� �h i

p2 ¼ An þ p1
2

� �
þ h d In1 þ

m1

2

� �
þ In1 þ n1

2

� �� �
� a� lð Þ An þ p1

2

� �h i

Step-1II

l3 ¼ Nn þ l2
2

� 

þ h Qo�l Nn þ l2

2

� 

� a An þ p2

2

� �
þ c In2 þ

n2
2

� �
 �

m3 ¼ ðIn1 þ m2

2
Þ þ h



C b1ðIn1 þ m2

2 Þ þ b2ðIn2 þ n2
2 Þ

� � ðNn þ l2
2Þ � In2 þ n2

2

� �� ðAn þ p2
2 Þ

� �
ðNn þ l2

2Þ

�C b1ðIn1 þ m2
2 Þ þ b2ðIn2 þ n2

2 Þ
� �

ðNn þ l2
2Þ

ðIn1 þ
m2

2
Þ þ cðIn1 þ

m2

2
Þ � hþ dþ lð ÞðIn1 þ

m2

2
Þ
�

n3 ¼ In2 þ
n2
2

� �
þ h



h In1 þ

m2

2

� �
� dþ lð Þ In2 þ

n2
2

� ��

p3 ¼ ðAn þ p2
2
Þ þ h



d In1 þ m2

2

� �
þ In1 þ

n2
2

� �� �
� ða� lÞðAn þ p2

2
Þ
�

Step-1V

l4 ¼ Nn þ l2ð Þ þ h Qo�l Nn þ l2ð Þ � a An þ p2ð Þ þ c In2 þ n2
� �� 	

m4 ¼ ðIn1 þ m3Þ þ h



C b1ðIn1 þ m3Þ þ b2ðIn2 þ n3Þ
� � ðNn þ l3Þ � In2 þ n3

� �� ðAn þ p3Þ
� �

ðNn þ l3Þ

�C b1ðIn1 þ m3Þ þ b2ðIn2 þ n3Þ
� �

ðNn þ l3Þ ðIn1 þ m3Þ þ cðIn1 þ m3Þ � hþ dþ lð ÞðIn1 þ m3Þ
�

n4 ¼ In2 þ n3
� �þ h½h In1 þ m3

� �� dþ lð Þ In2 þ n3
� ��

p4 ¼ An þ p3ð Þ þ h d In1 þ m3

� �þ In1 þ n3
� �� �� a� lð Þ An þ p3ð Þ� 	

Final Step

Nnþ1 ¼ Nn þ 1
6 l1 þ 2l2 þ 2l3 þ l4½ �

Inþ1
1 ¼ In1 þ 1

6 m1 þ 2m2 þ 2m3 þ m4½ �
Inþ1
2 ¼ In2 þ 1

6 n1 þ 2n2 þ 2n3 þ n4½ �
Anþ1 ¼ An þ 1

6 p1 þ 2p2 þ 2pþ p4½ �

9>>=
>>;

(26)
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3.3 Non-Standard Finite Difference Scheme

Non-Standard finite-difference (NSFD) scheme for the studied model can be constructed as

N ¼ Q0

l
; I1 ¼ 0; I2 ¼ 0;A ¼ 0

Use Eq. (1)

dN

dt
¼ Qo � lNnþ1 � aAn þ cIn1

Nnþ1 � Nn

h
¼ Qo � lNnþ1 � aAn þ cIn1

Nnþ1 � Nn ¼ hQo � lhNnþ1 � ahAn þ chIn1

1þ lhð ÞNnþ1 ¼ Nn þ hQo � ahAn þ chIn1

Nnþ1 ¼ Nn þ hQo � ahAn þ chIn1
ð1þ lhÞ (27)

Similarly, we obtain

Inþ1
1 ¼ In1N

n þ hC b1I
n
1 þ b2I

n
2

� �ðNn � In2 � AnÞ þ chNnIn1
Nn þ hC b1I

n
1 þ b2I

n
2

� �þ Nnhðhþ dþ lÞ (28)

Inþ1
2 ¼ In2 þ hhIn1

1þ h dþ lð Þ (29)

Anþ1 ¼ An þ hd In1 þ In2
� �

1þ h aþ lð Þ (30)

3.4 Stability of the NSFD Scheme

Jacobian matrix for the system (26)–(29) is given by

J ¼

1

ð1þ lhÞ
ch

ð1þ lhÞ
0

1þ hcb1 þ ch
1þ h hþ dþ lð Þ

0
�ah
1þ lhð Þ

hcb1
1þ h hþ dþ lð Þ 0

0
hh

1þ h dþ lð Þ
0

hd
1þ h aþ lð Þ

1

1þ h dþ lð Þ 0

hd
1þ h aþ lð Þ

1

1þ h aþ lð Þ

2
66666666664

3
77777777775

J ¼ 1

1þ lh

� 

1

1þ h aþ lð Þ
� 
 1þ hcb1 þ ch

1þ h hþ dþ lð Þ
hcb1

1þ h hþ dþ lð Þ
hh

1þ h dþ lð Þ
1

1þ h dþ lð Þ

2
664

3
775

Clearly two Eigen value i.e., �1 ¼ 1

1þ lh
, 1 and �2 ¼ 1

1þ h aþ lð Þ , 1. The remaining two Eigen
values are given by the matrix
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¼
1þ hcb1 þ ch

1þ h hþ dþ lð Þ
hcb1

1þ h hþ dþ lð Þ
hh

1þ h dþ lð Þ
1

1þ h dþ lð Þ

2
664

3
775

Since finding the Eigenvalue of the above matrix is quite tricky, the spectral radius (most considerable
Eigen value) was calculated using MATLAB, which is depicted in Fig. 1. The most significant Eigen value is
less than 1, which shows that the system (26)–(29) is stable.

4 Numerical Simulation

In this portion, we discuss our findings. The following are values of the parameters used in our model.
Nð0Þ = 1, Sð0Þ = 0.65, I1(0) = 0.20, I2(0) = 0.10, að0Þ = 0.05, c = 10, b2 = 0.015, b1 = 0.08, l = 0.02,
h = 0.955, d = 0.25, α = 0.5, Qo = 0.40.

In Figs. 2a–2d and 3a–3d, all compartments of the proposed model by using the proposed numerical
scheme with the time step size h ¼ 10 at disease-free equilibrium (DFE) and endemic equilibrium (EE)
points respectively have shown.

4.1 Comparison of NSFD with Euler Method

Figs. 4a–4d shows a graphical comparison of the proposed method with the Euler technique describing
the compartment of immunodeficiency patients for different values of h at the disease-free equilibrium (DFE)
point. The Euler method produces a negative value at a minimal value of h and then at a considerable
discount. These graphs do not make sense as negative values of the immunodeficiency patients cannot be
possible. From this, it can be concluded that the Euler method is unreliable in reflecting the actual
behavior of the disease dynamics of the model. On the other hand, the proposed method reflects
positivity at the same values of h; which shows that the proposed method is a reliable tool for showing
the model’s behavior.

Figure 1: The spectral radius of the largest Eigenvalue
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Figure 2: Numerical solutions of all compartments of the proposed model by using the proposed numerical
scheme with time step size h ¼ 10 at disease-free equilibrium (DFE) point

Fig. 5 presents another comparison between the proposed method and the Euler technique showing the
portion of immunodeficiency patients for different values of h at the endemic equilibrium (EE) point. In Figs.
5a–5d, the Euler method initially shows positivity and converges to the actual equilibrium point at a step size
h ¼ 2:65. When the step size is increased to 4, the Euler diverges. The proposed method remains convergent
to the essential equilibrium points for both values of h, which shows that the latter is superior in dealing with
disease dynamical systems.

4.2 Comparison of NSFD with Runge Kutta Method

A comparison of the proposed method and the Runge Kutta technique describing the proportions of
immunodeficiency for different values of h at the disease-free equilibrium (DFE) point is presented in
Fig. 6. The Runge Kutta method initially remains positive at h ¼ 2:296, but later starts producing
negative values. At h ¼ 4, the Runge Kutta remains stable at the start but diverges at the end. On the
other hand, the convergence of the proposed method remains the same, and even the increase in the step
size does not affect it.
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In Figs. 7a–7d, a comparison of the proposed method and the Runge Kutta technique describing the
compartment of the immunodeficiency patients for different values of h at the endemic equilibrium (EE)
point is shown. The Runge Kutta method remains convergent but produces some oscillations at h ¼ 3:9.
An increase in the value of the step size results in a divergence of the technique. Again, the proposed
method gives convergent solutions at all values of step sizes.

Figure 3: Numerical solutions of all compartments of the proposed model by using the proposed numerical
scheme with time step size h ¼ 10 at endemic equilibrium (EE) point
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Figure 4: Comparison graphs of the proposed method with the Euler model technique for different values of
h at the disease-free equilibrium (DFE) point
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Figure 5: Comparison graphs of the proposed method with the Euler technique of immunodeficiency
patients for different values of h at endemic equilibrium (EE) point
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Figure 6: Comparison graphs of the proposed method with Runge Kutta technique of immunodeficiency
patients for different values of h at disease-free equilibrium (DFE) point
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5 Conclusion

The effect of irresponsible immigrants on human immunodeficiency has been studied in this article. The
existence of the solutions incorporating the contraction mapping principle and self-mapping is discussed.
Euler, Runge Kutta, and Non-standard Finite Difference (NSFD) methods are formulated to solve the
studied model. Numerical experiments are performed at disease-free equilibrium (DFE), and endemic
equilibrium (EE) points at different time-step sizes. The obtained results are analyzed and compared. We
concluded that the Euler and Runge Kutta methods fail to converge at large time step sizes, while the
proposed method gives results that combine to actual steady states for any time step size. Moreover, the
Non-standard Finite Difference (NSFD) method is bounded, dynamically consistent, and preserves the
positivity of the solution, which are essential requirements when modeling a prevalent disease.
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