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Abstract: In this paper, we consider the NP-hard problem of finding the minimum
connected resolving set of graphs. A vertex set B of a connected graph G resolves
G if every vertex of G is uniquely identified by its vector of distances to the ver-
tices in B. A resolving set B of G is connected if the subgraph B induced by B is a
nontrivial connected subgraph of G. The cardinality of the minimal resolving set
is the metric dimension of G and the cardinality of minimum connected resolving
set is the connected metric dimension of G. The problem is solved heuristically by
a binary version of an enhanced Harris Hawk Optimization (BEHHO) algorithm.
This is the first attempt to determine the connected resolving set heuristically.
BEHHO combines classical HHO with opposition-based learning, chaotic local
search and is equipped with an S-shaped transfer function to convert the contin-
uous variable into a binary one. The hawks of BEHHO are binary encoded and
are used to represent which one of the vertices of a graph belongs to the connected
resolving set. The feasibility is enforced by repairing hawks such that an addi-
tional node selected from V\B is added to B up to obtain the connected resolving
set. The proposed BEHHO algorithm is compared to binary Harris Hawk Optimi-
zation (BHHO), binary opposition-based learning Harris Hawk Optimization
(BOHHO), binary chaotic local search Harris Hawk Optimization (BCHHO)
algorithms. Computational results confirm the superiority of the BEHHO for
determining connected metric dimension.
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1 Introduction

Recently, a connected resolving set of graphs has been introduced in [1]. Let G= (V, E) be a connected
graph and d(u, v) be the shortest path between two vertices u, v 2 V(G). An ordered vertex set B = {x1, x2,…,
xk}⊆ V(G) is a resolving set of G if the representation

r vjBð Þ ¼ d v; x1ð Þ; d v; x2ð Þ; . . . :; d v; xkð Þð Þ
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is unique for every v 2 V(G). A resolving set B of G is connected if the subgraph �B induced by B is a
nontrivial connected subgraph of G. Let |B| be the cardinality of B, the metric dimension and the
connected metric dimension of G, denoted dim(G) and cdim(G), respectively, are defined as

dim(G) = min{|Bi|: Bi � 2v, Bi is a resolving set of G}, cdim(G) = min {|Bi|: Bi � 2v, Bi is a connected
resolving set of G}.

Since every connected resolving set is a resolving set, dim(G) ≤ cdim (G) for all connected graphs G. To
illustrate this notion, consider the graph G in Fig. 1.

Example 1.1

The set B = {v1, v5, v8} is a minimum resolving set for G since the representations

r(v1|B) = (0, 2, 4), r(v2|B) = (1, 3, 5), r(v3|B) = (2, 2, 4), r(v4|B) = (1, 1, 3), r(v5|B) = (2, 0, 2), r(v6|B) = (3, 1, 1),
r(v7|B) = (2, 2, 2), r(v8|B) = (4, 2, 0), r(v9|B) = (5, 3, 1), r(v10|B) = (4, 2, 2)

for the vertices of G are distinct. Thus, dim(G) = 3. The subgraph induced by B, B = (B,E), E ¼ [ is
disconnected. Thus, B is not a connected resolving set for G. Namely, no 3-element subset is a connected
resolving set of G. On the other hand, the set B = {v1, v4, v5, v6, v8} is a connected resolving set since the
representations

r(v1|B) = (0, 1, 2, 3, 4), r(v2|B) = (1, 2, 3, 4, 5), r(v3|B) = ( 2, 1, 2, 3, 4), r(v4|B) = (1, 0, 1, 2, 3), r(v5|B) = (2, 1, 0,
1, 2), r(v6|B) = (3, 2, 1, 0, 1), r(v7|B) = (2, 1, 2, 1, 2), r(v8|B) = (4, 3, 2, 1, 0), r(v9|B) = (5, 4, 3, 2, 1), r(v10|B) =
(4, 3, 2, 1, 2). The set B = {v1, v4, v5, v6, v8}

are distinct and the subgraph induced by B, �B = (B, E) = ({v1, v4, v5, v6, v8}, {{v1, v4},{{v4, v5},{{v5, v6},{v6,
v8}) is a connected resolving set, hence cdim (G) = 5.

The metric dimension of several graphs is computed theoretically in the literature [2–19]. A few
algorithms are proposed in the literature to compute the metric dimension of graphs heuristically. These
are genetic algorithm [20], particle swarm optimization [21] and variable neighborhood search [22].

The connected metric dimension of some graphs is computed theoretically in [1,23]. In [1] it is proved

that the connected metric dimension of the wheel graph Wn, n ≥ 7 is
2nþ 2

5

� �
þ1, the star graph K1,n−1, n ≥

4 is n − 1. In [23], it is proved that the connected metric dimension of path graph Pn, n ≥ 2 is 2 and the
complete graph Kn, n ≥ 3 is n − 1.

This study is the first attempt to compute the minimum connected resolving set of graphs heuristically.
For this purpose, we use a binary version of an enhanced Harris Hawk Optimization (BEHHO) algorithm.
The results of graphs that are computed theoretically are used for testing the proposed BEHHO algorithm.
The proposed BEHHO algorithm is compared to competitive algorithms on the family of triangular snake
graphs.

Figure 1: A graph G with dim (G) = 3 and cdim (G) = 5
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This paper is organized as follows: Section 2 presents the Harris Hawks optimizer. Section 3 presents the
proposed BEHHO for determining the connected resolving set of a given graph. Computational results are
presented in Section 4. Finally, the conclusion is stated in Section 5.

2 Harris Hawks Optimizer

The Harris hawk optimizer (HHO) is a swarm-based algorithm that simulates the cooperative manner
and chasing behavior of harris [24,25]. The hawks try to hunt the prey by using several approaches
(tracing, encircling and finally approaching and attacking). Hawks’ skillful tactic to hunt the escaping
prey is known as “surprise pounce”. The mathematical model comprises three phases: exploration, the
transition between exploration and exploitation; and exploitation (seeking and detecting prey). Based on
the powerful characteristics of hawks in the exploration and exploitation processes of the search space,
HHO is used to solve complex optimization tasks in a reasonable time [26]. The hawk’s position can be
determined from Eq. (1) as follows:

X t þ 1ð Þ ¼
Xrand tð Þ � r1 Xrand tð Þ � 2r2X tð Þj j q � 0:5

ðXrabbit tÞ � Xm tð Þð Þ � r3 LBþ r4 UB� LBð Þð Þ q, 0:5

8<
: (1)

t is the current iteration, Xrabbit is the prey position, Xrand is the hawk which has been chosen randomly, q, r1,
r2, r3 and r4 are random numbers in the range [0, 1], LB and UB refer to the lower bound and upper bound of
variables respectively and Xm is the average position of hawks and can be calculated from Eq. (2) as follows:

Xm ¼ 1

T

X T

i¼1
Xi tð Þ (2)

where T is the maximum number of iterations and Xi (t) refers to each hawk position. The transition from
exploration to exploitation is the second stage. Hawks can use many exploitative behaviors depending on
the prey’s escaping energy. In order to simulate the prey energy, the following energy is given:

E ¼ 2E0 1� t

T

� �
(3)

E0 ¼ 2r � 1 (4)

where Eo and E stand for the initial energy state and the prey’s escaping energy respectively. Eowas randomly
chosen in [−1, 1]. Exploration occurs when the |E| ≥ 1 and exploitation occurs when |E| < 1.

The third stage is the exploitation phase in which hawks perform their surprise pounce. There are four
situations to describe chasing tactics and astonishing attacks. Let r be a random number ∈ [0, 1].

� Soft Besiege When both r and |E| ≥ 0.5, this behavior can be defined by the next Eq. (5)

X t þ 1ð Þ ¼ DX tð Þ � E JXrabbit tð Þ � X tð Þj j (5)

DX tð Þ ¼ Xrabbit tð Þ � X tð Þ (6)

where ΔX(t) is the distance between the current location and the prey position.

J ¼ 2 1� r5ð Þ;where r5 2 0; 1½ � (7)
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� Hard Besiege When r ≥ 0.5 and |E| < 0.5. This behavior can be stated as follows:

X t þ 1ð Þ ¼ Xrabbit tð Þ � E DX tð Þj j (8)

� Soft Besiege with Rapid DiveWhen r < 0.5 and |E| ≥ 0.5. Then the prey has enough energy to escape
from the attack. In order to describe this escaping pattern mathematically, Lévy fight (LF) is used as
seen in Eq. (9).

LF xð Þ ¼ 0:01þ u� r

vj j
1

b

; r ¼
� 1þ bð Þ � sin

pb
2

� �

�
1þ b
2

� �
� b � 2

b� 1

2

� �
0
BB@

1
CCA

1
b

(9)

As a result, the hawk’s position can be determined from Eq. (10) as follows:

X t þ 1ð Þ ¼
X
rabbit tð Þ�E JXrabbit�X tð Þj j F Yð Þ, F X tð Þð Þ

Z ¼ Y þ S � LF Dð Þ F Zð Þ,F X tð Þð Þ

8>><
>>:

(10)

� Hard Besiege with Rapid Dive IF both r and |E| < 0.5. Then, the prey has enough energy to escape.

X t þ 1ð Þ ¼
X
rabbit tð Þ� E JXrabbit tð Þ�Xm tð Þj j F Yð Þ, F X tð Þð Þ

Z ¼ Y þ S � LF Dð Þ F Zð Þ, F X tð Þð Þ

8<
: (11)

3 Proposed Binary Enhanced Harris Hawk Optimization (BEHHO)

Several recent developments to improve the performance of the Harris hawk optimizer are proposed
[27–29]. Here, a binary enhanced hawk optimizer (BEHHO) that combines classical HHO, chaotic local
search (CLS) and opposition-based learning techniques (OBL) is used to determine the connected
resolving set. In the OBL strategy, each individual fitness is calculated, compared to its corresponding
opposite number and the better one is then used for the next iteration [30]. The opposite number x̄ is
determined by the following Eq. (12) if x is a real number and x 2 [lb, ub].

x ¼ ubþ lb� x (12)

where lb and ub stand for lower bound and upper bound.

Opposite vector If x = (x1, x2,…,xD) and x 2 [lb, ub], then the following formula can be used to
compute xi:

xi ¼ lbi þ ubi � xi (13)

if f(�x) < f(x), then xi will insert the current solution.

Chaos is known as a random-like phenomenon that occurs in both deterministic and non-linear systems.
It is quite susceptible to its starting state [31]. Chaos completes the search more quickly than ergodic search
[32]. A large variety of sequences can be generated by only modifying their initial values. This work employs
a logistic map to create the following chaotic sequence:
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osþ1 ¼ Cos 1� osð Þ (14)

C = 4, os = rand (0, 1) and C1 ≠ 0.25, 0.5 and 0.75 are the initial parameters.

Chaos optimization allows for reasonable execution times on a small scale, but as the search space
grows, these times become unacceptable [33]. The properties of a chaotic system can be used to create a
search operator, which can subsequently be incorporated into metaheuristic algorithms. The solutions
produced by CLS can be acquired by

Cs ¼ ð1 � lÞ � Tþ l �Cl; i ¼ 1; 2; 3; . . . ; n (15)

where Cs denotes the candidate solution and T denotes the target position l is determined by the following
equation.

l ¼ MaxIter � currIter þ 1

Maxiter
(16)

where the terms MaxIter and currIter stand for the maximum and current iterations, respectively. In order to
maps C̀i into the domain

�Ci ¼ LBþ Ci þ UB� LBð Þ (17)

where the initial solution upper and lower bounds are denoted by UB and LB.

Several approaches have been proposed to convert continuous algorithms to binary ones [34]. These
binarization methods can be divided into two categories: The first is known as the continuous-binary
operator transformation, in which the original real operators of metaheuristic equations are redefined into
binary operators [35]. While in the second group, which is known as two step binarization, the real
operators are used without modifications, while the produced continuous solutions are converted into
binary by using two extra steps. The first step uses a transfer function (TF) that aims to transform the
continuous solution Rn into an intermediate probability vector [0, 1]n, where each element in this vector
represents the probability of transforming the corresponding element in Rn to 1 or 0. In the second step,
the intermediate solution is transformed into binary by applying various binarization methods [34].

xi;j ¼ 0 rand � 0:5
1 rand, 0

�
(18)

The binary value of i-th agent in the j-th dimension is denoted by xi,j. A transfer function is used to be
able to map continuous values to binary ones. In this study, the sigmoid function (S) is used as follows:

S ¼ 1

1þ e�10xd
(19)

where xd indicates the continuous-valued position at dimension d and S is the function output. The following
equation is used to generate a binary value.

xi;j ¼ 1 rand � S
0 rand, S

�
(20)

4 BEHHO for Connected Resolving Set Problem

When designing any optimizer, two fundamental components of the optimization problem should be
considered; the solution representation and the evaluation function. The HHO algorithm was designed to
solve continuous optimization problems, which is not appropriate for the connected resolving set
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problem. In the continuous version of HHO, hawks can move around the search space using position vectors
within the continuous real domain. We convert the variables of EHHO to binary version by applying an S-
shaped transfer function to transform the continuous variable into a binary one. In discrete binary search
space, position updates require switching between 0 and 1.

The proposed algorithm deals with the connected resolving set problem as an optimization problem
where it searches for the best solution, so each hawk can be represented as a one-dimensional vector
xbinaryij = {xi1, xi2, xi3, …, xij}, xbinaryij is a binary valued position vector if j-th element of the vector
has a value 1, it means that vertex j belongs to B. If every v ∈ V (G) has a distinct representation r(v|B),
then B is a connected resolving set. The value of a binary valued position vector is produced by
computing the value of S-shaped transfer function. In BEHHO algorithm, when a hawk is not feasible as
a connected resolving set, that hawk is repaired by adding a vertex from V\B. This repairing is applied
until that hawk becomes a connected resolving set.

The algorithm represents each solution (individual) in the population as a string of binary in which
1 means that the connected resolving set will be chosen, then the corresponding value will be “1” and if
the connected resolving set is not selected, then the corresponding value will be “0”. Thus, the flowchart
of the proposed BEHHO algorithm is displayed in Fig. 2 and the pseudo-code in Algorithm 1, respectively.

Algorithm 1: Pseudo-code of BEHHO

1: Set up the population parameters (Popsize (N), UB, LB, MaxIter(T) and Dimension of optimization
problem)

2: Suppose i = 1

3: Begin evaluating the fitness function fitness[N] for each hawk xi

4: Using Eq. (15), compute the opposition X → �X and the fitness function

5: From X∪�X, find the best N solution

6: Xrabbit = currently ranked as the best solution

7: Let iter = 0

8: While (iter ≤ MaxIter) do

9: For each hawk xi, calculate the fitness function.

10: The minimum connected resolving set is Xrabbit

11: For each hawk (xi) do

12: Update the starting Energy E0, jump force J and then update E using Eq. (3)

13: If (|E| ≥ 1) then

14: Using Eq. (1), update the hawk position

15: end if

16: If (r ≥ 0.5 and |E| ≥ 0.5), then

17: Update the hawk position by Eq. (5)

18: else if (r ≥ 0.5 and |E| < 0.5) then

20: Update hawk position by Eq. (8)

21: else if (r < 0.5 and |E| ≥ 0.5) then

22: Update the hawk position by Eq. (10)

(Continued)
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23: else

24: Use Eq. (11) to update the hawk position

25: end if

26: end for

27: If (rand < OP) then

28: Determine �Xi+1 and its fitness

29: xi+1 = �Xi+1 if f(�Xi+1) < f(xi+1)

30: end if

31: end while

32: Update Xrabbit

33: Using Eqs. (17)–(20), execute Chaotic Local Search

34: Return minimum connected resolving set

35: end

5 Experimental Results

The proposed BEHHO algorithm is compared to binary Harris Hawk Optimization (BHHO), binary
opposition-based learning Harris Hawk Optimization (BOHHO), binary chaotic local search Harris Hawk
Optimization (BCHHO) algorithms. The algorithms are applied to the star graph, wheel graph, the snake
graphs instances: a triangular snake graph, a double triangular snake graph, a linear kC4-snake graph and
a (2, n) C4-snake graph. The algorithms were run on the Windows 10 Ultimate 64-bit operating system;
the processor was an Intel Core i7, 16 GB of RAM and the code was implemented in MATLAB 2021b.
The parameter setting values are presented in Table 1.

All algorithms have been run 20 times for each instance and the results are summarized in Tables 2–7.
The tabs are organized as follows:

- The first three columns contain the name of the test instance and the number of nodes and edges,
respectively.

- The average execution time (t) used to reach the final algorithms for the first time is given.

- The iteration columns contain the average number of iterations for finishing algorithms.

In [1] Saenpholphat et al. computed the connected resolving set for a star graph and a complete graph
only theoretically.

Algorithm 1 (continued)

Table 1: Experimental parameter setting

No. Parameter name Value

1 Pop size 50

2 Max iteration 100

3 Number of dimension of optimization problem 15

4 Chaotic initial parameter 4
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Figure 2: The flowchart of BEHHO
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Table 2: Results on star graph

Instance n m BHHO t (s) Iteration
(generation)

BOHHO t Iteration BCHHO t Iteration BEHHO t Iteration

S1 3 2 2 2.24 1 2 1.81 1 2 1.43 1 2 1.06 1

S2 4 3 3 4.89 8 3 3.63 3 3 2.97 2 3 1.59 1

S3 5 4 4 9.14 2 4 8.27 5 4 10.64 9 4 3.22 1

S4 6 5 5 12.84 12 5 13.95 3 5 12.28 6 5 16.37 2

S5 7 6 6 19.32 25 6 17.54 18 6 21.16 13 6 11.85 4

S6 8 7 7 26.93 36 7 14.09 10 7 23.42 8 7 21.51 5

S7 9 8 8 39.18 22 8 41.72 19 8 33.45 11 8 19.04 3

S8 10 9 9 48.11 6 9 52.87 14 9 45.02 6 9 26.74 2

S9 11 10 10 65.02 4 10 59.05 2 10 54.89 3 10 48.16 1

S10 12 11 11 84.15 7 11 73.43 5 11 66.08 4 11 31.27 1

Table 3: Results on wheel graph

Instance n m BHHO t (s) Iteration
(generation)

BOHHO t Iteration BCHHO t Iteration BEHHO t Iteration

W1 4 6 3 6.45 1 3 4.93 1 3 3.05 1 3 1.84 1

W2 5 8 2 14.32 2 2 9.61 4 2 10.45 3 2 5.03 1

W3 6 10 2 29.16 12 2 21.59 7 2 35.84 8 2 13.97 6

W4 7 12 3 85.74 9 3 37.99 5 3 28.07 19 3 24.53 15

W5 8 14 4 73.11 41 4 54.82 29 4 36.14 12 4 43.37 8

W6 9 16 5 159.25 58 5 31.07 36 5 88.12 25 5 64.59 19

W7 10 18 6 192.09 37 6 109.25 22 6 98.03 34 6 57.75 7

W8 11 20 7 267.68 23 7 143.05 18 7 112.56 10 7 81.13 3

W9 12 22 7 345.43 12 7 127.32 9 7 98.17 7 7 65.94 1

W10 13 24 8 438.76 7 8 275.19 5 8 187.44 4 8 94.21 2

Table 4: Results on triangular snake graph

Instance n m BHHO t (s) Iteration BOHHO t Iteration BCHHO t Iteration BEHHO t Iteration

D1-snake 3 3 2 2.05 1 2 1.26 1 2 0.73 1 2 0.08 1

D2-snake 5 6 3 5.78 1 3 3.72 1 3 3.19 1 3 1.95 1

D3-snake 7 9 4 10.72 1 4 8.43 2 4 7.81 3 4 4.29 6

D4-snake 9 12 5 16.24 25 5 11.21 13 5 9. 43 17 5 8.17 10

D5-snake 11 15 6 23.64 54 6 18.05 38 6 21.65 9 6 19.99 12

D6-snake 13 18 7 28.25 42 7 24.53 68 7 36.03 24 7 15.01 19

D7-snake 15 21 8 37.95 1 8 32.17 9 8 25.08 7 8 28.43 3

D8-snake 17 24 9 56.62 40 9 48.98 23 9 52.49 18 9 12.11 11

D9-snake 19 27 10 64.99 1 10 39.46 3 10 37.11 9 10 32.03 5

D10-snake 21 30 11 82.46 5 11 66.75 11 11 56.45 10 11 41.18 8

D11-snake 23 33 12 116.63 19 12 51.74 27 12 97.08 15 12 55.92 3

D12-snake 25 36 13 94.64 1 13 85.63 1 13 83.29 2 13 71.09 9

D13-snake 27 39 14 111.91 1 14 99.01 5 14 79.52 3 14 48.16 2

D14-snake 29 42 15 87.62 1 15 115.08 3 15 94.17 4 15 65.34 1

D15-snake 31 45 16 233.88 4 16 148.16 2 16 107.32 2 16 51.12 1
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Tables 2–7 display the results for various graphs, which show that BEHHO can achieve the best optimal
solution (known connected metric dimension) in a reasonable amount of time for the star graph, wheel graph,
triangular snake graph, double triangular snake graph, linear kC4-snake graph and (2, n) C4-snake graph. It
proves the correctness and superiority of BEHHO.

Experiments in this paper are performed on a subset of star graph instances with n ≤ 12 and m ≤ 11 in
Table 2, wheel graph instances with n ≤ 13 and m ≤ 24 in Table 3, triangular snake graph instances with n ≤
31 and m ≤ 45 in Table 4, double triangular snake graph instances with n ≤ 46 and m ≤ 75 in Table 5, linear
kC4-snake graph instances with n ≤ 46 and m ≤ 60 in Table 6 and (2, n) C4-snake graph instances with n ≤
76 and m ≤ 120 in Table 7.

Table 5: Results on double triangular snake graph

Instance n m BHHO t (s) Iteration BOHHO t Iteration BCHHO t Iteration BEHHO t Iteration

2D1-snake 4 5 2 5.55 1 2 3.17 1 2 2.46 1 2 1.94 1

2D2-snake 7 10 4 15.38 1 4 10.82 3 4 11.15 2 4 6.43 1

2D3-snake 10 15 5 24.24 29 5 19.21 3 5 17.26 9 5 13.04 3

2D4-snake 13 20 7 46.74 50 7 12.15 15 7 25.04 24 7 32.98 18

2D5-snake 16 25 9 77.04 46 9 51.98 37 9 47.63 13 9 39.87 29

2D6-snake 19 30 11 76.85 1 11 59.01 12 11 33.96 7 11 18.25 4

2D7-snake 22 35 13 127.07 1 13 96.13 9 13 85.17 15 13 73.24 7

2D8-snake 25 40 15 109.34 1 15 138.45 4 15 122.19 2 15 94.58 1

2D9-snake 28 45 17 175.32 1 17 146.99 8 17 135.03 5 17 63.14 3

2D10-snake 31 50 19 407.50 21 19 233.14 1 19 189.76 13 19 116.41 5

2D11-snake 34 55 21 423.13 7 21 185.92 5 21 225.42 3 21 159.07 2

2D12-snake 37 60 23 226.54 1 23 217.38 1 23 158.03 4 23 194.13 3

2D13-snake 40 65 25 406.53 1 25 295.26 4 25 205.74 1 25 148.72 1

2D14-snake 43 70 27 515.55 1 27 312.87 1 27 224.15 2 27 197.94 1

2D15-snake 46 75 29 536.67 1 29 243.38 1 29 189.37 1 29 115.83 1

Table 6: Results on linear kC4-snake graph

Instance n m BHHO t (s) Iteration BOHHO t Iteration BCHHO t Iteration BCHHO t Iteration

C4-snake 4 4 2 3.24 1 2 2.7 1 2 2.09 1 2 1.55 1

2C4 -snake 7 8 4 9.15 1 4 6.04 2 4 4.92 3 4 3.87 2

3C4-snake 10 12 5 16.09 21 5 10.32 18 5 12.54 11 5 7.16 7

4C4- snake 13 16 7 36.16 7 7 25.84 5 7 19.12 8 7 12.35 2

5C4-snake 16 20 9 54.26 1 9 46.39 2 9 34.05 3 9 27.82 1

6C4-snake 19 24 11 77.19 1 11 21.46 14 11 48.11 5 11 19.03 1

7C4-snake 22 28 13 62.31 1 13 59.92 1 13 42.07 1 13 34.61 1

8C4-snake 25 32 15 96.52 1 15 83.87 1 15 91.15 1 15 78.53 1

9C4-snake 28 36 17 111.81 1 17 102.26 5 17 68.04 1 17 92.07 1

10C4-snake 31 40 19 152.82 1 19 133.91 1 19 117.54 3 19 105.45 1

11C4-snake 34 44 21 200.42 1 21 159.03 1 21 129.11 2 21 87.94 1

12C4- snake 37 48 23 217.87 1 23 178.52 7 23 145.08 1 23 132.71 1

13C4 -snake 40 52 25 317.15 1 25 259.07 1 25 213.44 1 25 185.02 1

14C4-snake 43 56 27 283.87 1 27 237.65 1 27 184.22 1 27 145.23 1

15 C4-snake 46 60 29 349.51 1 29 208.02 1 29 167.49 1 29 106.98 1
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6 Conclusion

In this paper, we presented a binary enhanced Harris Hawk Optimization BEHHO algorithm for solving
the connected metric dimension problem. The proposed algorithm is compared to classical HHO, chaotic
local search HHO, opposition-based learning HHO. Comparisons were performed on the graphs: star
graph, wheel graph, triangular snake graph, double triangular snake graph, linear kC4-snake graph, and
(2, n) C4-snake graph. Computational results confirm the superiority of the proposed BEHHO algorithm
for solving connected metric dimension problem.
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