
Interpretive Structural Modeling Based Assessment and Optimization of Cloud
with Internet of Things (CloudIoT) Issues Through Effective Scheduling

Anju Shukla1, Mohammad Zubair Khan2, Shishir Kumar3,*, Abdulrahman Alahmadi2, Reem
Ibrahim A. Altamimi2 and Ahmed H. Alahmadi2

1VIT Bhopal University, Bhopal, 466114, India
2Department of Computer Science and Information, Taibah University, Medina, Saudi Arabia

3Babasaheb Bhimrao Ambedkar University Lucknow, 226025, India
*Corresponding Author: Shishir Kumar. Email: dr.shishir@yahoo.com

Received: 30 April 2022; Accepted: 22 September 2022

Abstract: Integrated CloudIoT is an emerging field of study that integrates the
Cloud and the Internet of Things (IoT) to make machines smarter and deal with
real-world objects in a distributed manner. It collects data from various devices
and analyses it to increase efficiency and productivity. Because Cloud and IoT
are complementary technologies with distinct areas of application, integrating
them is difficult. This paper identifies various CloudIoT issues and analyzes them
to make a relational model. The Interpretive Structural Modeling (ISM) approach
establishes the interrelationship among the problems identified. The issues are
categorised based on driving and dependent power, and a hierarchical model is
presented. The ISM analysis shows that scheduling is an important aspect and
has both (driving and dependence) power to improve the performance of the
CloudIoT model. Therefore, existing CloudIoT job scheduling algorithms are ana-
lysed, and a cloud-centric scheduling mechanism is proposed to execute IoT jobs
on a suitable cloud. The cloud implementation using an open-source framework
to simulate Cloud Computing (CloudSim), based on the job’s workload, is pre-
sented. Simulation results of the proposed scheduling model indicate better per-
formance in terms of Average Waiting Time (AWT) and makespan than
existing cloud-based scheduling approaches.

Keywords: CloudIoT; cloud-computing; scheduling; IoT; workload

1 Introduction

Today, numerous devices, machines, and sensors are connected to the Internet to provide heterogeneous
services. Any machine capable of transferring data over the Internet with a unique identity falls under the IoT
[1]. By interconnecting the machines with the Internet, the machines become smarter. IoT devices can make
decisions on their own. These devices are connected to some network devices and communicate with
different network protocols. To make decisions independently, these devices record data at every instance.
Therefore, several issues arise; the amount of data can be massive when it finally reaches the data center.

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Intelligent Automation & Soft Computing
DOI: 10.32604/iasc.2023.031931

Article

echT PressScience

mailto:dr.shishir@yahoo.com
https://www.techscience.com/journal/IASC
http://dx.doi.org/10.32604/iasc.2023.031931
https://www.techscience.com/
https://www.techscience.com/doi/10.32604/iasc.2023.031931


Secondly, latency can be a big issue when decisions are made in a real-time environment. Thirdly, combining
many proliferation machines and devices together means exorbitant customization costs.

Cloud computing has an effective data management and computing framework to solve various IoT
issues [2]. Cloud computing inherits the concept of concurrent engineering by executing tasks in parallel
to improve various Quality of Service (QoS) metrics. The ubiquity and incremental growth of data over
the Internet are needed for parallelism. According to a Windows Azure blog post, during the time span of
June 2011–2012, they received 100,000 to 300,000 requests per second on a normal load and 150000–
900,000 requests per second on crest loads [3]. There is a need for huge clouds to deal with peak loads.
IoT-based multimedia jobs are outsourced for computation on a suitable cloud. Effective scheduling is
important to handle the massive heterogeneous workload generated by IoT devices and benefit from the
cost-based services provided by cloud computing. Real-world events can be handled more dynamically
by integrating the Cloud with IoT (CloudIoT) [4].

However, integration of Cloud and IoT makes sense for various applications like healthcare, smart
home, agriculture, smart city, smart mobility, and video surveillance. It helps to manage the remotely
connected sensors for collecting data from other sensor nodes. But due to adverse technologies, there is a
need to identify open issues related to Cloud and IoT. The significance and impact of various issues need
to be analyzed for the CloudIoT framework. ISM establishes the contextual relationships among various
issues in this paper.

1.1 Interpretive Structural Modeling (ISM)

ISM is a computer-aided mechanism for developing a graphical representation of complex systems. It is
used to establish relationships among various variables that define an issue. ISM uses a structural model to
identify, rank, and establish the inter-relationship among the variables. ISM’s major significance is
identifying the most influential factors in the CloudIoT paradigm.

1.2 Contributions

The major contributions of the paper are listed below:

� Various CloudIoT issues are identified through literature and analyzed using the ISM approach to
identify the most influential issues in the CloudIoT scenario.

� A cloud-centric scheduling is proposed for heterogeneous IoT jobs to improve the performance of the
CloudIoT framework in terms of a job waiting time and the length of time that elapses from the start of
work to the end (makespan).

The rest of the paper is organised as follows. Section 2 briefly describes the reference architecture of the
CloudIoT framework. Significant literature on CloudIoT is presented in Section 3. The detailed stepwise
description of the proposed methodology and scheduling model is presented in Section 4. Section
5 compares the simulation and validation results of the proposed model to those of other state-of-the-art
methods. Section 6 presents a conclusion followed by future directions to enhance the proposed
scheduling model.

2 CloudIoT

CloudIoT is an innovative trend that connects and manages millions of devices in very cost-effective
manners that are dispersed globally. Cloud can profit from IoT to deal with real-world things by sharing
the pool of highly computational resources rather than having local servers or personal devices to handle
applications [4]. Fig. 1 shows various media services offered by the cloud to access, store, and process
data securely and cost-effectively.

2282 IASC, 2023, vol.36, no.2



CloudIoT Reference Architecture

Several components are involved in the CloudIoT reference architecture that is summarised as follows:-

(i) IoT devices-Any device or machine with a unique identity and capable of transferring data over
the Internet comes under IoT.

(ii) Communication medium-A means is required to transfer data from these devices to the cloud to
process the huge amount of data. A network with a protocol set is required to transfer data from
these devices.

(iii) Device manager-Before sending data to the cloud, the device manager allows binding devices or
establishing the relationship between IoT devices.

(iv) Access management-This service exposes the device over the Internet. Access management is
responsible for authenticating objects that are accessing the network.

(v) Aggregation-In this step, the data is aggregated from all the devices for analysis and event
processing.

(vi) Event processing and analytics-Some algorithms are set to clouds to handle events and take
actions accordingly, such as temperature adjustment in smart homes. The data is collected, and
analysis is done based on the condition.

(vii) Interface and Dashboard-The interface is used to visualise and analyse the collected data. The
dashboard gives the layout of your device like energy consumption, heating or cooling system,
and security alarm system at our homes, etc.

(viii) Application Program Interface (API)-The concept of API comes when data needs to be shared
between two platforms. Platforms can change the data through APIs. For example, a message
is sent to mobile whenever an event occurs.

3 Related Works

Some significant contributions in the field of the CloudIoT paradigm emphasize their particular research
in this section. The literature focuses on issues and existing scheduling approaches in the CloudIoT
paradigm.

Figure 1: MICMAC analysis

IASC, 2023, vol.36, no.2 2283



3.1 Identification of CloudIoT Issues

Cloud computing enables access to various media services, resources, services, and infrastructure (e.g.,
Amazon, virtual private cloud, etc.) [5–7]. On the other hand, IoT can benefit from the cloud by using its
unlimited storage and computation capabilities. Integrating both technologies generates new challenges
and issues that need to be addressed.

Aazam et al. (2013) [8] presented an analysis of the expanding IoT and its integration with cloud
computing. Various challenges and open issues of the CloudIoT framework are described. Data analysis,
service provisioning, and storage are the future dimensions to improve the performance of the CloudIoT
model.

Botta et al. (2016) [9] performed a survey and analysed the issues of integrating IoT and Cloud
computing. IoT devices access data from the cloud for making decisions on their own, which is collected
periodically through various sensors [10]. The periodic data collection mechanism leads to unnecessary
energy consumption.

Dinh et al. (2017) [11] analyzed the sensing services and suggested a mechanism for data collection. The
data is collected based on user demand and location. The cloud identifies the location and timing of user
requirements – resulting in decreased energy consumption and increased network lifetime.

The limited literature on the CloudIoT paradigm is available and focused on its characteristics,
technologies, challenges, and issues. Various CloudIoT issues have been identified and validated by
industry professionals and are presented in Table 1. The identified issues are analyzed through the ISM
approach and a proposed hierarchal model to identify the driving and dependency power among issues.
However, no study analyzed the contextual relationships among the identified issues to the best of our
knowledge, which is essential to formulate the relational model.

Table 1: Issues in CloudIoT

S. No Parameter Notation Source

1 Device heterogeneity I1 Botta et al. (2015) [9]

2 Protocol type I2 Aazam et al. (2014) [8]

3 Cluster selection I3 Botta et al. (2015) [9]

4 Latency I4 Botta et al. (2015) [9]

5 Scheduling I5 Aazam et al. (2014) [8]

6 Data collection, security I6 Botta et al. (2015) [9]

7 Authenticity I7 Vijayasekaran et al. (2022) [10]

8 Resource selection I8 Aazam et al. (2014) [8]

9 Cost I9 Aazam et al. (2014) [8]

10 Job’s workload I10 Vijayasekaran et al. (2022) [10]

11 Communication medium I11 Botta et al. (2015) [9]

12 Identity I12 Aazam et al. (2014) [8]

13 Access management I13 Botta et al. (2015) [9]

14 Confidentiality & data integrity I14 Botta et al. (2015) [9]

15 Storage I15 Aazam et al. (2014) [8]

16 Reliability I16 Botta et al. (2015) [9]

2284 IASC, 2023, vol.36, no.2



3.2 Scheduling in Cloud

As IoT devices produce a large amount of data, job scheduling is essential in CloudIoT-based
applications [12,13]. Another reason for scheduling is outsourcing IoT jobs to various cloud resources.
An efficient scheduling algorithm reduces the execution cost and improves the system throughput.
Several task scheduling algorithms already exist in a cloud computing environment. Now, analyzing these
approaches in the context of IoT applications is necessary. The reason behind this is that IoT devices and
machines generate heterogeneous workloads. Resource availability is another issue due to the dynamic
nature of cloud resources. Here, several kinds of literature on CloudIoT-based scheduling are briefly
analyzed.

A heuristic-based task scheduling algorithm is presented for a cloud-fog computing environment by
Pham et al. (2016) [14]. Mohanraj et al. (2021) [15] address the importance of scheduling policies in a
cloud scenario. The effectiveness of single-cloud and multi-cloud-based scheduling is discussed to
analyze the effectiveness. A multi-swarm optimization model for multi-cloud scheduling is presented to
improve performance in a multi-cloud environment.

Lin et al. (2014) [16] considered memory usage, Central Processing Unit (CPU), and network bandwidth
to implement task scheduling in cloud scenarios. The tasks are divisible and allocated to various resources for
parallel execution. The algorithm gives a lower execution time than other state-of-the-art methods.

A hybrid optimization algorithm for resource selection is presented by Khan et al. (2021) [17]. The
average waiting time is compared with existing approaches to show the model’s effectiveness.

Sujana et al. (2019) [18] included security constraints in scheduling for scientific workflow applications.
The method is capable of suitable resource selection for scientific workflow applications using the Particle
Swarm Optimization (PSO) technique, which provides improved makesapn with other state-of-the-art methods.

To improve the performance of CloudIoT, Wu (2014) [19] designed a real-time task scheduling for
embedded systems. These systems are mostly used for networks in which real-time constraints are
associated. The algorithm improves the scheduling success rate of real-time tasks on heterogeneous
processors.

The workload generated by IoT devices is analyzed and scheduled on the multi-cloud-based system by
Moschakis et al. (2015) [20]. The global dispatcher selects the least loaded cloud for scheduling IoT jobs.
Response time, service time, and job cost are analyzed to evaluate the algorithm’s performance.

A novel Hybrid Task Scheduling Algorithm SJF and RR with dynamic quantum hybrid algorithm
(SRDQ) considering a dynamic variable task quantum is presented by Elmougy et al. (2017) [21] to
schedule jobs on available computing resources. The algorithm improves the SJF and RR cloud
scheduling algorithms by considering the starvation conditions of long jobs due to the dynamic arrival of
short jobs [22–24]. The algorithm performs better than SJF and RR in a cloud environment.

The paper’s objective is to analyse CloudIoT issues through ISM to establish the interrelationship
between them. This analysis helps us to identify the significant issues and propose effective scheduling
for optimization of the CloudIoT paradigm in terms of makespan and average waiting time.

4 Methodologies

An analysis of the literature survey has been done, and a research gap has been identified. No framework
exists for establishing the interrelationship among CloudIoT issues. This motivated us to identify the issues
affecting the CloudIoT model’s performance. ISM approach is used to establish the relationship among
issues, which is appropriate to build up a hierarchical structure of various issues under investigation. The
ISM classification results show that the schedule’s driving and dependence power is higher than other

IASC, 2023, vol.36, no.2 2285



issues, so there is a probability that other issues will be highly influenced by scheduling (I5). Therefore,
cloud-centric scheduling is proposed for IoT jobs to optimise the performance of the CloudIoT paradigm
in terms of average waiting time and makespan. The following subsections describe the steps of the ISM
approach and job scheduling model for CloudIoT.

4.1 Interpretive Structural Modeling (ISM) Approach

ISM is an interpretive analysis used to analyze the interrelationship among various issues associated
with the framework. It provides a significant understanding of complex relationships by making a map
among various elements involved in the scenario. The major aspects of the ISM approach are as follows:
“I” symbolize the interpretive experience of experts. “S” indicates the structural bond among variables or
issues. “M” defines the contextual relationship among issues through graphical representation. The
Matriced’ Multiplication Appliques a UN Classement (MICMAC) analysis is made to identify the driving
and dependence power among issues.

The approach has been used worldwide in various applications, including software development, social
science, supply chain management, decision-making, knowledge management, risk management, quality
assurance, retail management, product management, etc.

ISM provides a structured model for the classification of various issues based on four factors-

� Autonomous factors are considered disengaged from the system or have no importance to the
framework. Issues having less Driving Power (Dri_Pow) and less Dependence Power (Dep_Pow)
come in this category.

� Dependent factors-These issues don’t affect others but depend on other issues performance. The
issues are having less Dri_Pow, but high Dep_Pow comes in this category.

� Linkage factors-The issues having high Dri_Pow and high Dep_Pow come in this category.

� Driving factors-The issues having high Dri_Pow but less Dep_Pow come in this category.

The detailed descriptions of each step are as follows:

4.1.1 Formation of Structural Self Interaction Matrix (SSIM)
To form the SSIM, close relationships among listed issues are analyzed based on expert opinion. A

survey is formed to collect feedback from experts, and the output is based on the maximum response for
the issue pair. Based on the relative relationship between issues Ii and Ij, various symbols (V, A, X, O)
have been placed in each cell.

� V denotes that issue Ii influences issue Ij
� V denotes that issue Ij influences Parameter Ii

� X denotes that both issues Ii and Ij, both influences each other

� O denotes that both issues Ii and Ij, do not influence each other

SSIM is prepared and shown in Table 2 based on these rules.

4.1.2 Construction of Reachability Matrix
The SSIM is converted into an initial reachability matrix by placing 1 or 0 in each cell based on the

following rules-

� If ( Ii, Ij) contains V, then 1 is placed in (Ii, Ij) cell, and 0 is placed in (Ij, Ii) cell

� If ( Ii, Ij) contains A, then 0 is placed in (Ii, Ij) cell, and 1 is placed in (Ij, Ii) cell

� If ( Ii, Ij) contains X, then 1 is placed in both cells (Ii, Ij) and (Ij, Ii), respectively

� If ( Ii, Ij) contains O, then 0 is placed in both cells (Ii, Ij) and (Ij, Ii), respectively

2286 IASC, 2023, vol.36, no.2



The initial reachability matrix is converted into the final reachability matrix by removing the transitive
dependencies among issues. The transitive dependency is found as follows-if issue Ii is related to Ij, and Ij is
related to Ik, then issue Ii must be related to Ik. Table 3 shows the final reachability matrix for the selected
issues.

Table 2: Structural Self Interaction Matrix (SSIM)

Ii I16 I15 I14 I13 I12 I11 I10 I9 I8 I7 I6 I5 I4 I3 I2 I1

I1 O A O O O O A O O O O V O O O

I2 X O X A O O O O O V V O O O

I3 V O O O V O A X X A O X O

I4 O O O O O A O V O O O O

I5 O O O O O O X X X O X

I6 X A A O O A V V O A

I7 X O A X X X O O O

I8 X O O A O O X V

I9 O A O O O O X

I10 A X A O O O

I11 X O O O O

I12 V O A O

I13 V A V

I14 V O

I15 V

I16

Table 3: Final reachability matrix

Ii I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15 I16 Dri_Pow

I1 1 0 0 0 1 0 0 0 0 1* 0 0 0 0 0 0 3

I2 0 1 0 0 0 1 1 0 0 0 0 1* 1* 1 0 1 7

I3 1* 1* 1 0 1 1* 1* 1 1 1* 0 1 1 1* 0 1 13

I4 1* 0 1* 1 0 1* 0 0 1 1* 1* 1* 1* 1* 0 1* 11

I5 1* 0 1 0 1 1 0 1 1 1 1* 0 1 1 1 1* 12

I6 0 1* 1* 0 1 1 1* 1* 1 1 0 0 0 0 0 1 9

I7 0 1* 1 0 0 1 1 1* 0 0 1 1 1 1* 0 1 10

I8 1* 1* 1 0 1 1* 0 1 1 1 0 0 0 0 0 1 9

I9 0 0 1 1* 1 1* 0 1* 1 1 1* 0 0 0 0 1* 9

I10 1 0 1 0 1 1* 0 1 1 1 0 0 0 0 1* 1* 9

I11 1* 0 1* 1 1* 1 1 0 1* 0 1 1* 0 0 0 1 10

I12 1* 1* 1* 0 0 1* 1 0 0 0 0 1 0 0 0 1 7
(Continued)

IASC, 2023, vol.36, no.2 2287



4.1.3 Level Partitioning of Final Reachability Matrix
Further reachability matrix is partitioned into different levels based on the intersection of Ri and Ai. The

Ri contains the issues it may affect, and Ai contains the attributes that may influence it. Different iterations
are performed to obtain the level partitioning as shown in Tables 4–10.

Table 3 (continued)

Ii I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15 I16 Dri_Pow

I13 1* 1 0 1* 1 1* 1 1 0 1* 1* 0 1 1 0 1 11

I14 1* 1 1* 0 1 1 1 0 0 1 0 1 1* 1 0 1 10

I15 1 1* 0 1* 1 1 1* 0 1 1 0 1* 1 0 1 1 10

I16 0 1 1* 0 1* 1 1 1 1* 1 1 1* 0 0 0 1 10

Dep_Pow 11 10 12 5 12 15 10 9 10 12 7 9 7 6 2 15

Table 4: First iteration

Issue Ri Ai Ri∩Ai

I1 I1,I5,I10 I1,I3,I4,I5,I8,I10,I11,I12,I13,I14,I15 I1,I5,I10
I2 I2,I6,I7,I12,I13,I14,I16 I2,I3,I6,I7,I8,I12,I13,I14,I15,I16 I2,I6,I7,I12,I13,I14,I16
I3 I1,I2,I3,I5,I6,I7,I8,I9,I10,I12,I13,

I14,I16
I3,I4,I5,I6,I7,I8,I9,I10,I11,I12,I13,I14,
I16

I3,I5,I6,I7,I8,I9,I10,I12,I13,I14,I16

I4 I1,I3,I4,I6,I9,I10,I11,I12,I13,I14,
I16

I4,I9,I11,I13,I15 I4,I9,I11

I5 I1,I2,I3,I5,I6,I8,I9,I10,I11,I13,
I14,I15,I16

I1,I2,I3,I5,I6,I8,I9,I10,I11,I13,I14,I15,
I16

I1,I2,I3,I5,I6,I8,I9,I10,I11,I13,I14,
I15,I16

I6 I2,I3,I5,I6,I7,I8,I9,I10,I16 I2,I3,I4,I5,I6,I7,I8,I9,I10,I11,I12,I13,
I14,I15,I16

I2,I3,I5,I6,I7,I8,I9,I10,I16

I7 I2,I3,I6,I7,I8,I11,I12,I13,I14,I16 I2,I3,I6,I7,I11,I12,I13,I14,I15,I16 I2,I3,I6,I7,I11,I12,I13,I14,I16
I8 I1,I2,I3,I5,I6,I8,I9,I10,I16 I3,I5,I6,I7,I8,I9,I10,I13,I16 I3,I5,I6,I8,I9,I10,I16
I9 I3,I4,I5,I6,I8,I9,I10,I11,I16 I3,I4,I5,I6,I8,I9,I10,I11,I15,I16 I3,I4,I5,I6,I8,I9,I10,I11,I16
I10 I1,I3,I5,I6,I8,I9,I10,I15,I16 I1,I3,I4,I5,I6,I8,I9,I10,I13,I14,I15,I16 I1,I3,I5,I6,I8,I9,I10,I15,I16
I11 I1,I3,I4,I5,I6,I7,I9,I11,I12,I16 I4,I5,I7,I9,I11,I13,I16 I4,I5,I7,I9,I11,I16
I12 I1,I2,I3,I6,I7,I12,I16 I2,I3,I4,I7,I11,I12,I14,I15,I16 I2,I3,I7,I12
I13 I1,I2,I4,I6,I7,I8,I10,I11,I13,I14,

I16
I2,I3,I4,I7,I13,I14,I15 I2,I4,I7,I13,I14

I14 I1,I2,I3,I6,I7,I10,I12,I13,I14,I16 I2,I3,I4,I7,I13,I14 I2,I7,I13,I14
I15 I1,I2,I4,I6,I7,I9,I10,I12,I13,I15,

I16
I10,I15 I10,I15

I16 I2,I3,I5,I6,I7,I8,I9,I10,I11,I12,I16 I2,I3,I4,I5,I6,I7,I8,I9,I10,I11,I12,I13,
I14,I15,I16

I2,I3,I5,I6,I7,I8,I9,I10,I16

2288 IASC, 2023, vol.36, no.2



Table 5: Second iteration

Issue Ri Ai Ri∩Ai

I3 I3,I7,I8,I12,I13,I14 I3,I4,I7,I8,I11,I12,I13,I14 I3,I7,I8,I12,I13,I14
I4 I3,I4,I11,I12,I13,I14 I4,I11,I13,I15 I4,I11,I13
I7 I3,I7,I8,I11,I12,I13,I14 I3,I7,I11,I12,I13,I14,I15 I3,I7,I11,I12,I13,I14
I8 I3,I8 I3,I7,I8,I13 I3,I8
I11 I3,I4,I7,I11,I12 I4,I7,I11,I13 I4,I7,I11
I12 I3,I7,I12 I3,I4,I7,I11,I12,I14,I15 I3,I7,I12
I13 I4,I7,I8,I11,I13,I14 I3,I4,I7,I13,I14,I15 I4,I7,I13,I14
I14 I3,I7,I12,I13,I14 I3,I4,I7,I13,I14 I3,I7,I13,I14
I15 I4,I7,I12,I13,I15 I15 I15

Table 6: Third iteration

Issue Ri Ai Ri∩Ai

I3 I3,I7,I13,I14 I3,I4,I7,I11,I13,I14 I3,I7,I13,I14
I4 I3,I4,I11,I13,I14 I4,I11,I13,I15 I4,I11,I13
I7 I3,I7,I11,I13,I14 I3,I7,I11,I13,I14,I15 I3,I7,I11,I13,I14
I11 I3,I4,I7,I11 I4,I7,I11,I13 I4,I7,I11
I13 I4,I7,I11,I13,I14 I3,I4,I7,I13,I14,I15 I4,I7,I13,I14
I14 I3,I7,I13,I14 I3,I4,I7,I13,I14 I3,I7,I13,I14
I15 I4,I7,I13,I15 I15 I15

Table 7: Fourth iteration

Issue Ri Ai Ri∩Ai

I4 I4,I11,I13 I4,I11,I13,I15 I4,I11,I13
I11 I4,I11 I4,I11,I13 I4,I11
I13 I4,I11,I13 I4,I13,I15 I4,I13
I15 I4,I13,I15 I15 I15

Table 8: Fifth iteration

Issue Ri Ai Ri∩Ai

I13 I13 I13,I15 I13
I15 I13,I15 I15 I15

IASC, 2023, vol.36, no.2 2289



4.1.4 Cluster Matrix (MICMAC Analysis)
Fig. 1 shows the cluster matrix represents the interrelationship among various issues based on

autonomous, dependent, linkage, and driving factors. The result shows that issue scheduling (I5) has both
the Dri_Pow and the Dep_Pow. Hence, effective scheduling of IoT jobs on a suitable cloud may improve
the performance of the CloudIoT framework. Therefore, cloud-centric scheduling is proposed for the
heterogeneous IoT jobs described in the next section.

4.2 Proposed Job Scheduling Model for CloudIoT Paradigm

The proposed scheduling model is designed to execute IoT jobs on various clouds based on their
workload, as shown in Fig. 2. The job’s workload is the amount of time a job needs a resource for
computation. Each job is submitted to the job dispatcher through the gateway. A gateway is a doorway to
the Internet. It communicates through Internet protocols and passes data to clouds for further processing.

Table 9: Sixth iteration

Issue Ri Ai Ri∩Ai

I15 I15 I15 I15

Table 10: Final level partitioning

Issue Ri Ai Ri∩Ai Level

I1 I1,I5,I10 I1,I3,I4,I5,I8,I10,I11,I12,I13,I14,I15 I1,I5,I10 I

I2 I2,I6,I7,I12,I13,I14,I16 I2,I3,I6,I7,I8,I12,I13,I14,I15,I16 I2,I6,I7,I12,I13,I14,I16 I

I3 I3,I7,I13,I14 I3,I4,I7,I11,I13,I14 I3,I7,I13,I14 III

I4 I4,I11,I13 I4,I11,I13,I15 I4,I11,I13 IV

I5 I1,I3,I5,I6,I8,I9,I10,I11,I16 I1,I3,I5,I6,I8,I9,I10,I11,I16 I1,I3,I5,I6,I8,I9,I10,I11,
I16

I

I6 I2,I3,I5,I6,I7,I8,I9,I10,I16 I2,I3,I4,I5,I6,I7,I8,I9,I10,I11,I12,I13,I14,
I15,I16

I2,I3,I5,I6,I7,I8,I9,I10,
I16

I

I7 I3,I7,I11,I13,I14 I3,I7,I11,I13,I14,I15 I3,I7,I11,I13,I14 III

I8 I3,I8 I3,I7,I8,I13 I3,I8 II

I9 I3,I4,I5,I6,I8,I9,I10,I11,I16 I3,I4,I5,I6,I8,I9,I10,I11,I15,I16 I3,I4,I5,I6,I8,I9,I10,I11,
I16

I

I10 I1,I3,I5,I6,I8,I9,I10,I15,I16 I1,I3,I4,I5,I6,I8,I9,I10,I13,I14,I15,I16 I1,I3,I5,I6,I8,I9,I10,I15,
I16

I

I11 I4,I11 I4,I11,I13 I4,I11 IV

I12 I3,I7,I12 I3,I4,I7,I11,I12,I14,I15 I3,I7,I12 II

I13 I13 I13,I15 I13 V

I14 I3,I7,I13,I14 I3,I4,I7,I13,I14 I3,I7,I13,I14 III

I15 I15 I15 I15 VI

I16 I2,I3,I5,I6,I7,I8,I9,I10,I11,I12,
I16

I2,I3,I4,I5,I6,I7,I8,I9,I10,I11,I12,I13,I14,
I15,I16

I2,I3,I5,I6,I7,I8,I9,I10,
I16

I

2290 IASC, 2023, vol.36, no.2



The job dispatcher selects jobs in a first-come, first-serve manner. It interacts with the load collection module
to know the current load of each cloud and selects the least loaded cloud to process the job. The load
collection module sends the number of jobs in the job pool to inform the current load on the cloud. On
each cloud, a job pool is maintained for arriving jobs.

The proposed algorithm is distributed in various modules and further integrated to frame the proposed
scheduling model. The modules are as follows-

� Job dispatcher-Each IoT job is submitted to a job dispatcher to process on various clouds. It submits
the job to the least loaded cloud for execution. Jobs are arranged in ascending order of arrival time.

� Load Collection Module-This module is responsible for collecting each cloud’s current load and
sending the information to the job dispatcher.

� Load monitor-on each cloud, the load monitor monitors the load whenever a job is submitted to a
resource and periodically sends the information to the load collection module.

� Scheduler-At each cluster, a queue is maintained for jobs that are ready for execution. The scheduler
selects a job and submits it to a resource in a First-Come, First-Served (FCFS) manner. The proposed
algorithms I and II are used for job scheduling and quantum calculation on the selected resource.

4.2.1 Job Scheduling Algorithm
The objective of the job scheduling algorithm is to schedule heterogeneous jobs on suitable resources

based on their workload. SJF ensures a minimum average waiting time, but long jobs may get starved as
they never go for execution due to the dynamic arrival of short jobs. RR ensures a minimum average
response time but produces an increased makespan. SRDQ considers the starvation condition but
produces a high response time. To improve various QoS metrics, the algorithm splits jobs into two
categories. If the job’s workload is less than the average workload of ready queue jobs, it will be added

IoT node 1

IoT node  2

IoT node n

Task dispatcher

IoT node 3

IoT node 4

IoT node 5

Load Collection 
module

Scheduler R1

R2

R3

Load Monitor

Job Pool

Scheduler R1

R2

R3

Load Monitor

Job Pool

Cloud 1

Cloud 2

Figure 2: Job scheduling model for CloudIoT paradigm

IASC, 2023, vol.36, no.2 2291



to Queue 1. Otherwise, the job is added to Queue 2. The idea behind this is to reduce response time and
waiting time for jobs with a workload greater than average.

Algorithm I: Job Scheduling Algorithm

Input: Number of Jobs (J1, J2…Jn)

Output: Queue1, Queue 2

BEGIN

1. for all jobs do

2. Determine job with Arrival Time (AT) and Workload (WLD)

3. end for

4. for each job do

5. while job exists do

6. //Job categorization in Queue1 & Queue2

7. While (! RQ_empty ()) do

8. for all jobs in RQ do

9. Sum = Sum + WLD[i];

10. end for

11. average = sum/n;

12. end while

13. for all jobs in RQ do

14. if (WLD[i] < average)

15. Queue 1 = J[i];

16. else

17. Queue2 = J[i];

18. end if

19. end for

END

4.2.2 Quantum Calculation Algorithm
To process a job, all jobs are arranged in ascending order of workload. The dynamic quantum is

calculated based on the median value of ready queue jobs. The median value is selected as a quantum
value if jobs are odd. If the number of jobs is even, an average of two central numbers is taken as
quantum. The following dynamic quantum calculation makes the algorithm more effective and less
complex than SRDQ.

2292 IASC, 2023, vol.36, no.2



Algorithm II: Quantum Calculation Algorithm

Input: Number of jobs in job pool

Output: Quantum

BEGIN

1. for all jobs do

2. for j = i + 1 to no of jobs

3. if(J[j] < J[i])

4. //arrange in ascending order

5. Temp = J[i];

6. J[i] = J[j];

7. J[j] = temp;

8. end if

9. end for

10. end for

11. if (n % 2==0)

12. //number of jobs is even

13. quantum = return (J [n/2] + J [n/2 – 1]/2);

14. else

15. //number of jobs is odd

16. quantum = return J [n/2];

17. end if

END

After quantum calculation, two jobs from queue-1 and one job from queue-2 are selected for execution.
If the job finishes its execution, it leaves the queue and makespan, and Average Waiting Time (AWT) is
calculated by Eqs. (1) and (2). If the job doesn’t finish within the calculated quantum, Remaining
Workload (RWLD) is computed by (3). Here, Start Time (ST), Arrival Time (AT), Completion Time
(CT), and Workload (WLD) will be represented respectively. All remaining unfinished jobs are further
processed in the shortest job first manner.

makespan ¼
Pn

j¼1 CTj � ATj

n
(1)

AWT ¼
Pn

j¼1 TATj �WLDj

n
(2)

RWLDj ¼ WLDj � Quantumj (3)

5 Simulation Analysis

The proposed scheduling model is simulated, and results are compared against RR, SRDQ, and Khan
et al. (2021). To show the effectiveness of the proposed model, makespan and waiting time are evaluated

IASC, 2023, vol.36, no.2 2293



for all the algorithms. As discussed, IoT devices produce heterogeneous workloads, so simulation is
performed on various data sets to measure the performance of the proposed scheduling model. The model
is simulated on CloudSim (version 3.0.3) and consists of a single job dispatcher and three clouds. Each
cloud consists of a single scheduler and three heterogeneous resources to process the incoming jobs. It is
assumed that no more resources are added or left during the simulation. Workload range, arrival time
range, number of jobs, IoT devices, and resources per cloud are given in Table 11. The various
parameters that are used in the simulation are listed in Table 12. Various parameters (bandwidth,
processing cost, memory cost, and storage cost) are the default values of the CloudSim toolkit. The main
objective of the scheduling model is to select the least loaded cloud to process the job. So, at least three
clouds are considered for effective cloud selection and fair results.

Fig. 3 shows the AWT of RR, SRDQ, Khan et al. (2021), proposed algorithm vs. various data sets. The
simulation result shows that the proposed algorithm decreased up to 39%, 34% and 30% of the AWT over
RR, SRDQ, Khan et al. (2021) scheduling algorithms respectively. The reduction in waiting time shows that
long jobs will also get service in time and will not be starved due to short and medium-sized jobs. The
algorithm provides 500.4 ms AWT when the workload range is 250–500 rather than 820.4, 758.7, and
530.5 ms for the other algorithms.

Table 11: Job categorization

Data set No. of jobs Workload range Arrival time r
ange (ms)

Number of
IoT devices

Resources
per cloud

Dataset 1 10 10–100 0–7 6 3

Dataset 2 100 100–200 0–7 10 3

Dataset 3 500 250–500 0–8 15 4

Dataset 4 1000 500–1000 0–8 20 4

Dataset 5 2000 1000–2000 0–20 25 5

Dataset 6 3000 2000–3000 0–30 30 5

Dataset 7 4000 3000–4000 0–40 35 6

Dataset 8 5000 4000–50000 0–50 40 6

Table 12: Simulation parameters

Parameters Range

Number of IoT device 6–40

Number of clouds 3

Bandwidth (jobs/ms) 1000

Operating system Windows 7

Processing cost ($) 2

Memory cost (MB) 0.5

Storage cost (MB) 0.001

2294 IASC, 2023, vol.36, no.2



Fig. 4 shows the makespan of RR, SRDQ [21], Khan et al. (2021) [17], and the proposed algorithm
versus various data sets. The simulation result shows that the proposed algorithm provides the minimum
makespan than RR, SRDQ [21], Khan et al. (2021) [17]. The proposed algorithm reduces upto 31.21%,
26.24%, and 11.97% of the makespan over RR, SRDQ and Khan et al. (2021) scheduling algorithms
when the numbers of jobs are 2000. The algorithm provides 2741.7 ms makespan when the workload
range is 1000–2000 rather than 3974.2, 3715.4 and 2979.8 ms for the RR, SRDQ and Khan et al. (2021)
algorithms, respectively.

6 Conclusions and Future Work

The resolution of CloudIoT generates new energizing directions for enterprises and researchers. Because
IoT devices have limited processing and memory capacity, integrating the Cloud with IoT experiences is
more valuable and limitless. This paper analyzes various CloudIoT issues through the ISM approach to
establish the interrelationships among the identified issues. The ISM results show that issues Latency (I4),
communication medium (I11), access management (I13), confidentiality and data integrity (I14), and
storage (I15) are strong driving issues and issues namely device heterogeneity (I1), protocol type (I2), and
Identity (I12) are dependent issues. The issues include cluster selection (I3), scheduling (I5), data
collection and security (I6), authenticity (I7), resource selection (I8), cost (I9), job workload (I10), and
reliability (I16)have both Dri_Pow and Dep_Pow influence factors. Appropriate enhancement of these
issues will result in the dynamic development of the CloudIoT framework.

The ISM analysis shows that scheduling is an important aspect and has both (driving and dependence)
power to improve the performance of the CloudIoT model. Therefore, existing CloudIoT job scheduling

Figure 3: Average waiting time for various scheduling algorithms

Figure 4: Makespan of various scheduling algorithms

IASC, 2023, vol.36, no.2 2295



algorithms are analyzed, and a cloud-centric scheduling mechanism is proposed to execute IoT jobs on the
suitable cloud. The proposed algorithm improves the performance of IoT applications by reducing waiting
time and makespan. The algorithm performs better than RR, SRDQ and Khan et al. (2021) cloud
scheduling algorithms. The proposed scheduling model can be further enhanced by computing energy
consumption and adding budget and deadline constraints to the job to make the proposed model more
effective.

Funding Statement: The author(s) received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] S. Goyal, S. Bhushan, Y. Kumar, A. U. H. S. Rana, M. R. Bhutta et al., “An optimized framework for energy-

resource allocation in a cloud environment based on the whale optimization algorithm,” Sensors, vol. 21, no.
5, pp. 1583, 2021.

[2] S. Rani, D. Koundal, M. F. Ijaz, M. Elhoseny and M. I. Alghamdi, “An optimized framework for WSN routing in
the context of industry 4.0,” Sensors, vol. 21, no. 19, pp. 6474, 2021.

[3] J. Kaur, S. Ahmed, Y. Kumar, A. Alaboudi, N. Jhanjhi et al., “Packet optimization of software defined network
using lion optimization,” Computers, Materials & Continua, vol. 69, no. 2, pp. 2617–2633, 2021.

[4] S. Singh and I. Chana, “A survey on resource scheduling in cloud computing: Issues and challenges,” Journal of
Grid Computing, vol. 14, no. 2, pp. 217–264, 2016.

[5] D. Kim, H. Kwon, C. Hahn and J. Hur, “Privacy-preserving public auditing for educational multimedia data in
cloud computing,” Multimedia Tools and Applications, vol. 75, no. 21, pp. 13077–13091, 2016.

[6] T. Ma, S. Pang, W. Zhang and S. Hao, “Virtual machine based on genetic algorithm used in time and power
oriented cloud computing task scheduling,” Intelligent Automation and Soft Computing, vol. 25, no. 3, pp.
605–613, 2019.

[7] Y. Li, J. Li, P. Shi and X. Qin, “Building an open cloud virtual dataspace model for materials scientific data,”
Intelligent Automation and Soft Computing, vol. 25, no. 3, pp. 615–624, 2019.

[8] M. Aazam, I. Khan, A. A. Alsaffar and E. N. Huh, “Cloud of things: Integrating internet of things and cloud
computing and the issues involved,” in Proc. IBCAST, Pakistan, pp. 414–419, 2014.

[9] A. Botta, W. D. Donato, V. Persico et al., “Integration of cloud computing and internet of things: A survey,”
Future Generation Computer Systems, vol. 56, pp. 684–700, 2016.

[10] G. Vijayasekaran and M. Duraipandian, “An efficient clustering and deep learning based resource scheduling for
edge computing to integrate cloud-IoT,” Wireless Personal Communications, pp. 1–16, 2022.

[11] T. Dinh, Y. Kim and H. Lee, “A location-based interactive model of internet of things and cloud (IoT-cloud) for
mobile cloud computing applications,” Sensors, vol. 17, no. 3, pp. 489, 2017.

[12] A. Shukla, S. Kumar and H. Singh, “Fault tolerance based load balancing approach for web resources,” Journal of
the Chinese Institute of Engineers, vol. 42, no. 7, pp. 583–592, 2019.

[13] A. Shukla, S. Kumar and H. Singh, “Fault tolerance based load balancing approach for web resources in cloud
environment,” International Arab Journal of Information Technology, vol. 17, no. 2, pp. 225–232, 2020.

[14] X. Q. Pham and E. N. Huh, “Towards task scheduling in a cloud-fog computing system,” in 2016 18th Asia-
Pacific Network Operations and Management Symp., Japan, pp. 1–4, 2016.

[15] T. Mohanraj and R. Santhosh, “Multi-swarm optimization model for multi-cloud scheduling for enhanced quality
of services,” Soft Computing, pp. 1–11, 2021.

[16] W. Lin, C. Liang, J. Z. Wang and R. Buyya, “Bandwidth-aware divisible task scheduling for cloud computing,”
Software: Practice and Experience, vol. 44, no. 2, pp. 163–174, 2014.

[17] M. S. A. Khan and R. Santhosh, “Task scheduling in cloud computing using hybrid optimization algorithm,” Soft
Computing, pp. 1–11, 2021.

2296 IASC, 2023, vol.36, no.2



[18] J. A. J. Sujana, T. Revathi, T. S. Priya and K. Muneeswaran, “Smart PSO-based secured scheduling approaches for
scientific workflows in cloud computing,” Soft Computing, vol. 23, no. 5, pp. 1745–1765, 2019.

[19] D. H. Wu, “Task optimization scheduling algorithm in embedded system based on internet of things,” Applied
Mechanics and Materials, vol. 513, pp. 2398–2402, 2014.

[20] I. A. Moschakis and H. D. Karatza, “Towards scheduling for internet-of-things applications on clouds: A
simulated annealing approach,” Concurrency and Computation: Practice and Experience, vol. 27, no. 8, pp.
1886–1899, 2015.

[21] S. Elmougy, S. Sarhan and M. Joundy, “A novel hybrid of shortest job first and round robin with dynamic variable
quantum time task scheduling technique,” Journal of Cloud Computing, vol. 6, no. 1, pp. 12, 2017.

[22] A. Shukla, S. Kumar and H. Singh, “An improved resource allocation model for grid computing environment,”
International Journal of Intelligent Engineering and Systems, vol. 12, no. 1, pp. 104–113, 2019.

[23] H. Singh and S. Kumar, “WSQ: Web server queueing algorithm for dynamic load balancing,” Wireless Personal
Communications, vol. 80, no. 1, pp. 229–245, 2015.

[24] N. Hasteer, A. Bansal and B. K. Murthy, “Assessment of cloud application development attributes through
interpretive structural modeling,” International Journal of System Assurance Engineering and Management,
vol. 8, no. 2, pp. 1069–1078, 2017.

IASC, 2023, vol.36, no.2 2297


	Interpretive Structural Modeling Based Assessment and Optimization of Cloud with Internet of Things (CloudIoT) Issues Through Effective Scheduling ...
	Introduction
	CloudIoT
	Related Works
	Methodologies
	Simulation Analysis
	Conclusions and Future Work
	References


