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Abstract: Soil salinity is a serious land degradation issue in agriculture. It is a
major threat to agriculture productivity. Extra irrigation water is applied to leach
down the salts from the root zone of the plants in the form of a Leaching fraction
(LF) of irrigation water. For the leaching process to be effective, the LF of irriga-
tion water needs to be adjusted according to the environmental conditions and soil
salinity level in the form of Evapotranspiration (ET) rate. The relationship
between environmental conditions and ET rate is hard to be defined by a linear
relationship and data-driven Machine learning (ML) based decisions are required
to determine the calibrated Evapotranspiration (ETc) rate. ML-assisted ETc is pro-
posed to adjust the LF according to the ETc and soil salinity level. A regression
model is proposed to determine the ETc rate according to the prevailing tempera-
ture, humidity, and sunshine, which would be used to determine the smart LF
according to the ETc and soil salinity level. The proposed model is trained and
tested against the Blaney Criddle method of Reference evapotranspiration (ETo)
determination. The validation of the model from the test dataset reveals the accu-
racy of the ML model in terms of Root mean squared errors (RMSE) are 0.41,
Mean absolute errors (MAE) are 0.34, and Mean squared errors (MSE) are
0.28 mm day−1. The applications of the proposed solution in a real-time environ-
ment show that the LF by the proposed solution is more effective in reducing the
soil salinity as compared to the traditional process of leaching.
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1 Introduction

Soil salinity is the accumulation of salts in soil due to the natural material of soil or due to poor
agronomic practices [1]. This soil salinity is a serious threat to sustainable agriculture development [2].
To deal with the issue of soil salinity, extra irrigation water is applied to leach down the salts from the
root zone of the plants. Leaching is the process of application of irrigation water to percolate down the
salts from the root zone of the plants. LF is the ratio of irrigation water required to leach down the salts
to a specific level of soil salinity. The application of irrigation water for leaching purposes without
calibration according to environmental conditions usually fails to reduce soil salinity effectively [3].

To effectively achieve the objective of leaching, the irrigation water used for leaching purposes must be
adjusted to environmental conditions and salinity levels. To adjust the LF according to the environmental
conditions the LF is adjusted with the Evapotranspiration (ET) rate. ET rate is the measure of water loss
from the soil and plant surface in the form of evaporation and transpiration, collectively called ET [4].
Reference Evapotranspiration (ETo) is used to model the ET rate of a model crop. ETo is the standard ET
of the grass crop [5]. The ET of the model crop (grass) is called Reference ETo. The ETo rate is heavily
affected by the temperature, humidity, wind speed, and sunshine duration. The ET rate increases with
temperature and decreases with an increase in humidity [6].

ET is affected by environmental conditions with a severe impact on LF to be available for an effective
leaching process. Irrigation must be adjusted with the ET rate to ensure the LF of irrigation water is available
under prevailing environmental conditions. Many methods of ETo rate determination are recommended.
Most important are Blaney Criddle, Penman Montieth method, and Pan Evaporation method [7].

These methods required a lot of parameters that make them difficult to apply at the farmer level. LF of
irrigation water applications without adjustment to the prevailing conditions usually fails to achieve the
objective of leaching in saline soils. Leaching is applied without any calibration according to the salinity
level and environmental conditions. Leaching irrigation water needs to be calibrated according to the
environmental context, to successfully reduce the soil salinity by the leaching process. The failure in the
leaching process results in loss to the farmers. LF is the fraction of total irrigation water required to
reduce soil salinity from a certain salinity level to the desired salinity level.

Machine learning has revolutionized the world by transforming all spheres of life including healthcare,
agriculture, transport, entertainment, and business. ML is also applied in agriculture to deal with different
problems in agriculture. Many ML-based solutions were proposed to determine the ET rate from limited
environmental conditions. Determination of LF from ML-based ETo rate is not previously targeted. To
determine the LF from limited environmental conditions the ML model is proposed to determine the
calibrated Evapotranspiration (ETc) from the prevailing temperature, humidity, and sunshine duration. To
train and validate the Model the Blaney Criddle Method of ET rate determination is used. Many smart
irrigation water solutions were proposed in recent years for the conservation of irrigation water. Most of
the proposed solutions were limited to sensing soil moisture conditions and recommendations for the
irrigation water accordingly. Very few smart irrigation water solutions follow Food and agriculture
organization (FAO) recommended method of ET for the determination of irrigation water requirements [8].

1.1 Significance of Study

Soil salinity has a profound impact on the socio-economic life of people. Soil salinity has seriously
affected more than 831 million hectares of land, across the world [9]. Soil is a non-renewable resource
that is very important to feed the ever-increasing population. Every sphere of knowledge should focus to
reclaim the saline soil. Soil salinity is a significant environmental hazard that affects crop yield and
production. Soil Salinity is the primary source of reduction in crop yield and source of barren soil [10]. A
high concentration of salt affects the plant’s ability to uptake the water [11].
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Due to progressive human-induced salinization, the soil at an alarming rate has become unsuitable for
agricultural and infrastructure developments [12]. Poor agriculture practices are the primary reason for
human-induced soil salinity. Salinity is a severe problem in irrigated areas and results in considerable loss
to the value of production [13]. Soil salinity is an issue in more than seventy countries. Soil salinity cause
1%–2% of land degradation per year. Around 20% of irrigated land is affected by soil salinity [14].

Soil salinity is the major problem in arid regions that causes severe economic losses to the farmers. The
soil salinity is very toxic to plants. Most of the plants cannot survive in saline culture. The salts uptake by
the plants interferes with the normal physiology of the plants. The toxicity of salinity results in the death of
the plants which causes severe loss to the farmers. To feed the ever-increasing human population. Every
sphere of knowledge must contribute to dealing with issues. The proposed solution intends to improve
the effectiveness of the leaching process to reduce soil salinity. The reclamation of saline soils for
agriculture purposes by effective leaching would save the most precious resource.

1.2 Contribution

The major contribution of the work is the determination of the LF of irrigation water to deal with the
issue of soil salinity efficiently and effectively. The proposed solution optimizes the use of irrigation
water for leaching purposes according to environmental conditions (temperature, humidity, wind speed)
that were not previously targeted. The relationship between environmental conditions and ET is diverse.

Some conditions tend to increase the ET, and some decrease the ET rate. The combined effect of all the
environmental conditions is hard to determine from the linear model. Therefore, ML-assisted ETo rate is
determined to optimize the LF according to the environmental conditions. LF determination from limited
environmental conditions aims to support sustainable developments in agriculture.

1.3 Data-Driven Machine Learning Model

A data-driven machine learning model is applied to make decisions for the smart LF of irrigation water.
The proposed solution is ideal for dealing with the issue of soil salinity while conservation of irrigation water,
to support sustainable developments in agriculture. The proposed solution aims to effectively deal with the
issue of soil salinity by smart leaching of irrigation water. Smart leaching fraction of irrigation water
application according to the prevailing, temperature, humidity, wind speed, and sunshine duration can
effectively deal with the issue of soil salinity in irrigated areas.

2 Literature Review

The literature review is performed to find relevant work, from major bibliographic indices. Many
solutions regarding smart irrigation have emerged in recent years. Hellin et al. presented an automated
smart irrigation Decision Support System for smart water conservation [15]. Olivo proposed an
automated actuator for the control of irrigation water according to environmental conditions [16]. Rojo
proposed irrigation water requirements by observing the stress in the leaf of plants [17]. El-Kader reviews
the Wireless sensor network (WSN) applications in agriculture for precise use of the resources especially
the irrigation water [18].

Mulenga et al. recommended irrigation water conservation techniques by applications of irrigation water
according to the prevailing environmental conditions [19]. Haghverdi et al. [20] recommended site-specific
irrigation according to the level of soil moisture in the field. Mohanraj et al. [21] proposed irrigation water
requirements by sensing environmental conditions from the crop field.

Gutierrez et al. proposed optimized irrigation water requirements for precise estimation of irrigation
water according to the environmental conditions [22]. Nikolidakis et al. proposed automated irrigation
water management according to prevailing environmental conditions [23]. Sales et al. proposed
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automated irrigation using sensors to sense the environmental conditions [24]. Garcia et al. proposed site-
specific irrigation water management in crop fields [25]. Xie et al. proposed irrigation water management
using a fuzzy programming approach [26].

Feng et al. recommended an ML-based ET determination method from environmental conditions [27].
Ilic et al. recommended an efficient irrigation water schedule using a neuro-fuzzy approach [28]. Coates et al.
proved an automatic valve for irrigation water management [29]. Gocic et al. suggested ML-assisted ET rate
determination based on temperature data of a location. [30].

Goumopoulos et al. proposed irrigation water requirements for plants using the “speaking plant”
approach [31]. Kong et al. recommended a technique to assess the soil moisture conditions for irrigation
water recommendations [32]. Karim et al. recommended irrigation water conservation using the WSN
[33]. Ramachandran, et al. recommended crop irrigation water requirements according to the prevailing
environmental conditions [34]. Afrasiabikia et al. [35] recommended a distribution system of irrigation
water to prevent losses of irrigation water. Shi et al. reviewed the recent developments of IoT applications
in protected agriculture [36]. Ahmed et al. recommended smart farm architecture [37].

Popovic et al. recommended IoT infrastructure for ecological monitoring [38]. Rajalakshmi et al.
proposed IoT crop field monitoring for the irrigation water recommendation. Talavera et al. [39] explored
the IoT application in agriculture. Naqvi et al. recommended IoT-based irrigation management
applications to conserve irrigation water [40]. The study in [41] proposed leaching estimation in saline
soil with temperature conditions of an area. Wang et al. [42] evaluate the remote sensing, machine
learning and Land surface model (LSM) based approaches where results indicate that ensemble means of
global terrestrial ET rates are similar in all the approaches.

Niaghi et al. [43] proposed ML-based ETo, estimation in humid conditions due to the non-linear
characteristics of the ETo determination. The ML models [44] are compared in terms of RMSE, MAE,
Scattered index (SI), and Co-relation coefficient. It is observed that the RF model is more accurate in ETo
estimation with radiation as input. Faramiñan et al. [45] proposed daily actual Evapotranspiration (ETa) of
barley crops by the development of the linear generalized model, developed from meteorological conditions.

López et al. [46] proposed ETo estimation with soil moisture conditions using the regression model. The
proposed solution determines the crop potential Evapotranspiration (ETc) of Kikuyu grass. The Eto by
proposed solution is compared against the Penman Montieth method. The model achieved a coefficient of
determination of 0.9936, with RMSE 0.183 mm day−1. Allen et al. [47] recommended weather data
conditioning to deal with the problem of overstated ETo to adjust biases in ordinary conditions, especially
in arid conditions.

Martínez et al. [48] evaluated the performance of Remote sensing (RS) based ETo estimation at low
altitudes. The study evaluated the performance of MODIS ET (MOD16), Global land evaporation
amsterdam model (GLEAM) ET, and Atmosphere-land exchange inverse (ALEXI) ET. Petkovic et al.
[49] recommended a regression model of ETo determination from several weather conditions. Wang et al.
[50] proposed radiation-based ETo estimation from RS data considering the complex terrain. The
implementation of the proposed result yields that R2 is 0.84 and 0.86 at two different locations with
0.59 and 0.82 RMSE respectively.

Ma et al., [51] suggested an ET estimation framework from high-resolution RS data from
Sentinel-2 satellite data. The coefficient of determination of the proposed solution is from 0.870 to
0.912 mm day−1. The coefficient of determination of the proposed solution is from 0.870 to 0.912 mm day−1.

Many ML-assisted solutions were proposed to determine the ETc rate from prevailing environmental
conditions. Recommendation of LF based on ET rate from limited environmental conditions is not
previously targeted. The proposed solution would support sustainable developments in agriculture with
the reclamation of saline soils with an effective leaching process with the conservation of irrigation water.
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3 Materials and Methods

The smart LF of irrigation adjusts the ET rate with environmental conditions using the ML approach.
Initially, the ETc rate was based on temperature, humidity, and sunshine duration. LF of Irrigation water
is determined using the ET rate and salinity level of the soil and irrigation water of the crop field. LF is
used to determine the fraction of total irrigation water that is required to reduce salinity up to the target
level of soil salinity. LF and ETc are used to determine the irrigation water requirements according to the
temperature, humidity, wind speed, sunshine duration, and prevailing salinity conditions.

3.1 Flow Chart of Proposed Method

The proposed solution determines the ETo from the temperature and day length of an area using the
Blaney Criddle method of ET. Blaney Criddle is a theoretical measure of ET rate and ignores the impact
of humidity, sunshine, and wind speed. ML model is used to determine calibrated ETc rate according to
humidity, sunshine, and wind speed. ETc and LF are used to determine the total irrigation Water
requirements (WR).

3.1.1 Blaney Criddle Method of Reference Evapotranspiration (Et0)
ETo is the ET rate of reference crop in millimeters in one day (mm day−1). It is obtained by using the

Blaney-Criddle method, by Eq. (1), where ‘Tmean’ is the mean monthly temperature, and ‘p’ is the daily
percentage of daytime in hours.

ETo ¼ p 0:46 � Tmeanþ 8ð Þ (1)

The daytime length has a significant impact on irrigation requirements and ET rate. The experiment area
is situated at the latitude of 30° N. Value of daytime length ‘p’ is taken from the mean daytime percentage
hours based on latitude and month. Table 1, shows the “p” value of the experiment area (Vehari, Pakistan) for
January to June.

Tmean is the mean monthly temperature obtained by mean monthly maximum temperature (Tmax) and
means monthly minimum temperature (Tmin) by Eq. (2).

Tmean ¼ Tmaxþ Tminð Þ
2

(2)

Tmax is obtained by Eq. (3), where ‘n’ is the maximum number of days in a month, and Tx is the
maximum daily temperature.

Tmax ¼ Sum of maximum temperature

No days in one month
¼

Pn
i¼1 Txi
n

(3)

Tmin is obtained by Eq. (4), where ‘n’ is the number of days and Tn is the minimum daily temperature.
All these temperature measurements are made on a degree centigrade scale (°C).

Table 1: Mean daytime percentage hours at 30° north

Jan Feb Mar Apr May Jun

0.24 0.25 0.27 0.29 0.31 0.32
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Tmin ¼ Sum of minimum daily temperature

No days in one month
¼

Pn
i¼1 Tni
n

(4)

The flow chart of the method is given in Fig. 1. Start the process where the mean monthly temperature
and daylight tends to ET0. Average monthly sunshine, humidity, and wind speed lean towards ETc. Finally,
the crop tolerance level, irrigation water salinity, and soil salinity measure the leaching fraction. Then this
whole process calculates the total requirement of water before the end.

Figure 1: Flow chart of the proposed solution

3.1.2 Leaching Fraction (LF)
The LF is the fraction of irrigation water required to control salinity within the crop tolerance level. LF of

irrigation water is determined according to the soil salinity, irrigation water salinity, and crop tolerance The
LF is expressed by Eq. (1), where ‘ECw’ is the irrigation water salinity level in dSm−1, and ‘ECe’ is the
salinity tolerance level of the crop. ‘ECe for the grass crop at one-hundredth percent (100%) of yield
potential is 8.7.

LF for the grass crop with a tolerance level of 8.7 dSm−1 is determined by the FAO recommended
method by Eq. (5).

LF ¼ ECw= 5 ECeð Þ � ECwð Þ (5)

The Water requirements in the experiment area (WRe) are calculated by Eq. (6), where ETc is the
calibrated Evapotranspiration (ETc) and LF is determined by Eq. (5).

WRe ¼ ETc= 1� LFð Þ (6)
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For comparison purposes, the Water requirements in the control area (WRc) are obtained by using the
ET0 from the Blaney Criddle method by Eq. (7). The WRc is applied in the control area and WRe is applied
in the experiment area to observe the effectiveness of both solutions.

WRc ¼ ETo= 1� LFð Þ (7)

The theoretical ET0 by Blaney Criddle method ignores the impact of humidity, wind speed, and sunshine
duration on ET rate. ML-assisted smart ETc rate is determined according to the prevailing humidity level,
wind speed, and sunshine duration. The objective of the ML model is to effectively adjust the ET0

according to humidity, wind speed, and sunshine duration ratio.

The dataset for the ML is obtained by conditions shown in Fig. 2 and by the Blaney Criddle method. Each
line shows the ETc according to the humidity, wind speed, and sunshine. The ETc is calibrated according to
these conditions. The ideal outcome of the model would be the minimum amount of irrigation water that
serves the irrigation water requirements for LF to be successfully available. The success matric in this
regard would be the smart calibrated irrigation water according to the environmental conditions.

Figure 2: Machine learning data set [6]
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The model is deemed to be a failure if the recommended irrigation water fails to achieve the objective of
leaching. The input to the model would be the ETo, humidity, wind speed, and sunshine duration. Fig. 2,
shows the environmental data for ML training.

The MLmodel is developed using multiple regression. The regression model is used due to the existence
of the linear relationship between environmental conditions, ETc. The training of the model is done with
more than one hundred thousand records. Eighty percent (80%) of the data set is used for the training of
the model and twenty percent (20%) for the test data set.

The objective of the model is to directly predict the ETc from the direct values of humidity, wind speed,
and sunshine duration. Fig. 3, shows the distribution of the data of ETc in the test data set.

3.1.3 Machine Learning (ML) Model

4 Results and Discussion

This section intends to evaluate the proposed method of smart LF of irrigation water with different
prospects. Initially, the performance of the ML model is made with different types of evaluations. The
performance of smart LF of Irrigation water is compared against the traditional method of LF of
Irrigation water.

4.1 Performance of Machine Learning Model

The proposedMLmodel predicts the ETc from the humidity, wind speed, and sunshine as the input to the
model. The performance of the model is observed in terms of the accuracy of the model to determine the
calibrated ETc. The ETc predicted by the proposed solution is compared against the Blaney Criddle of ET

Figure 3: Distribution of Etc in the test data set
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rate determination to find the difference in prediction. The difference in predicted and actual ET values from
the test data set is shown in Fig. 4.

For the different levels of ETo, the difference in calibrated ET (ETc) is shown in Fig. 4. For each case, the
difference is very low. The maximum difference is 2 mm day−1 and the minimum difference is 0.2 mm day−1

for all observed ETc values. For most of the observed values, the difference is less than 1 mm day−1. The
difference in calibrated ET (ETc) is low against each set of ETo.

The performance of the ML model is observed in terms of mean absolute errors (MAE), Mean squared
errors (MSE), and Root means squared errors (RMSE). The MSE is the average of the Squared Errors. MSE
is the average of the square of the difference between the predicted values and actual values. MSE is
expressed by Eq. (8), where ‘n’ is the number of observations. It is the measure of the distance of points
from the regression line.

MSE ¼ 1

n

X
ðActual� PredictedÞ2 (8)

Root Mean Squared Error (RMSE) is the square root of the average of the MSE. RMSE expressed by
Eq. (9), is related to an estimator.

RMSE [ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE [ð Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X
Actual� Predictedð Þ2

r
(9)

Mean Absolute Error (MAE) is the average of the difference between the observed value and actual
value measured using the same phenomenon. MAE is expressed by Eq. (10), where ‘Yi’ is the observed
value of the ‘ith’ item and ‘xi; is the actual value of the ith item.

Figure 4: The difference in actual and predicted ET
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MAE ¼
Pn

i¼1 yi� xij j
n

(10)

In Table 2 the value of MAE 0.34, MSE 0.28 and RMSE 0.41 in mm day−1 are low against the test
dataset of the model, which reflects the accuracy of the model in making Etc prediction. The test data
statistics show that the ML model is accurate in the prediction of ETc against the prevailing
environmental conditions. The proposed model can be used with accuracy and confidence in the
estimation of irrigation water requirements from the LF, ETc.

4.2 Field Effectiveness of Smart Leaching

The effectiveness of the proposed smart LF of irrigation water is also observed by the application of the
proposed solution in a real-time environment. The effectiveness of the proposed solution is compared to the
traditional leaching process. To implement and compare the performance of both leaching processes is
applied in two adjacent areas with similar soil salinity levels. In the experiment area, the leaching process
is applied according to the proposed solution while in the control area the leaching process is applied by
the traditional process. In both areas, the salinity level is observed before and after leaching water application.

The salinity is observed before and after the application of leaching irrigation water in both areas. In both
areas, salinity is observed at sixty-four sampling points for soil salinity in terms of electric conductivity (EC).
The impacts of leaching by the smart and traditional methods are analyzed in terms of average soil salinity
ECav. The average soil salinity (ECav) is determined by Eq. (11), where ‘n = 64’ is the total number of sample
points, ‘i’ is the sample point number, and ‘EC’ is the EC value at the sampling point. The targeting tolerance
level is set for the cotton crop that is 8.7 dSm−1 or below.

ECav ¼
Xn

i¼1
ECi (11)

4.2.1 Salinity Distribution Before Leaching
Initially, the soil salinity is observed in both the control and experiment areas before the application of

irrigation water for leaching purposes.

In Fig. 5, the salinity distribution of both experiment and control areas is plotted before the application of
irrigation water for leaching purposes. Before the leaching process, the ECav in the control area was
12.67 dSm−1, and in the experiment, the area was 12.93 dSm−1. In both areas, salinity at all the sixty-four
(64) sample points was higher than the tolerance level of the selected crop which is 8.7 dSm−1. Both
areas have similar ECav, and at all the sample points the salinity is above the tolerance level of the crop
as given in Table 3.

4.2.2 Salinity Distribution After Leaching
The WRe are determined based on ETc and LF. The smart calibrations in ETc are made based on crop

field environment conditions. The WRe is determined by predicted ETc of 5.3 mm day−1. With irrigation
water salinity of 5 dSm−1 and a targeted level of soil salinity of 8.7 dSm−1, the required LF is

Table 2: Performance matric of the machine learning model

Measure Value

Mean Absolute Error (MAE) 0.34

Mean Squared Error (MSE) 0.28

Root Mean Squared Error (RMSE) 0.41

1924 IASC, 2023, vol.36, no.2



0.13 determined by Eq. (5). It means thirteen percent (13%) more irrigation water is required to serve the
objective of leaching. With ETc of 5.3 mm day−1, the total requirements of irrigation water would be
6.23 mm day−1, with LF of 0.13. While in the control area the WRc, is applied with the traditional
method by applying Eq. (7).

Soil salinity distribution is compared in both the control and experiment area after leaching application.
Salinity distribution after the application of WRe and WRc in the control and experiment area is shown in
Fig. 5. Salinity distribution in the experiment and control area is given in Table 4.

Figure 5: Soil salinity distribution after leaching application

Table 3: Salinity analysis before leaching

Average
Salinity in
Control Area

Average
Salinity in
Experiment
Area

No Sample Point with EC
Greater than Tolerance Level in
the Control Area

No Sample Points with EC Greater
than Tolerance Level in the
Experiment Area

12.67 12.93 64 64

Table 4: Salinity distribution after the leaching process

ECav in
the
control
area

ECav in control
area
Experiment
Area

No of the sample points with EC
greater than the tolerance level in
the control area

No of the sample point with EC values
greater than the tolerance level in the
experiment area

8.7 7.07 35 14
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In the experiment area, the ECav is 7.07 dSm−1, and in the control, the area is 8.7 dSm−1. In the control
area at thirty-five (35) sample points, soil salinity is more than the targeted level of soil salinity. In the
experiment area at fourteen (14) sample points, the salinity is more than the targeted level (8.7) dSm−1 of
soil salinity. The proposed smart leaching is more effective in reducing the ECav and at a greater number
of sample points as compared to the traditional approach applied in the control area.

4.3 Discussion

The effectiveness of the proposed solution is observed in terms of the accuracy of the ML model and the
effectiveness of the proposed solution in the reduction of soil salinity. The ML model is accurate in the
prediction of calibrated ETc with lower MAE, RMSE, and MSE. Salinity is observed in the control and
experiment areas before and after the application of leaching by the proposed solution and by the
traditional method in the experiment and control areas respectively. Salinity distributions before and after
leaching irrigation water applications in control and experiment areas are shown in Fig. 6, and the results
are summarized in Table 5.

Figure 6: Salinity comparisons
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ECav in the control area is reduced from 12.78 to 8.7 dSm−1, after the application of leaching by the
traditional method. In the experiment area, ECav is reduced from 12.93 to 7.07 dSm−1, with the
application of smart LF of irrigation water. Smart leaching is more effective in the experiment area as
compared to the traditional leaching process applied in the control area. The number of sample points
with salinity level, more than the targeted level of soil salinity, was reduced from sixty-four (64) to thirty-
five (35), in the control area, and from sixty-four (64) to fourteen (14) sample points in the experiment
area. The smart LF application in the experiment area is more successful in reducing salinity as compared
to the traditional method in the control area.

The performance of smart LF against the traditional methods in terms of average salinity, and the
number of points above the target level reveals the success of smart LF of irrigation water against the
traditional method. The smart LF of irrigation water is more effective in reducing the soil salinity as
compared to the traditional leaching process. The proposed solution adjusts the irrigation water according
to the prevailing temperature, humidity, and sunshine duration to recommend LF irrigation water that is
more effective in reducing the soil salinity as compared to the traditional leaching process. Fig. 6 shows
the distribution of the soil salinity in the experiment and control area before and after the application of
the leaching process. From Fig. 6 it is observed that the proposed solution is more effective in reducing
the soil salinity at more points as compared to the traditional leaching process.

5 Conclusion

Soil salinity is a soil degradation process that is a serious hazard to sustainable development in
agriculture. Application of smart leaching by calibrated Evapotranspiration (ETc) is proposed for the
Leaching Fraction (LF) of irrigation water to be more effective. Smart LF of irrigation water is proposed
and implemented in a real-time environment. The ML model is proposed to adjust in Evapotranspiration
rate according to humidity, sunshine, and wind speed to determine the ETc rate. The proposed ML model
is accurate to predict the ETc to determine the smart LF of irrigation water. The LF of irrigation water is
determined according to ETc, soil salinity level, irrigation water salinity level, and crop tolerance level.
The field evaluation of the proposed solution of the smart LF reveals that the proposed solution is more
effective in reducing the soil salinity in terms of average soil salinity and at a greater number of points.
For future work, the proposed solution needs to be tested against different ML algorithms for a more
accurate prediction of ETc. The proposed solution is based on the Blaney Criddle method of ETo rate
determination. It needs to be tested against the Penman Montieth method and Pan Evaporation-based ETo
determination.
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Table 5: Salinity analysis

ECav in
control Area
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with EC greater the tolerance
level in the control area

No of the sample points
with EC greater than the tolerance
level in the experiment area

Before After Before After Before After Before After
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