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Abstract: Parkinson’s disease is identified as one of the key neurodegenerative
disorders occurring due to the damages present in the central nervous system.
The cause of such brain damage seems to be fully explained in many research
studies, but the understanding of its functionality remains to be impractical.
Specifically, the development of a quantitative disease prediction model has
evolved in recent decades. Moreover, accelerometer sensor-based gait analysis
is accepted as an important tool for recognizing the walking behavior of the
patients during the early prediction and diagnosis of Parkinson’s disease. This
type of minimal infrastructure equipment helps in analyzing the Parkinson’s gait
properties without affecting the common behavioral patterns during the clinical
practices. Therefore, the Accelerometer Sensor-based Parkinson’s Disease Identi-
fication System (ASPDIS) is introduced with a kernel-based support vector
machine classifier model to make an early prediction of the disease. consequently,
the proposed classifier can easily predict various severity levels of Parkinson’s
disease from the sensor data. The performance of the proposed classifier is com-
pared against the existing models such as random forest, decision tree, and k-near-
est neighbor classifiers respectively. As per the experimental observation, the
proposed classifier has more capability to differentiate Parkinson’s from
non-Parkinson patients depending upon the severity levels. Also, it is found that
the model has outperformed the existing classifiers concerning prediction time
and accuracy respectively.

Keywords: Brain disorders; gait analysis; Parkinson’s disease; support vector
machine classifier; healthcare system

1 Introduction

According to recent research studies, Parkinson’s disease is considered to be the second most common
chronic neurodegenerative disease in the world. This particular disease can be characterized by primary
motor dysfunctions such as tremors, stiffness, bradykinesia, and postural instability in elderly people [1].
In addition, some of the secondary motor symptoms such as micrographia, dysphagia, gait, speech,
dystonia, and precision grip impairments may also worsen the life quality of people [2]. Nowadays
clinicians show more emphasis on non-motor symptoms such as mood dysfunction, hyposmia, cognitive
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impairments, pain, and so on. Some of the described motor symptoms are not specific and they are not
associated with Parkinson’s disease as well.

However, the assessment of non-motor symptoms is more crucial in clinical practice and has a direct
impact on the progression of Parkinson’s disease [3]. Usually, the person affected by Parkinson’s disease
could be above the age of sixty and may walk with a slower and shuffling gait speed. Progressively, there
is a need to evaluate and monitor the increasing changes occurring in motor dysfunction using wearable
sensors such as accelerometers, magnetometers, and gyroscopes. Spatio-temporal parameters such as gait
velocity, cadence, time, distance, stride length, and step length are seemed to be the major descriptions of
the gait cycle [4]. The severity of these Parkinson’s symptoms may vary considerably throughout the day
which needs continuous monitoring and evaluation for a longer period. Moreover, prolonged stays in the
hospital may lead to more financial costs, and also the evaluation could not imitate the real motor
symptoms of patients with Parkinson on every day. Importantly, this type of increased burden and
financial issues are the most challenging tasks to be considered among the biomarkers to effectively
monitor and diagnose Parkinson’s patients with proper medical care [5].

To overcome the above limitations, various healthcare examinations are imposed by the clinicians to
measure Parkinson’s disease symptoms without increasing the expenses and complexities. These types of
early identification and diagnosis could overcome the complications of late clinical treatment which can
alleviate the unwanted financial cost, social demand, family burden, etc. The current research studies
have focused on developing computer-assisted technologies for Parkinson’s disease-related prediction,
monitoring process, and diagnosis in the aspects of checking voice disorder, facial expression,
handwriting dynamics, freezing-of-gait, and anxiety depression [6]. To check the voice disorder, speech
processing and recognition are explored in the cloud-based framework to enable remote healthcare
applications for Parkinson’s disease patients [7].

Facial emotion recognition is identified in Parkinson’s patients by analyzing the cognitive impairment
and giving more preference to mouth and eye movement behaviors [8]. The facial expression and
movement analysis rely mainly on a video-based system to keep track of the facial movements recorded
in successive video frames over a specified period of time [9]. Handwriting dynamics are explored using
machine learning techniques to assess various static and dynamic spiral tests conducted over the patients
[10]. Preferably gait analysis is used to classify a Parkinson’s person easily from healthy persons based
on gait pattern recognition by deploying sensors under the foot [11]. Similarly, the gait analysis can be
done through the deployment of accelerometer sensors in the hip, knee, and ankle. The experimental
analysis of human motion can be captured through the subsequent observation of the position, velocity,
and acceleration of independent coordinates of the body base [12].

All the above healthcare systems help in improving the quality of life by providing classification,
prediction, and rehabilitation monitoring on Parkinson’s patients. According to the recent research studies
[13–15], the most important issues are highlighted for enhancing the healthcare systems; (a) insufficient
prediction and prevention mechanisms for freezing of gait, (b) lack of consistent monitoring and
validation of wearable sensor information, (c) lack of optimal placement of wearable sensor for
continuous monitoring, (d) inappropriate feature selection scheme for supporting disease prediction and
diagnosis, (e) lack of appropriate behavioral assessment scheme to identify the cognitive impairments of
Parkinson patients.

Therefore, the proposed research study has focused on addressing the above-mentioned research issues
to enhance the performance of the Parkinson’s disease prediction and diagnosis process. Since Parkinson’s
disease is a progressive disorder, a proposed research study has aimed to offer symptomatic relief and slow
down the progression of the disease among elderly people. The key contributions of this research study
include; (a) the novel architecture of PDIDS to predict the various severity levels of Parkinson’s disease
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and choose an appropriate diagnosis method pertinent to levels; (b) a feature selection mechanism is applied
to select the appropriate features during disease prediction; (c) a probabilistic classifier model is proposed for
classification of various levels of Parkinson disease by improving the prediction time and accuracy. The rest
of the research study is organized into five sections. The next section can give a complete literature survey on
various feature selection mechanisms and classifier models. In Section 3, a detailed description of the
proposed PDIDS architecture is given with the formulation of gait recognition, feature selection, and
classification problems. Section 4 gives complete real-time experimentation and results of the proposed
research study. The final section could explain the conclusion of the proposed research study and the
future development of the Parkinson’s healthcare system.

2 Related Work

Many research studies exploit wearable sensors for promoting remote monitoring and diagnosis of
Parkinson’s disease by effectively quantifying the motor symptoms [16,17]. To discriminate against
Parkinson’s patients, a low-cost smartphone is used to practice the voice, gait, posture, and finger tapping
exercises at least four times a day [18]. Moreover, several researchers have been dependent on machine
learning and deep learning techniques in order to develop remote healthcare systems for robust prediction
and diagnosis. In the machine learning context, a novel continuous wavelet transform-based complex plot
was introduced during the gait analysis for the diagnosis of idiopathic Parkinson’s disease. During
experimentation, an artificial neural network classifier model was explored along with the temporal
features so as to recognize the severity stages of the disease [19].

A Gaussian neural network classifier was used in a recent research study for identifying Parkinson’s by
detecting the freezing of gait information as a major symptom that can acquire the variation of knee angle or
inter-foot distance [20]. Similarly, a rule-based processing classifier was used to differentiate the normal and
abnormal freezing of gait patterns by processing the data observed from the sensor placed on the shank
[21,22]. In particular, it can easily describe the freezing of gait with a short stride, tremor, and motor
block to give a warning message for severe gait and near fall situations.

To further differentiate the Parkinson’s tremor from the essential tremor, a convolutional long and short-
term memory network classifier was explored by learning both the postural and resting positions of hand
tremor [23]. In order to classify the severity of Parkinson’s symptoms in a proper way, a Convolutional
Neural Network classifier was employed with a tremor assessment system for processing the wearable
sensor devices [24]. Apart from these techniques, a probabilistic classifier model was used along with the
fisher discriminant ratio-based feature selection method to observe the gait patterns without any statistical
errors [25]. Moreover, the discriminative feature selection helps in generating more accurate prediction
results than the existing classifier models.

In a deep learning context, gait abnormal pattern detection was explored using the deep neural network-
based framework and the wearable inertial sensors [26]. It helps to achieve more prediction accuracy and less
loss function value than the existing convolution neural network-based classifier model. A temporal layer
was introduced to model the sequential sensor data to learn the complete changes occurring due to the
hidden unit present in the recurrent neural network classifier model [27,28]. This model requires the
consistent update of current states which may be difficult to train and explore the sequence of long-time
activities of sensor data.

In the case of deep neural networks, more hidden layers are presented than any other classifier model. It
mainly helps in learning the human activities from a large amount of data [29]. A deep convolutional neural
network classifier was used for the detection of freezing of gait patterns from the acceleration signals
captured from various patients [30]. Mostly, gait activity recognition becomes more challenging due to
problematic and imbalanced real-time datasets received from wearable sensors. For overcoming the

IASC, 2023, vol.36, no.2 2087



challenges, an ensemble of deep long, and short-term memory network classifiers were used to combine the
set of learners during the time of classification [31].

An active deep learning model was introduced to improve the accuracy and minimize the time during the
recognition of human gait activities [32,33]. The major limitations of these machine and deep learning
studies have included high-cost sensors installation and computational resources for gait analysis.
Moreover, foot pressure sensor-based measurements cannot be sufficient to acquire the Parkinson’s gait
pattern. There is a need to incorporate angular motions of the human body by placing the sensors in the
joints of the knee, hip, and ankle pants. The study of healthy and Parkinson’s persons needs to be done in
different walking styles to judge the deviation among two classes. Therefore, the proposed research study
has planned for making gait analysis on human subjects by deploying tri-axial accelerometer sensors on
the hip, knee, and ankle positions.

3 Architecture of Accelerometer Sensor Based Parkinson’s Disease Identification System

The proposed research study has introduced the layered architecture of ASPDIS as given in Fig. 1. It
consists of a sensor and cloud computing layer to implement the accelerometer sensor-based gait analysis
for real-time Parkinson’s disease-related prediction and treatment monitoring activity. For carrying out the
process, tri-axial accelerometer sensors are placed on the hip, knee, and ankle location of the human body
for observing various sequences of acceleration signals with respect to X , Y , and Z axes. These signals
are periodically captured in the raspberry pi computing device and offloaded to remote the cloud servers
available in the cloud computing layer for immediate processing and diagnosis. Also, the health status
information will frequently be updated on the patient smartphone display device. After live observation of
accelerating the data, the proposed healthcare service deployed in the cloud layer will apply the kernel-
based support vector machine classifier model to analyze the gait patterns. Based on the previously
trained medical data, the classifier can easily discriminate the patient with and without Parkinson’s
disease. In the meantime, subsequent variations in health parameters are updated in the patient medical
history to help the practitioner during future prediction and diagnosis. According to the severity level, the
healthcare service will invoke the appropriate rehabilitation monitoring and assessment facilities for the
patients. Furthermore, it can provide telemedicine suggestions and prescriptions to the appropriate
patients based on the expert decisions available online. Accordingly, the formulation of gait cycle
recognition and disease prediction using the proposed classifier is mathematically represented with the
corresponding cycle-specific to parameters.

3.1 Formulation of Gait Cycle Recognition

A gait cycle specifies the time period of one of the foot contacts with the ground to the next foot. So, to
get the complete gait cycle out of sensor data, the time of each gait event must be determined according to the
maximum scale of interest Tmax. To measure the acceleration signals from the subject, a pbleal accelerometer
sensor is fixed in the front of the center to represent the fixed belt. The orientation of acceleration axes X , Y ,
and Z represents the medial/lateral, superior/inferior, and anterior/posterior respective forward opens values
of these axes correspond to the life, upward and forward opens elevations. It is important to consider the
sequence of three-dimensional output signal points xtytzt½ � the received from the tri-axial athe the
ccelerometer sensors during gait monitoring process. Then, the gait event detection can be done through
the measurement of normalized cross-correlation (NCC), anisobiphasicd biphasicity score (BS). The
similarity between any two sequences with respect to time period T is characterized as a normalized
cross-correlation function given by Eq. (1).
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NCC Tð Þ ¼
Pn

t¼1 �xt�xtþT þ �yt�ytþT þ �zt�ztþT

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

t¼1 �x2t þ �y2t þ �z2t
� �

�
Pn

t¼1 �x2tþT þ �y2tþT þ �z2tþT

� �q (1)

Here, the average value of points �xt and �xtþT are computed from the base points as defined by Eqs. (2)
and (3) respectively. Similarly, the average value of points �yt, �zt, �ytþT and �ztþT are also computed from the
corresponding base points. These types of scalar quantity-based measurements provide a robust way of
setting the coordinate system. Likewise, the mean value of the acceleration signal is observed to be high
for dynamic activities such as hand movement and walking patterns. In case of low value of acceleration
signal, static activities such as standing and sitting patterns are observed.

Figure 1: Architecture of ASPDIS
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�xt ¼ xt �
1

n

Xn
t¼1

xt (2)

�xtþT ¼ xtþT � 1

n

Xn
t¼1

xtþT (3)

Next, the anisotropy measurement is defined in Eq. (4) to quantify the degree of time series data
variation towards the positive or negative value. Finally, the biphasicity score BS of three-dimensional
signal is given by the Eq. (5). The set of time functions characterizing the gait signal is given in the form
of delta function such as f1 tð Þ ¼ cxd tð Þ, f2 tð Þ ¼ cyd tð Þ, and f3 tð Þ ¼ czd tð Þ.

AN ¼
Pn

t¼1 sgn xtð ÞPn
t¼1 sgn xtð Þj j (4)

BS ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

2cy � cx
2cy þ cx

����
����
m

þ 1

2

2cz � cx
2cz þ cx

����
����
m

m
s

(5)

Let cx, cx, and cx denotes the corresponding cycles of axes X, Y, and Z.

The acceleration magnitude of the signal can be obtained through the filtering of component
ax tð Þay tð Þaz tð Þ
� �

using the Eq. (6). In order to identify the human fall rotation, it is more sufficient to
make transformations on x and y� axes in the two-dimensional coordinate as shown in Eq. (7).

ar tð Þ ¼ ax tð Þ2 þ ay tð Þ2 þ az tð Þ2
h i0:5

(6)

h ¼ tan�1 yv

xv

� 	
� 180

p


 �
(7)

An integration of acceleration signals is explored to authenticate the subject during continuous
monitoring and diagnosis using the Eq. (8).

I ¼ arcsin
azffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ax tð Þ2 þ ay tð Þ2 þ az tð Þ2
q

0
B@

1
CA (8)

where, t ¼ 1; 2; . . . ; k be the number of observations recorded at various time periods. Then, the absolute
distance metric is measured to find the similarity score between the gait samples p and q as given by the
Eq. (9).

dist p; qð Þ ¼
Xn
i¼1

pi � qij j (9)

The complexity of gait movement can be estimated in terms of signal spectrum energy as defined by the
Eq. (10).

E a tð Þð Þ ¼
Pk

t¼1 a tð Þ2
k

(10)

where, a tð Þ be the tth amplitude of the acceleration signal and k represents the number of spectrum lines.
Further, the periodicity can be estimated as entropy measurement as expressed by the Eq. (11).
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EN ¼ �
Xk
t¼1

p tð Þlog2 p tð Þð Þ (11)

Let p tð Þ denotes the probability of occurrence of amplitude spectrum a tð Þ of the respective acceleration
signal. The lower of the entropy value represents the periodicity of the investigated signal. The range of
acceleration signals can be represented as standard deviation as expressed by the Eq. (12). For estimating
the dynamics of changes occurring in the acceleration signal, a kurtosis parameter is defined by the
Eq. (13).

SD a tð Þð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

k � 1


 �Xk
t¼1

a tð Þ � �að Þ2
vuut (12)

k a tð Þð Þ ¼ m4 a tð Þð Þ
SD a tð Þð Þ2

� 3 (13)

Let m4 �ð Þ be the fourth central movement. A ratio of maximum signal to the rms values gives the crest
factor denoting the signal impulsiveness as expressed by the Eq. (14). Also, a correlation coefficient
parameter is illustrated between the different pairs of the same accelerometer sensor as expressed by the
Eq. (15).

kCF a tð Þð Þ ¼ max a tð Þð Þffiffiffi
1

k

r Pk
t¼1 a tð Þð Þ2

(14)

CC a tð Þli; a tð Þmj
� 	

¼
a tð Þli a tð Þmj � ali a

m
j

SD a tð Þli
� 	

SD a tð Þmj
� 	 (15)

where i and j denotes the number of accelerometer sensors, and l ¼ Parkinson0s and m ¼ xtytzt½ � denotes the
various axes of accelerometer.

3.2 Parkinson Disease Prediction using Kernel-Support Vector Machine (SVM) Classifier Model

The classification of Parkinson disease is made with respect to acceleration signals received from
various accelerometer sensors deployed on the hip, knee and ankle of the human body. In order to
effectively assess the human gait analysis, the SVM classifier model is explored in this research study. It
helps to classify the set of input parameters a ¼ a1; a2; . . . ; a1f g into two classes yi 2 �1;þ1f g, where
the vector ai ¼ xiyizi½ �. The kernel function ’ aið Þ helps to transform the input feature space ai into higher
dimensional feature space where the linear clarification exists. A kernel SVM provides the optimal hyper-
plane that can help to maximize the required margin among the positive and negative data points.
Therefore, the kernel SVM can be formulated with appropriate decision surface as defined by the
Eq. (16).

f xð Þ ¼ wTxþ b (16)

where, w be the highest dimensional coefficient vector and b be the offset. Aweight factor w and offset value
are defined together for hyper-plane separation as expressed by the Eq. (17). The kernel SVM classifier
model tries to achieve the optimal hyper-plane by resolving the optimization problem given by the
Eq. (18).
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yi � wT’ aið Þ þ b
� �

� 1� ei; i ¼ 1; 2; . . . ; k (17)

Minw;b;e
1

2
kwk2 þ C

Xk
i¼1

ei (18)

Let C be the hyper parameter that controls the tradeoff between the classes margin and ei. The sample ai
satisfies the conditions such as ei � 0, yi � wT’ aið Þ þ bð Þ � 1� ei and 8ai 2 1; 2; . . . ;mf g. As a result, the
optimization problem can be converted into a Lagrangian dual problem using multipliers a ¼ a1; a2; . . . ; anð Þ
as formulated by the Eq. (19).

Minw;b;e
Xk
i¼1

/i �
1

2

Xk
i¼1

Xk
j¼1

/i/jyiyjx
T
i xj (19)

where, the parameter w and b can be determined with constraints such as /i � 0,
Pk

i¼1 /iyi ¼ 0, and
i ¼ 1; 2; . . . ; k. Here, the unlabelled data samples can be classified according to the discriminant function
given by Eq. (20).

C Xð Þ ¼ sgn
Xk
i¼1

/i yix
T
i xþ b

 !
(20)

As SVM addresses the non-linear data samples, the kernel function is used mostly to map the samples to
the other space. There are four different kernel functions available such as liner, polynomial, radial basis and
sigmoid for the classification of gait. Out of which, the radial basis function is used to map the lower
dimensional data sample to the higher dimensional feature space. Therefore, the non-linear discriminate
function using the kernel is expressed by the Eq. (21). In order to complete the transformation, the
liner, polynomial, radial basis and sigmoid functions are explored in this study as defined by the
Eqs. (22)–(25).

C Xð Þ ¼ sgn
Xk
i¼1

/i yi k x1; x2ð Þ þ b

 !
(21)

k x1; x2ð Þ ¼ hx1; x2i (22)

k x1; x2ð Þ ¼ hx1; x2i þ bð Þd (23)

k x1; x2ð Þ ¼ e�yikx1�x2k2 (24)

k x1; x2ð Þ ¼ tan h yihx1; x2i þ bð Þ (25)

The performance of the kernel-SVM classifier model is measured in terms of disease prediction time,
prediction accuracy and Matthews’s correlation coefficient. Here, the prediction time represents the time
of patient request submission to the ending response received from the healthcare system. Then, the
classifier prediction accuracy denotes the ratio of properly classified Parkinson patients to the total
number of patients observed as given by the Eq. (26).

CAcc ¼
T P þ T N

T P þ FP þ T N þ FN (26)
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where, T P and T N indicates the amount of true positive and negative rate, FP and FN indicate the amount
of false positive and negative rate. Finally, the Matthews’s correlation coefficient can be measured between
the predicted and observed classification using confusion matrix as defined by the Eq. (27).

CMCC ¼ T P � T N � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T P þ FP� �

T P þ FN
� 	

T N þ FP
� 	

T N þ FN
� 	r (27)

Let the value of CMCC could range from −1 to +1, where the value of +1 denotes the perfect, −1 denotes
the disagreement and 0 denotes the unhealthy predictions of the specified classifiers.

4 Experimental Evaluations

To assess the performance of the proposed classifier model against the existing classifiers, a
benchmarking dataset is taken from the inertial sensor database [34,35]. It consists of forty-five persons,
equally classified into control, Parkinson and geriatric persons with characteristics as given in Table 1.
The persons were asked to present a 40-meter walk and free walk during the recording of the dataset at
the sampling rate of 102.4 Hz. In case of 40-meter walk, the person was asked to walk four times
10 meter at the comfortable speed without any obstacle in the hospital environment. Afterwards, the
persons were asked to turn 180 degrees along the transverse plane. In case of free walk, the persons were
asked to walk for two minutes at a comfortable speed. During the first two minutes, the person was asked
to walk straight for 20 meters twice the time. In next two minutes, the person was asked to climb the
stairs for 30 s. To mimic the scenarios connecting the 20 meters walk and stair hiking, the persons were
asked to perform sit-to-stand movement, walk straight, walk in the curves, and walk throughout the doors
manually. In order to provide in-depth estimate, the most excellent performing axes of accelerometer
sensor data are used as mentioned in Table 2.

Table 1: Sampling persons characteristics

Categories Control persons Parkinson persons Geriatric persons

Test 40 m walk Free walk 40 m walk Free walk 40 m walk Free walk

Persons 10 5 10 5 10 5

Strides 485 1286 496 1619 795 1249

Gender 5:5 3:2 5:5 3:2 4:6 2:3

Age 64.0 ± 8.4 64.2 ± 10.0 63.8 ± 9.3 72.8 ± 6.3 81.0 ± 4.1 80.4 ± 5.9

Table 2: Stride results of acceleration data

xes Control persons Parkinson persons Geriatric persons

X 67 73 47

Y 53 59 11

Z 56 32 44

XY 80 86 56

YZ 79 68 38

XZ 75 77 38

XYZ 85 93 51
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The performance metrics such as prediction time and accuracy were used to evaluate the proposed
kernel-based support vector machine classifier model against the existing random forest, decision tree and
k-nearest neighbor classifiers. The results of various classifier models were observed during the
experimentation of persons in 40 meters walk as given in Table 3. It is more evident from the observed
results, the proposed kernel-based support vector machine classifier model on 40 meters walk has
obtained an average of 21.43%, 22.10% and 22.10% of less prediction time over the existing classifiers
in the context of control, Parkinson and geriatric persons respectively. Then, the proposed kernel-based
support vector machine classifier model on free walk has obtained an average prediction accuracy
improvement of 16.02%, 16.70% and 12.99% over the existing classifiers in the context of control,
Parkinson and geriatric persons respectively.

Similarly, the performance of various classifier models is observed during the free walk experimentation
of persons as shown in Table 4. From the experimental results, it is distinctly understandable that the
proposed classifier model has achieved very less average prediction time of 18%, 18.23% and 18.03%
over the existing classifiers in the aspects of control, Parkinson and geriatric persons respectively. In
addition, the proposed classifier model has achieved more prediction accuracy of 11.74%, 11.78% and
12.99% over the existing classifiers in terms of control, Parkinson and geriatric persons respectively. In
both the cases of 40 meters walk and free walk, the proposed classifier model has outperformed the
existing classifier models in the aspects of prediction time and prediction accuracy. In future, the research
study can improve the healthcare system by providing a negotiation-based personalized diagnosis
mechanism [36,37]. In addition, the research study can be extended to monitor and diagnose the remote
patients by exploring real-time human tracking and activity identification mechanisms. Further, the
detection methodology can be enhanced using deep learning algorithms for the improvement of
prediction accuracy.

Table 3: Performance measurement on 40 meters walk

Classifier models Control persons Parkinson persons Geriatric persons

Prediction
time

Prediction
accuracy

Prediction
time

Prediction
accuracy

Prediction
time

Prediction
accuracy

Random forest 0.036 77.51 0.035 76.41 0.038 85.31

Decision tree 0.611 76.26 0.628 77.21 0.618 79.36

k-Nearest neighbor 0.056 81.11 0.054 82.21 0.058 83.86

Proposed kernel-based
support vector machine

0.020 94.32 0.018 95.31 0.017 95.84

Table 4: Performance measurement on free walk

Classifier models Control persons Parkinson persons Geriatric persons

Prediction
time

Prediction
accuracy

Prediction
time

Prediction
accuracy

Prediction
time

Prediction
accuracy

Random forest 0.031 79.81 0.028 82.55 0.030 85.31

Decision tree 0.522 75.89 0.528 78.12 0.518 79.36
(Continued)
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5 Conclusion

The proposed research study has developed the robust and efficient healthcare framework to validate the
gait cycle observed from the accelerometer sensors. Therefore, the observed results have shown that the
proposed ASPDIS provides more robust and accurate classification of persons with and without
Parkinson disease. Moreover, the proposed kernel-based support vector machine classifier model can
provide more computational efficiency and better prediction results while comparing to the existing
classifier models. It can also provide consistent performance even with a smaller number of training
samples used during the experimentation process. As a result, the proposed classifier has outperformed
the others in terms of prediction time and accuracy. In addition, the proposed ASPDIS could be enhanced
to perform well for the recognition of daily living activities of humans in the smart hospitals or homes.
Still there is a lack in deploying the optimal number of accelerometer sensors over the human body to
assess Parkinson disease motor symptoms. So, there is a need to identify the different combinations of
sensor placements during the experimentation in order to dramatically improve the performance of the
proposed ASPDIS. In future, freezing of gait and slowness of hand movements can be analyzed for the
further improvement in the performance of healthcare systems. A personalized gait pattern analysis can
be integrated with the healthcare system to detect and track the freezing of gait information in case of
individuals with Parkinson disease.
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