
Hyperparameter Tuning for Deep Neural Networks Based Optimization
Algorithm

D. Vidyabharathi1,* and V. Mohanraj2

1Sona College of Technology, Computer Science and Engineering, Salem, 636005, India
2Sona College of Technology, Information Technology, Salem, 636005, India

*Corresponding Author: D. Vidyabharathi. Email: vidyabharathid9764@gmail.com
Received: 11 May 2022; Accepted: 08 August 2022

Abstract: For training the present Neural Network (NN) models, the standard
technique is to utilize decaying Learning Rates (LR). While the majority of these
techniques commence with a large LR, they will decay multiple times over time.
Decaying has been proved to enhance generalization as well as optimization.
Other parameters, such as the network’s size, the number of hidden layers, drop-
outs to avoid overfitting, batch size, and so on, are solely based on heuristics. This
work has proposed Adaptive Teaching Learning Based (ATLB) Heuristic to identify
the optimal hyperparameters for diverse networks. Here we consider three architec-
tures Recurrent Neural Networks (RNN), Long Short Term Memory (LSTM),
Bidirectional Long Short Term Memory (BiLSTM) of Deep Neural Networks for
classification. The evaluation of the proposed ATLB is done through the various
learning rate schedulers Cyclical Learning Rate (CLR), Hyperbolic Tangent Decay
(HTD), and Toggle between Hyperbolic Tangent Decay and Triangular mode with
Restarts (T-HTR) techniques. Experimental results have shown the performance
improvement on the 20Newsgroup, Reuters Newswire and IMDB dataset.

Keywords: Deep learning; deep neural network (DNN); learning rates (LR);
recurrent neural network (RNN); cyclical learning rate (CLR); hyperbolic tangent
decay (HTD); toggle between hyperbolic tangent decay and triangular mode with
restarts (T-HTR); teaching learning based optimization (TLBO)

1 Introduction

It will speed up the review and typesetting process. Neural Networks (NNs) are models with successive
layers of neurons that have been in existence for decades. Training for these NNs can be done either in an
unsupervised or supervised manner. The most frequently used machine learning technique for either shallow
or deep networks is supervised learning Soydaner [1]. This technique will calculate an objective function that
measures the error or distance between the actual result and the expected result. The learning procedure will
involve adapting its internal parameters such that this error is minimized. The term “weights” is employed for
these adjustable parameters. Deep Neural Networks (DNNs) are made up of millions of weights that may
require to be updated during the training procedure.

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Intelligent Automation & Soft Computing
DOI: 10.32604/iasc.2023.032255

Article

echT PressScience

mailto:vidyabharathid9764@gmail.com
https://www.techscience.com/journal/IASC
http://dx.doi.org/10.32604/iasc.2023.032255
https://www.techscience.com/
https://www.techscience.com/doi/10.32604/iasc.2023.032255

The DNN model Shin et al., [2] will constitute a nested architecture of layers in which the number of
parameters is in millions. The deep model’s high degrees of freedom will enable it to be approximate
non-linear as well as linear functions; despite that, this model is constantly at the risk of overfitting to
training data. The deep neural network will require regularization techniques in the training procedure so
as to accomplish generalization, and hence, yield good predictions for the unknown data.

When training DNNs, it is generally beneficial to decrease the Learning Rate (LR) Yedida et al., [3] with
the progression of the training. This is done by employing pre-defined LR schedules or adaptive LR methods.
LR schedules will try to adjust the LR during the training procedure by mitigating the LR as per a pre-defined
schedule. Exponential decay, step decay, and time-based decay are the well-known LR schedules.

The choice of algorithm for a NN’s Yang et al., [4] optimization is one of the most critical steps. Machine
learning has three key types of optimization methods. The first type is referred to as batch or deterministic
gradient methods. These methods will simultaneously process all the training examples in a large batch. The
second type is known as the stochastic or online methods, which will only utilize a single example at a time.
Nowadays, the majority of the algorithms are a combination of the two afore-mentioned types of methods.
These algorithms are termed mini-batch methods as, during the training procedure, they utilize only a part of
the training set at each epoch. In the era of Deep Learning (DL) era, mini-batch methods are chiefly preferred
for two key reasons. Firstly, these methods can accelerate the NNs’ training. Secondly, there will be
computation of the expected gradient’s unbiased estimate since the mini-batches are chosen at random
and are independent.

Investigation of the hyperparameter search space generally needs huge number of epochs for training the
model with unique settings of the hyperparameters Wu et al., [5]. In consequence, to naively run the model to
retrieve optimized hyperparameters will need a remarkably vast number of GPUs, and it will be vital to
search the hyperparameter in the search space in most efficient manner. The work of hyperparameter
optimization is to train the target deep learning model various number of times, each time with an unlike
configuration and assess it every time. Every sub procedure during training period is recognized by the
model’s exclusive configuration. The training of contemporary DL models in order to attain highly
advanced accuracy will necessitate the alteration of hyperparameter values during the training process
since the objective is the minimization of high dimensional and non-convex loss functions. Therefore, a
single or set of hyperparameter configuration is treated as a value or array of values, which has examples
like network architecture parameters, input sequence length, training image input size, image
augmentation parameters, batch size, momentum, optimizer, drop-out ratio, and LR.

Dropout is a principle in which some of the neurons are not considered in the training process. These
randomly selected neurons are dropped out. That is, during the forward pass the role of the activation of
downstream neurons is removed temporarily. The same way during the backward pass, updation of
weights is not implemented to the selected neuron. This reduces the time for the whole training process.

Notwithstanding its popularity, the training of NNs is rife with numerous problems Alyafi et al., [6], such
as over-fitting, exploding gradient, and vanishing gradient. These problems can be resolved with various
advances inclusive of different activation functions, batch normalization, novel initialization schemes, and
dropout. Nevertheless, a more elemental problem involves the detection of optimal values for the numerous
hyper-parameters, of which the most vital one is the LR. It is a widely known fact that exceedingly small
LR has slow convergence while huge LR can result in divergence. It has been noted in recent works that,
instead of a fixed value of LR, a non-monotonic LR scheduling system will offer quicker convergence.

Optimizing the structure of the network and loss function is a NP (nondeterministic polynomial time)
hard process Vasudevan [7]. For enhancing the models’ generalization capabilities, different network
structures have been designed for application in diverse scenarios. Thus, manually designed network
structures are generally highly targeted. In accordance with different tasks, it is generally necessary to

2560 IASC, 2023, vol.36, no.3

redesign or optimize the network structure deeply in order to maintain the generalization performance in the
new scenarios, which in turn consumes a huge amount of manpower as well as computing resources.

Effective hyperparameter selection would result in earlier convergence to the global minimum point on
the error surface. This results in improved task performance while still avoiding issues such as overfitting. In
this work, it is proposed to optimize the set of hyperparameters (Learning rate, Activation Function, Dropout)
for RNNs, LSTM and BiLSTM by using the Adaptive Teaching Learning Based Optimization (ATLBO)
algorithm. The rest of this investigation has been organized into the following sections. Section two
details the related works in literature. Section three elaborates on the various methods employed in this
work. Section four describes the experimental outcomes, and Section five gives the work’s conclusions.

2 Related Works

Chen et al., [8] had presented a broad study of thirteen Learning Rate functions as well as their
associated Learning Rate policies by analyzing their range value, step value, and value update parameters.
The authors had suggested a metric set for the assessment and selection of Learning Rate (LR) policies,
inclusive of robustness, cost, variance, and classification confidence, and had set them in a Learning Rate
Benchmarking system known as the Learning Rate Bench. The LR Bench would aid DNN developers as
well as end-users to pick a suitable Learning rate policies and also to avoid unsuitable Learning Rate
policies so as to train their DNNs. The authors had gauged the LR Bench on Caffe, an open-source deep
learning framework, for demonstrating the tuning and optimization of Learning Rate policies. By means
of comprehensive experimentations and its assessments, this work attempted to clarify the fine-tuning of
LR policies by detecting appropriate policies with effectual range of LR values together with step sizes
for the Learning Rate schedulers.

Fischetti et al., [9] had put forward a powerful technique to pick an LR range for a neural network named
CLR (Contaminated Land Report) with two distinct skewness. This proposed technique would adjust where
the value is cycled between a lower bound and an upper bound. Simplistic in computation, the CLR policies
could avoid the computational expense of fine tuning with fixed LR. It was quite evident that altering the LR
during the training phase had offered more superior results in comparison to fixed values with the same or
even smaller number of epochs.

Li et al. [10] had given the demonstration of a novel approach to training DNNs through the use of a
Mutual Information (MI)-driven, decaying LR, Stochastic Gradient Descent (SGD) algorithm. For every
epoch of the training cycle, the MI amidst the neural network output and exact fallout was used to
strongly set the Learning Rate for the deep neural network. Since the MI instinctively offered a layer-
wise attainment metric, this opinion was stretched-out to a layer-wise fixing of the Learning rate.
Proposal for an LR range test to determine the operating LR range was also given. Experiments were
done to draw a comparison between this approach and other well-known alternatives like gradient-based
adaptive LR algorithms such as Adam, RMSprop, and LARS (Laboratory Assistant and Research
Systems). Competitive to better accuracy outcomes which were attained in competitive to a better time,
had demonstrated the feasibility of the metric as well as the proposed approach.

Yang et al. [11] had devised a DecayingMomentum (DEMON) rule, which was motivated by decaying a
gradient’s total contribution to all future updates. The application of DEMON to Adam will result in
substantially improved training, which is remarkably competitive to momentum SGD with LR decay,
even in settings where the adaptive methods are normally non-competitive. Likewise, the application of
DEMON to momentum SGD will rival momentum SGD with LR decay, and in certain cases, will result
in improved performance. In comparison to the vanilla counterparts, DEMON has simple implementation
and also has limited extra computational overhead.

IASC, 2023, vol.36, no.3 2561

Liu et al. [12] had proposed a novel meta-heuristic training scheme that unconventionally combined
SGD and discrete optimization. The scheme defines a separate neighbourhood of the current SGD point,
which was made up of number of “probably good moves” which could accomplish gradient information,
and to pursuit this neighbourhood through the use of a standard meta-heuristic scheme which had been
borrowed from discrete optimization. The authors had examined the usage of a simple Simulated
Annealing (SA) meta-heuristic which could accept/reject a candidate new solution in the neighbourhood
with a probability that was dependent on both the new solution quality and on a parameter (temperature)
that was modified over time so as to minimize the probability of accepting worsening moves. This work’s
title originated from how this scheme was utilized as an automated way to carry out hyper-parameter
tuning. A unique feature of this scheme was that hyper-parameters were modified within a single SGD
execution (rather than in an external loop, as per custom) and assessed on the fly on the current mini-
batch; that is, their tuning was fully embedded inside the SGD algorithm.

Smith [13] had modeled the SGD-induced training trajectory via a feasible Stochastic Differential
Equation (SDE) that had a noise term that could capture the gradient noise. This, in turn, yields: (a) A
new “intrinsic LR” parameter which was the product of the normal LR η and the weight decay factor λ.
The SDE analysis showed how the learning’s effective speed would vary and equilibrate overtime under
the intrinsic LR’s control. (b) A challenge—via theory and experimentations—to popular belief that good
generalization needed huge LRs at the training’s start. (c) New experimentations, supported by
mathematical intuition, suggested that the number of steps to equilibrium (in function space) would scale
as the intrinsic LR’s inverse, as opposed to the exponential time convergence bound that had been
implied by the SDE analysis.

Hsueh et al., [14] had devised a new LR schedule known as Piecewise Arc Cotangent decay Learning
rate (PACL), that could enhance the DNN’s accuracy as well as convergence speed and also could
substantially mitigate the performance degradation zone caused by the cycling mechanism. The PACL
had the ease of implementation and had almost no extra computing expense. Eventually, this work had
demonstrated the PACL’s effectiveness in training CIFAR-10, CIFAR-100, and Tiny ImageNet with
ResNet, DenseNet, WRN, SEResNet, and MobileNet.

Literature survey based on NNs, DNNs, decaying LRs, optimizing hyperparameters for deep learning
used in various domains are presented here. The observation from the surveys, they have concentrated
only on anyone of the Hyperparameter in the model to achieve better accuracy. Especially the learning
rate is decayed by using various methods (CLR, HTD and T-HTR) Yu et al., [15]. However, one
drawback is that it does not consider a set of hyperparameters, which affects the rate of convergence of
the network on the error surface. Through this survey the decision of considering proposed method
techniques to enhance the existing results was taken.

3 Learning Rates

3.1 Cyclical Learning Rates (CLR)

This Learning Rate policy’s essence comes from the observation that even though increasing the LR
may have a short-term negative effect; it can accomplish a more long-term beneficial effect. In view of
this observation, the concept would be to allow the LR to vary within a range of values instead of
adopting a value that is either stepwise fixed or exponentially decreasing. That is, the minimum and
maximum boundaries will be set, and the learning rate will cyclically vary between these bounds
Apaydin et al., [16]. Equivalent results were produced by experimentations with multiple functional
forms like a triangular window (linear), a Welch window (parabolic), and a Hann window (sinusoidal).
This resulted in the adoption of a triangular window (which will linearly increase and then linearly
decrease), since it is the simplest function that incorporates the above-mentioned concept.

2562 IASC, 2023, vol.36, no.3

With due consideration to the loss function topology, it is possible to achieve an intuitive understanding
of the CLR methods’ operating principles. Dauphin et al., had debated that the difficulty in minimizing the
loss emerged from the saddle points instead of the poor local minima. Saddle points have small gradients,
which slow down the learning procedure. Nevertheless, the learning rate could be increased to allow for a
swifter traversal of the saddle point plateaus. In all likelihood, the optimum learning rate would be
between the bounds, and the near-optimal learning rates would be utilized throughout the training. For
the CLR’s optimization, the root means the square error was employed as the fitness. The ATLBO
algorithm was used to detect the optimal learning rate.

3.2 Hyperbolic-Tangent Decay (HTD) Scheduler

This work had proposed a new LR scheduler referred to as the Hyperbolic-Tangent decay (HTD)
scheduler. When compared with the step decay scheduler, the HTD was found to have fewer
hyperparameters to tune and also showed better performance in all the experimentations. On the other
hand, when compared with the cosine scheduler, the HTD needed slightly more hyperparameters to tune
for higher performance and also exceeded the performance of cosine schedulers Chen et al., [17].

This work will propose to utilize hyperbolic tangent functions for the Learning Rate scheduling as per
the below Eq. (1):

lrHTDt ¼ lrmin þ lrmax � lrmin
2

1� tanh L 1� t

T

� �
þ U

t

T

� �� �
(1)

Here, lrmax will indicate the maximum LR, lrmin will indicate the minimum Learning Rate (LR), T will
indicate the total number of epochs (or iterations), 0 ≤ t ≤ T will indicate the index of epoch (or iteration),
while L and U will indicate the lower and upper bounds of the interval [L, U] for the function tanh x.

In HTD (L, U), the hyperparameters U will affect the final learning rate. As an example, when U = 3, the
final learning rate will be lrmax. (1 − tanh 3) ≈ lrmax· 0.005. Moreover, it is able to adjust the lower bound L to
alter the ratio, R = |L|/|U|, which is the ratio of the training times before and after the inflection point. The
ATLBO algorithm is used to find the optimal values for L and U.

3.3 Toggle Between Hyperbolic Tangent Decay and Triangular Mode with Restarts (T-HTR) Learning

Rate Scheduler

The T-HTR’s concept is to flip the Learning Rate scheduler’s hyperbolic tangent decay and triangular
mode amongst the iterations in the batches of the epoch. This will reduce the training time’s length and
also enhance the model’s learning. The earlier epochs’ specifics (like epoch number, learning rate and
gradient value) can be used to decide on the LR scheduler of the next epoch’s initial iterations. An
average of all the batches’ LR is taken. This average will be utilized as the next epoch’s initial Learning
Rate. The ATLBO algorithm is used to find the optimal learning rate at the earliest.

3.4 Teaching Learning Based Optimization (TLBO) Algorithm

All of the evolutionary- and swarm intelligence-based algorithms are probabilistic algorithms and
require common controlling parameters, like the population size, number of generations, elite size, etc. In
addition to the common control parameters, algorithm-specific control-parameters are required. For
example, Genetic Algorithm (GA) uses the mutation rate and crossover rate. Similarly, Particle Swarm
Optimization (PSO) uses the inertia weight, as well as social and cognitive parameters. The proper tuning
of algorithm-specific parameters is a very crucial factor that, affects the performance of the above-
mentioned algorithms. The improper tuning of algorithm-specific parameters either increases the
computational effort or yields a local optimal solution. Therefore, introduced the TLBO algorithm, which

IASC, 2023, vol.36, no.3 2563

requires only the common control parameters and does not require any algorithm-specific control parameters.
Other evolutionary algorithms require the control of common control parameters as well as the control of
algorithm-specific parameters. The burden of tuning common control parameters is comparatively less in
the TLBO algorithm. Based upon the above discussion, TLBO algorithm steps are Rao et al., [18,19].

Step 1: The optimization parameters are set with initial values

� Size of the population

� Number of iterations

� Number of subjects (decision variables)

Step 2: The random population is created based on the size of the population and the number of design
variables.

Step 3: The fitness of the potential solutions are evaluated and the population is organized based on their
fitness value.

Step 4: Teacher Phase: The mean of the population is calculated. This provides the mean of the particular
subject.

Step 5: Learner Phase: The solution is simulated by: learners gain knowledge by mutually interacting
among themselves.

Step 6: From step 3, it is repeated till the stopping criteria is met.

Step 7: Stop the process.

Thus, the TLBO algorithm is simple, effective and involves comparatively less computational effort.
The ATLBO algorithm is the improved form of TLBO (Chen et al. 2018) algorithm to make it more
effective in finding the optimized values for the hyperparameters in the model.

4 Methodology

4.1 Adaptive Teaching Learning Based Optimization (ATLBO)

Teaching-learning is a critical process in which each individual would attempt to learn something from
the other individuals so as to improve them. This algorithm sought to replicate a classroom’s conventional
teaching-learning phenomenon by simulating two fundamental learning modes: (i) through the teacher
(termed the teacher phase) and (ii) through interactions with other learners (termed the learner phase).
Being a population-based algorithm, the ATLBO would consider a group of students (that is, the learner)
as the population, and the different subjects who were provided to the learners would be akin to the
optimization problem’s different design variables. The learner’s results would be analogous to the
optimization problem’s value of fitness. The teacher would be the whole population’s best solution.
Below is the explanation of the ATLBO algorithm’s operation with the teacher phase as well as the
learner phase Wang et al. [20].

4.2 Teacher Phase

This algorithm phase would simulate the students’ (that is, the learners) learning through the teacher.
During this phase, a teacher would convey knowledge amongst the learners and would try to raise the
class’s mean result. Consider that ‘m’ number of subjects (that is, design variables) were given to ‘n’
number of learners (that is, size of the population, k = 1, 2 . . . n). At any sequential teaching-learning
cycle i, Mj,i would be the learners’ mean result in a certain subject ‘j’ (j = 1, 2 . . . m). A teacher would
be a subject’s most experienced and knowledgeable person. Hence, the teacher in the algorithm would be
the best learner in the whole population. Suppose that Xtotal−kbest,i would be the result of the best learner

2564 IASC, 2023, vol.36, no.3

considering all the subjects who have been identified as that cycle’s teacher. Even though the teacher would
put maximum effort into increasing the entire class’s knowledge level, the learners would only gain
knowledge in accordance with the quality of teaching delivered by a teacher as well as the class’s quality
of learners present. In view of this fact, Eq. (2) would express the difference between the teacher’s result
and the mean result of the learners in each subject as follows:

Difference Meani;j ¼ ri Xj;kbest;i � TFMj;i

� �
(2)

where, Xj,kbest,i will indicate the teacher’s (that is, the best learner) result in the subject j, TF will indicate the
teaching factor, that determines the value of mean to be modified, and ri will indicate the random number in
the range [0, 1]. The TF value can be either 1 or 2. The TF value will be randomly decided with equal
probability as per below Eq. (3):

TF ¼ round 1þ rand 0; 1ð Þ 2� 1f g½ � (3)

where, the rand will indicate the random number in the range [0, 1]. TF will not be a parameter of the
algorithm. The TF value will not be offered as the algorithm’s input. Instead, the algorithm will use
Eq. (3) to randomly decide the TF value. Moreover, these parameters do not get offered as the algorithm’s
input (which is contrary to the supply of the Genetic Algorithm’s (GA) crossover probability and
mutation probability, the Particle Swarm Optimization (PSO’s) inertia colony size and limit, and so on).
Therefore, the algorithm does not require the tuning of ri and TF (which is contrary to the tuning of the
GA’s crossover probability and mutation probability, the PSO’s inertia weight and cognitive and social
parameters, the ABC’s colony size and limit, and so on). For its operation, the ATLBO algorithm only
needs to tune common control parameters such as the size of the population and the number of
generations. These common control parameters are requisite for the operation of all population-based
optimization algorithms. Therefore, the ATLBO is termed as an algorithm-specific parameter-less algorithm.

The algorithm’s performance is affected by the values of both ri and TF. The students’ understanding
from best teacher may be dissimilar and arbitrary. The learning of students from teacher is uncertain some
times when the teaching factor in Eq. (3) is used. So, Information entropy is used to capture the extent of
diversion of student’s performance. When the entropy is low, the diversion is high. In this stage, the
teaching factor should be high to lower the search ability. When the entropy is high and dispersion is
minimum means, then the performance is normal. The Probability Distribution (PD) for the performance
of the student is

PD xj;i
� � ¼ xj;iPm

j�1 xj;i
(4)

The entropy for the particular subject i is:

Subi ¼ �
Xm

j¼1
PD xj;i

� �
logPD xj;i

� �
(5)

TFi ¼ TFu �
TFu � TFl

Subu

� �
� Subi (6)

where l is lower bound and u is upper bound and TFi is new Teaching factor based on entropy. The diversion
of the students’ performance is reduced which improves the learning process in the teacher’s phase. In
ATLBO algorithm the new teaching factor TFi Eq. (6) is used as an alternative of TF .

IASC, 2023, vol.36, no.3 2565

Based on the Difference Meanj;i, update of the existing solution in the teacher phase will be in
accordance with the below Eq. (7):

X 0
j;k;i ¼ Xj;k;i þ Difference Meanj;i (7)

This equation X 0
j;k;i will indicate the updated value of Xj;k;i. X 0

j;k;i is accepted if it is able to offer a better
function value. All the accepted function values at the teacher phase’s end will be maintained, and in turn,
these values will become the learner phase’s input.

Learner phase: This algorithm phase will stimulate the students’ (that is, the learners) learning via
interactions amongst themselves. In addition to that, the students can gain knowledge through discussion
and interaction with other students. A learner is able to learn new information if the other learners have
more knowledge than him or her. Below is the explanation of this phase’s learning phenomenon.

There is a random selection of two learners, P and Q, such that X 0
total�P:i 6¼ X 0

total�Q:i, where, X
0
total�P:i and

X 0
total�Q:i will be the updated values of Xtotal�P:i and Xtotal�Q:i, respectively, at the teacher phase’s end in Eqs.

(8) and (9):

X 00
j;P:i ¼ X 0

j;P:i þ ri X 0
j;P:i � X 0

j;Q:i

� �
; If X 0

total�P:i . X 0
total�Q:i (8)

X 00
j;P:i ¼ X 0

j;P:i þ ri X 0
j;Q:i � X 0

j;Q:i

� �
If X 0

total�Q:i . X 0
total�P:i (9)

(While the above equations are for maximization problems, the reverse will be true for minimization
problems) X

00
j;P:i. It is accepted if it is able to offer a better function value.

The optimization of hyperparameters (learning rate and dropout) for RNN, LSTM and BiLSTM models
is attained through the teacher phase and learner phase of the ATLBO Algorithm. It is used for the
classification problem. The steps are given below.

Step 1: Initialize the population size, number of decision variables and Termination criterion

Step 2: Evaluate the mean of each decision variable

Step 3: Estimate the Fitness value

Step 4: Select the individual with best fitness as teacher

Step 5: Implement the teacher phase and Learner phase of ATLBO algorithm

Step 6: Get the optimal values for the hyperparameters learning rate and dropout of the Model

Step 7: Train the RNN/LSTM/BiLSTM Model with the optimal hyperparameters

Step 8: Test the model with the optimal hyperparameter values

Step 9: Find the Accuracy/Error

Step 10: End

The teacher and Learner phase is repeated many times till the stopping criterion is met. The stopping
criterion is the maximum number of iterations considered in the ATLBO algorithm. At the end, the
optimal hyperparameters learning rate for the learning rate scheduler and dropout is obtained. This
optimal learning rate is used in the learning rate schedulers CLR, HTD and T-HTR.

The learning rate schedulers and dropout are utilized in the RNN, LSTM and BiLSTM models for
the training process. The model is trained and tested on the datasets 20Newsgroup, ReutersNewswire and
IMDB. The classification accuracy accomplished for the models using ATLBO algorithm is recorded in
the Tables 1–3.

2566 IASC, 2023, vol.36, no.3

Table 1: Accuracy for ATLBO and TLBO algorithm (20Newsgroup dataset)

Model/LR scheduler ATLBO TLBO

Accuracy in (%)

RNN + CLR 94.86 93.12

RNN +HTD 95.69 94.11

RNN + T-HTR 96.23 95.35

LSTM + CLR 95.89 95.13

LSTM +HTD 96.92 95.89

LSTM + T-HTR 97.91 96.76

BiLSTM + CLR 96.59 95.91

BiLSTM +HTD 97.52 96.55

BiLSTM + T-HTR 98.67 97.71

Table 2: Accuracy for ATLBO and TLBO algorithm (ReutersNewswire dataset)

Model/LR scheduler ATLBO TLBO

Accuracy in (%)

RNN + CLR 95.18 93.57

RNN +HTD 96.37 94.61

RNN + T-HTR 97.11 95.89

LSTM + CLR 95.89 94.32

LSTM +HTD 96.32 95.42

LSTM + T-HTR 97.86 96.10

BiLSTM + CLR 96.11 93.78

BiLSTM +HTD 97.10 96.39

BiLSTM + T-HTR 98.39 97.11

Table 3: Accuracy for ATLBO and TLBO algorithm (IMDB dataset)

Model/LR scheduler ATLBO TLBO

Accuracy in (%)

RNN + CLR 94.44 91.29

RNN +HTD 95.86 93.35

RNN + T-HTR 96.84 95.49

LSTM + CLR 95.63 94.81

LSTM +HTD 96.38 95.27

LSTM + T-HTR 97.43 95.88

BiLSTM + CLR 96.27 95.06

BiLSTM +HTD 97.12 95.87

BiLSTM + T-HTR 98.34 96.32

IASC, 2023, vol.36, no.3 2567

The same way the optimal hyperparameter got using TLBO algorithm is given as input to the model. It is
trained and tested on the datasets 20Newsgroup, Reutersnewswire and IMDB. The classification accuracy
attained for the models using TLBO algorithm is documented in the Tables 1–3. The accuracy attained
using ATLBO algorithm is compared with accuracy attained using TLBO algorithm. The ATLBO
algorithm performs better than the TLBO algorithm in all the cases. BiLSTM T-HTR scheduler performs
better than the other schedulers using ATLBO algorithm.

Classification accuracy statistic by itself will not determine which learning model is the best. There are
several measures for evaluating the performance of various models with specified optimal features, such as
Precision, Recall, and F-Measure.

5 Results and Discussions

In this section, the 20Newsgroup, Reuters Newswire and IMDB movie reviews datasets are evaluated.
The features are extracted using TF_IDF. The RNN CLR, RNN HTD, RNN T-HTR, LSTM CLR, LSTM
HTD, LSTM T-HTR, BiLSTM CLR, BiLSTM HTD and Bi LSTM T-HTR methods [18–20] are used.
The precision, recall and f-measure are shown in Tables 4–6. The comparisons are shown Figs. 1–3.

Table 4: Precision for ATLBO algorithm

Techniques 20Newsgroup Reuters Newswire IMDB

RNN +CLR 0.792 0.7982 0.8021

RNN +HTD 0.8239 0.8296 0.8455

RNN + T-HTR 0.855 0.8604 0.8651

LSTM + CLR 0.8047 0.8066 0.8134

LSTM +HTD 0.824 0.8344 0.8488

LSTM + T-HTR 0.8567 0.8645 0.8654

BiLSTM + CLR 0.8116 0.8195 0.8235

BiLSTM +HTD 0.8259 0.8392 0.8521

BiLSTM + T-HTR 0.9039 0.9051 0.9089

Table 5: Recall for ATLBO algorithm

Techniques 20Newsgroup Reuters Newswire IMDB

RNN + CLR 0.7966 0.8006 0.8027

RNN + HTD 0.824 0.8312 0.8487

RNN + T-HTR 0.8567 0.8645 0.8654

LSTM + CLR 0.8065 0.8092 0.8155

LSTM + HTD 0.8248 0.8386 0.8509

LSTM + T-HTR 0.8604 0.8651 0.8661

BiLSTM + CLR 0.8119 0.8225 0.8239

BiLSTM + HTD 0.8285 0.8432 0.8541

BiLSTM + T-HTR 0.8882 0.8932 0.8981

2568 IASC, 2023, vol.36, no.3

Table 6: F-measure for ATLBO algorithm

Techniques 20Newsgroup Reuters Newswire IMDB

RNN + CLR 0.7943 0.7994 0.8024

RNN + HTD 0.8239 0.8304 0.8471

RNN + T-HTR 0.8558 0.8624 0.8652

LSTM + CLR 0.8056 0.8079 0.8144

LSTM + HTD 0.8244 0.8365 0.8498

LSTM + T-HTR 0.8585 0.8648 0.8657

BiLSTM + CLR 0.8117 0.821 0.8237

BiLSTM + HTD 0.8272 0.8412 0.8531

BiLSTM + T-HTR 0.896 0.8991 0.9035

Figure 1: Precision for ATLBO algorithm

Figure 2: Recall for ATLBO algorithm

IASC, 2023, vol.36, no.3 2569

From Fig. 1, it can be observed that the BiLSTM T-HTR has higher precision for 20-newsgroup datasets
by 13.19% for RNN CLR, by 9.26% for RNN HTD, by 5.56% for RNN T-HTR, by 11.61% for LSTM CLR,
by 9.25% for LSTM HTD, by 5.36% for LSTM T-HTR, by 10.76% for BiLSTM CLR and by 9.02% for
BiLSTM HTD respectively. The Bi LSTM T-HTR has higher precision for Reuters Newswire datasets by
12.55% for RNN CLR, by 8.7% for RNN HTD, by 5.06% for RNN T-HTR, by 11.51% for LSTM CLR,
by 8.13% for LSTM HTD, by 4.58% for LSTM T-HTR, by 9.93% for BiLSTM CLR and by 7.56% for
Bi LSTM HTD respectively. The BiLSTM T-HTR has higher precision for IMDB movie reviews datasets
by 12.48% for RNN CLR, by 7.23% for RNN HTD, by 4.94% for RNN T-HTR, by 11.08% for LSTM
CLR, by 6.84% for LSTM HTD, by 4.9% for LSTM T-HTR, by 9.86% for BiLSTM CLR and by 6.45%
for BiLSTM HTD respectively.

From the Fig. 2, it can be observed that the Bi LSTM T-HTR has higher recall for 20-newsgroup datasets
by 10.87% for RNN CLR, by 7.49% for RNN HTD, by 3.61% for RNN T-HTR, by 9.64% for LSTM CLR,
by 7.4% for LSTM HTD, by 3.18% for LSTM T-HTR, by 8.97% for BiLSTM CLR and by 6.95% for
BiLSTM HTD respectively. The BiLSTM T-HTR has higher recall for Reuters Newswire datasets by
10.93% for RNN CLR, by 7.19% for RNN HTD, by 3.26% for RNN T-HTR, by 9.86% for LSTM CLR,
by 6.3% for LSTM HTD, by 3.19% for LSTM T-HTR, by 8.24% for BiLSTM CLR and by 5.76% for
BiLSTM HTD respectively. The BiLSTM T-HTR has higher recall for IMDB movie reviews datasets by
11.22% for RNN CLR, by 5.65% for RNN HTD, by 3.71% for RNN T-HTR, by 9.64% for LSTM CLR,
by 5.39% for LSTM HTD, by 3.63% for LSTM T-HTR, by 8.62% for BiLSTM CLR and by 5.02% for
BiLSTM HTD respectively.

From Fig. 3, it can be observed that the BiLSTM T-HTR has a higher f measure for 20-newsgroup
datasets by 12.03% for RNN CLR, by 8.38% for RNN HTD, by 4.58% for RNN T-HTR, by 10.62% for
LSTM CLR, by 8.32% for LSTM HTD, by 4.27% for LSTM T-HTR, by 9.87% for Bi LSTM CLR and
by 7.98% for BiLSTM HTD respectively. The BiLSTM T-HTR has a higher f-measure for Reuters
Newswire datasets by 11.74% for RNN CLR, by 7.94% for RNN HTD, by 4.17% for RNN T-HTR, by
10.68% for LSTM CLR, by 7.21% for LSTM HTD, by 3.89% for LSTM T-HTR, by 9.08% for BiLSTM
CLR and by 6.65% for BiLSTM HTD respectively. The BiLSTM T-HTR has a higher f-measure for
IMDB movie reviews datasets by 11.85% for RNN CLR, by 6.44% for RNN HTD, by 4.33% for RNN
T-HTR, by 10.37% for LSTM CLR, by 6.12% for LSTM HTD, by 4.27% for LSTM T-HTR, by 9.24%
for BiLSTM CLR and by 5.74% for BiLSTM HTD respectively.

When ATLBO algorithm is used, the average training time of the RNN, LSTM and BiLSTM models on
the three datasets is shown in the Tables 7 and 8 below. For 20Newsgroup dataset, the average training time
has been decreased by 9.01% for RNN+T-HTR model, by 6.82% for LSTM+T-HTR, and by 7.80% for
BiLSTM+T-HTR. In the similar manner, for Reuters Newswire and IMDB datasets, the average training

Figure 3: F-Measure for ATLBO algorithm

2570 IASC, 2023, vol.36, no.3

time is reduced. The comparison of average training time for TLBO algorithm by considering the same
models and datasets is shown in the Tables 7 and 8.

In all possible combinations, the ATLBO algorithm performs better. Also, it demonstrates that the
BiLSTM+T-HTR has higher precision for 20Newsgroup, the Reuters Newswire datasets, and the IMDB
movie reviews datasets in comparison to RNN CLR, RNN HTD, RNN T-HTR, LSTM CLR, LSTM
HTD, LSTM T-HTR, BiLSTM CLR, and BiLSTM HTD. The average training time is also reduced much
for BiLSTM T-HTR.

6 Conclusions

Optimization of DNNs is primarily accounted for as an empirical process that needs the manual tuning
of various hyper-parameters like dropout rate, weight decay, and LR. Out of all these hyper-parameters, the
LR is of prime importance and has been comprehensively researched in recent works. This work has given
the proposal for a novel LR computation method to train DNNs with the ATLBO algorithm. The ATLBO
algorithm’s application is done for the process of hyperparameter optimization. Inspired by the process of

Table 7: Average training time (ATLBO)

Model/LR scheduler 20Newsgroup Reuters Newswire IMDB

RNN + CLR 13588 s 290 s 333 s

RNN + HTD 12897 s 198 s 288 s

RNN + T-HTR 11124 s 120 s 189 s

LSTM + CLR 12212 s 133 s 278 s

LSTM + HTD 12411 s 111 s 219 s

LSTM + T-HTR 10980 s 88 s 178 s

Bi LSTM + CLR 21859 s 78 s 120 s

Bi LSTM + HTD 19214 s 36 s 142 s

BiLSTM+T-HTR 13798 s 27 s 119 s

Table 8: Average training time (TLBO)

Model/LR scheduler 20Newsgroup Reuters Newswire IMDB

RNN + CLR 16568 s 385 s 458 s

RNN + HTD 14841 s 278 s 377 s

RNN + T-HTR 13325 s 194 s 221 s

LSTM + CLR 17322 s 236 s 278 s

LSTM + HTD 13419 s 182 s 219 s

LSTM + T-HTR 12589 s 132 s 178 s

Bi LSTM + CLR 19698 s 119 s 355 s

Bi LSTM + HTD 17352 s 89 s 259 s

Bi LSTM + T-HTR 14812 s 63 s 218 s

IASC, 2023, vol.36, no.3 2571

teaching–learning, this algorithm operates on the effect of a teacher’s influence on the output of learners in a
class. The algorithm’s optimal hyperparameters is given as input for the RNN, LSTM and BiLSTM models
The BiLSTM CLR is effective for quickly training a model and also has better accuracy in classification.
When compared with the BiLSTM CLR, the BiLSTM HTD has superior performance in all the
experimentations and also has fewer hyperparameters to tune. When compared with the BiLSTM HTD,
the BiLSTM T-HTR has better performance in almost all the cases and also has more flexibility to
accomplish better performance. When compared to models using the TLBO algorithm, the average
training time for models utilizing the ATLBO approach is very short, indicating that convergence occurs
first. Other hyperparameters of the model can be investigated for optimization using the ATLBO
algorithm in future work.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] D. Soydaner, “A comparison of optimization algorithms for deep learning,” International Journal of Pattern

Recognition and Artificial Intelligence, vol. 34, no. 13, pp. 2052013, 2020.

[2] A. Shin, D. J. Shin, S. Cho, D. Y. Kim, E. Jeong et al., “Stage-based hyper-parameter optimization for deep
learning,” arXiv preprint arXiv: 1911.10504, 2019.

[3] R. Yedida and S. Saha, “A novel adaptive learning rate scheduler for deep neural networks,” arXiv preprint arXiv:
1902.07399, 2019.

[4] J. Yang and F. Wang, “Auto-ensemble: An adaptive learning rate scheduling based deep learning model
ensembling,” IEEE Access, vol. 8, pp. 217499–217509, 2020.

[5] Y. Wu, L. Liu, J. Bae, K. H. Chow, A. Iyengar et al., “Demystifying learning rate policies for high accuracy
training of deep neural networks,” in Proc. 2019 IEEE Int. Conf. on Big Data (Big Data), Los Angeles, CA,
pp. 1971–1980, 2019.

[6] B. Alyafi, F. I. Tushar and Z. Toshpulatov, “Cyclical learning rates for training neural networks with unbalanced
datasets,” JMD in Medical Image Analysis and Applications-Pattern Recognition Module, pp. 1–4, 2018. https://
doi.org/10.13140/RG.2.2.28455.80806

[7] S. Vasudevan, “Mutual information based learning rate decay for stochastic gradient descent training of deep
neural networks,” Entropy, vol. 22, no. 5, 560, pp. 1–15, 2020.

[8] J. Chen and A. Kyrillidis, “Decaying momentum helps neural network training,” arXiv preprint arXiv:
1910.04952, 2019.

[9] M. Fischetti and M. Stringher, “Embedded hyper-parameter tuning by simulated annealing,” arXiv preprint arXiv:
1906.01504, 2019.

[10] Z. Li, K. Lyu and S. Arora, “Reconciling modern deep learning with traditional optimization analyses: The
intrinsic learning rate,” arXiv preprint arXiv: 2010.02916, 2020.

[11] H. Yang, J. Liu, H. Sun and H. Zhang, “PACL: Piecewise Arc cotangent decay learning rate for deep neural
network training,” IEEE Access, vol. 8, pp. 112805–112813, 2020.

[12] P. Liu, X. Qiu and X. Huang, “Recurrent neural network for text classification with multi-task learning,” arXiv
preprint arXiv: 1605.05101, 2016.

[13] L. N. Smith, “Cyclical learning rates for training neural networks,” in Proc. 2017 IEEE Winter Conf. on
Applications of Computer Vision (WACV), Santa Rosa, CA, pp. 464–472, 2017.

[14] B. Y. Hsueh, W. Li and I. C. Wu, “Stochastic gradient descent with hyperbolic-tangent decay on classification,” in
Proc. 2019 IEEE Winter Conf. on Applications of Computer Vision (WACV), Waikoloa, HI, USA, pp. 435–442, 2019.

[15] C. Yu, X. Qi, H. Ma, X. He, C. Wang et al., “LLR: Learning learning rates by LSTM for training neural networks,”
Neurocomputing, vol. 394, no. 4, pp. 41–50, 2020.

2572 IASC, 2023, vol.36, no.3

https://doi.org/10.13140/RG.2.2.28455.80806
https://doi.org/10.13140/RG.2.2.28455.80806

[16] H. Apaydin, H. Feizi, M. T. Sattari, M. S. Colak, S. Shamshirband et al., “Comparative analysis of recurrent
neural network architectures for reservoir inflow forecasting,” Water, vol. 12, no. 5, pp. 1500, 2020.

[17] X. Chen, B. Xu, K. Yu andW. Du, “Teaching-learning-based optimization with learning enthusiasmmechanism and
its application in chemical engineering,” Journal of Applied Mathematics, vol. 2018, no. 1806947, pp. 19, 2018.

[18] R. V. Rao and V. Patel, “An improved teaching-learning-based optimization algorithm for solving unconstrained
optimization problems,” Scientia Iranica, vol. 20, no. 3, pp. 710–720, 2013.

[19] R. V. Rao, V. J. Savsani and D. P. Vakharia, “Teaching-learning-based optimization: A novel method for constrained
mechanical design optimization problems,” Computer-Aided Design, vol. 43, no. 3, pp. 303–15, 2011.

[20] K. L. Wang, H. B. Wang, L. X. Yu, X. Y. Ma and Y. S. Xue, “Towards teaching-learning based optimization
algorithm for dealing with real-parameter optimization problems,” in Proc. 2nd Int. Conf. on Computer
Science and Electronics Engineering (ICCSEE 2013), Paris, Atlantis Press, pp. 607–609, 2013.

IASC, 2023, vol.36, no.3 2573

	Hyperparameter Tuning for Deep Neural Networks Based Optimization Algorithm
	Introduction
	Related Works
	Learning Rates
	Methodology
	Results and Discussions
	Conclusions
	References

