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ABSTRACT: To overcome the challenges associated with predicting gas extraction performance and mitigating the
gradual decline in extraction volume, which adversely impacts gas utilization efficiency in mines, a gas extraction
pure volume prediction model was developed using Support Vector Regression (SVR) and Random Forest (RF),
with hyperparameters fine-tuned via the Genetic Algorithm (GA). Building upon this, an adaptive control model for
gas extraction negative pressure was formulated to maximize the extracted gas volume within the pipeline network,
followed by field validation experiments. Experimental results indicate that the GA-SVR model surpasses comparable
models in terms of mean absolute error, root mean square error, and mean absolute percentage error. In the extraction
process of bedding boreholes, the influence of negative pressure on gas extraction concentration diminishes over time,
yet it remains a critical factor in determining the extracted pure volume. In contrast, throughout the entire extraction
period of cross-layer boreholes, both extracted pure volume and concentration exhibit pronounced sensitivity to
fluctuations in extraction negative pressure. Field experiments demonstrated that the adaptive control model enhanced
the average extracted gas volume by 5.08% in the experimental borehole group compared to the control group during
the later extraction stage, with a more pronounced increase of 715% in the first 15 days. The research findings offer
essential technical support for the efficient utilization and long-term sustainable development of mine gas resources.
The research findings offer essential technical support for gas disaster mitigation and the sustained, efficient utilization
of mine gas.

KEYWORDS: Gas extraction; support vector regression (SVR); genetic algorithm; hyperparameters fine-tuned;
negative pressure adaptive control

1 Introduction

The introduction of the “dual carbon” goal has imposed more stringent requirements on the sustainable
development of China’s energy sector. As a predominant energy source, coal necessitates stringent carbon
reduction measures and emission controls [1]. As a major contributor to carbon emissions in coal mining,
enhancing the efficiency and concentration of gas extraction not only mitigates greenhouse gas emissions
but also bolsters clean energy supply, thereby facilitating gas-related carbon reduction [2]. The extraction of
coal seam gas relies on negative pressure to induce desorption and facilitate gas migration [3]. Throughout
this process, borehole extraction pressure plays a crucial role in governing gas seepage dynamics and
desorption efficiency while simultaneously affecting borehole leakage behavior [4,5]. Insufficient nega-
tive pressure diminishes gas extraction flow, thereby compromising efficiency, whereas excessive negative
pressure exacerbates borehole leakage, leading to a decline in extraction concentration. Thus, optimizing

® Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



https://www.techscience.com/journal/FHMT
https://www.techscience.com/
http://dx.doi.org/10.32604/fhmt.2025.065719
https://www.techscience.com/doi/10.32604/fhmt.2025.065719
mailto:18717314036@163.com

1038 Front Heat Mass Transf. 2025;23(3)

borehole negative pressure regulation is paramount for enhancing coal seam gas extraction efficiency [6].
Accordingly, considering the gas occurrence conditions in coal seams, a comprehensive analysis of gas
extraction data characteristics is performed to construct a gas extraction prediction model and an adaptive
borehole negative pressure regulation framework. By precisely forecasting gas extraction flow and pressure,
the proposed system facilitates adaptive negative pressure regulation, thereby significantly improving gas
extraction efficiency.

Numerous scholars have undertaken extensive investigations into gas extraction theories and technolo-
gies. Xia et al. examined multiple factors influencing gas extraction and formulated a multi-field coupling
model incorporating gas migration, airflow dynamics, and coal deformation mechanisms [7]. Zheng et al.
investigated the stress distribution around boreholes and the characteristics of leakage zones, establishing a
multi-field coupling model for gas flow [8]. Liu et al. performed a comprehensive analysis of the multiphysics
coupling process involved in gas extraction [9]. Cheng et al. developed a gas-solid coupling model of gas
migration to study the influence of negative pressure during gas extraction [10]. Pan examined the effects
of different extraction pressures on extraction flow rate and concentration [11]. Wang et al. used numerical
simulation to model the gas extraction process in coal seam boreholes and investigated the impact of
negative pressure variation on borehole permeability [12]. Many scholars have also applied deep neural
networks and graph theory to predict and optimize gas extraction parameters based on theoretical research,
providing guidance for improving borehole gas concentration and enhancing gas utilization efficiency. Ma
et al. utilized a simple recurrent neural network (RNN) to predict gas extraction volumes [13]. Gou and
Sun applied the analytic hierarchy process and support vector machines to study gas extraction systems
and construct mathematical models [14,15]. Hao et al. used deep neural network models to predict the
effective radius of boreholes, providing a scientific basis for optimal borehole layout [16]. Wang integrated the
grasshopper optimization algorithm to propose a multi-parameter gas concentration prediction model using
long short-term memory (LSTM) networks [17]. Wang investigated the correlation between negative pressure
and extraction concentration, proposing an approach to enhance borehole gas extraction concentration by
adjusting valve openings [18]. Zhou, Wang, and others systematically optimized pipeline resistance in gas
extraction systems using graph theory and multi-objective optimization methods [19-21].

These prior research findings have significantly enhanced gas extraction efficiency in mining operations,
particularly during the initial borehole extraction phase, thereby playing a pivotal role in predicting
gas extraction concentration and optimizing system performance. However, in continuously extracting
gas boreholes, fluctuations in extraction duration and regional geological conditions within the pipeline
network result in substantial variations in gas concentrations among boreholes. Many high-gas and gas-
outburst mines, after multiple rounds of gas extraction measures, find it difficult to meet the safety and
efficiency requirements for mine gas extraction due to reduced borehole extraction purity and concentration.
Therefore, it is urgent to propose a method that can predict and enhance gas extraction purity to improve the
efficiency of the extraction system. To address this challenge, this study—guided by field data—constructed
a gas extraction purity prediction model and, leveraging these predictions, established an adaptive negative
pressure control model. This research provides technical support for timely understanding the variation
patterns of borehole gas extraction purity and enhancing gas extraction efficiency.

2 Construction of Gas Extraction Pure Volume Prediction Model

Gas extraction parameters exemplify a complex system of multidimensional nonlinear variables.
Considering both gas extraction engineering practices and the key determinants of gas occurrence, the
primary factors influencing gas extraction purity—within the constraints of current daily monitoring
technologies—include extraction negative pressure, extraction concentration, extraction location, and



Front Heat Mass Transf. 2025;23(3) 1039

extraction temperature. Accordingly, a multidimensional dataset is constructed based on these determinants.
Given the significant interdependencies among parameters, each data dimension encapsulates its intrinsic
characteristics while also manifesting interdimensional dependency relationships. For instance, extraction
negative pressure directly influences gas concentration, thereby introducing pronounced nonlinear char-
acteristics within the dataset. Moreover, gas extraction efficiency is governed by factors including regional
structural distribution, roof and floor lithology, and permeability enhancement strategies, resulting in
spatial variations in extraction data correlation characteristics. This study incorporates extraction location
characteristic values and employs data dimensionality expansion techniques to encapsulate these variations,
thereby enhancing the dataset’s dimensional complexity. Consequently, given the high-dimensional nonlin-
ear nature of gas extraction purity prediction data and the prevalence of anomalies, this study leverages two
robust machine learning models-Random Forest (RF) and Support Vector Regression (SVR)-renowned for
their efficacy in capturing nonlinear dependencies and processing high-dimensional datasets. Both models
effectively capture intrinsic dependencies within multidimensional data and demonstrate strong resilience
to missing and anomalous values, rendering them particularly suitable for gas extraction data modeling
and analysis.

2.1 Support Vector Regression Prediction Model

Owing to the intricate nature of underground extraction conditions, gas extraction purity is governed
by a multitude of interdependent factors. Furthermore, state parameters—such as extraction negative
pressure and concentration—are intrinsically interdependent, exerting mutual influence and demonstrating
pronounced coupling characteristics alongside nonlinear dynamics. The fundamental principle of Support
Vector Regression (SVR) lies in maintaining a predefined tolerance for error while identifying an optimal
hyperplane within a high-dimensional space, thereby minimizing the margin between the hyperplane and
the support vectors. By mapping input data into a high-dimensional feature space and identifying an
optimal linear function, SVR effectively resolves nonlinear complexities present in the original space, thereby
enhancing model formulation and predictive accuracy. A schematic representation of its underlying principle
is provided in Fig. 1.

f(x)te

)
_ T
Positive Hyperplane f(x )—C{) x+b
o [
Negative Hyperplane
[ )
Optimal H,yﬁérplane
0 >

Figure 1: Schematic diagram of the support vector regression (SVR) principle
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The hyperplane is mathematically expressed as f(x) = w!x + b, where w = (@), w2, W3,...,w,)
denotes the normal vector, representing the weights of features after mapping to the high-dimensional space.
Each component of the normal vector corresponds to a specific feature weight, quantifying its contribution
to the predicted value and governing the relative importance of input features within the regression model.
The bias term b adjusts the positioning of the regression function, enabling the model to fit the data more
accurately by preventing it from being constrained to pass through the origin, thereby accounting for overall
data shifts. The primary objective of SVR is to minimize the deviation between the predicted value f(x)
and the actual observation y. By introducing the concept of error tolerance &, this objective can be expressed
using Eq. (1).
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In the equation, |w|” represents the regularization term, which controls the complexity of the model;
C denotes the penalty coefficient, balancing the trade-off between model complexity and prediction error;
and [, is the e-insensitive loss function of ¢, formally defined in Eq. (2).
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In the equation: z = y — f (x), representing the prediction error, is considered zero when the prediction
error is less than or equal to the width of the insensitive zone e. This means that within this range, the
prediction error of the model will not be penalized. The loss is only calculated when the prediction error
exceeds ¢, and the loss value equals the portion exceeding ¢, denoted as |y — f (x)| — &. This allows SVR to
ignore errors within a certain range, reducing model complexity while significantly enhancing its robustness
to noise.

In the engineering practice of gas drainage, pipeline blockages and leaks frequently occur, leading to
noise and outliers in the monitored data. Since SVR attempts to form a predictive model using a function,
including all outliers caused by these drainage failures would make the model overly complex and reduce
prediction accuracy. To eliminate the influence of drainage failure parameters and enhance model robustness,
we first penalize some outlier data points that exceed the insensitive zone to improve model flexibility. This
process is achieved by introducing slack variables &; and é,-, where &; represents the portion where the
predicted value is higher than the actual value and exceeds ¢, while £; represents the portion where the
predicted value is lower than the actual value and exceeds ¢.

In summary, Eqgs. (1) and (2) can be combined, and slack variables introduced to establish a con-
strained optimization mathematical model, as shown in Eq. (3). Additionally, the hyperparameters of
the SVR model significantly affect its robustness and prediction accuracy. Therefore, this study adopts an
ensemble model approach, optimizing its hyperparameters using a genetic algorithm to obtain the most
suitable model parameters for gas drainage data.
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The above modeling process is conducted after mapping the input data into a high-dimensional space,
where the model is directly built on the vectors of the input parameters in that space. The process of
transforming data into a high-dimensional space through nonlinear mapping is achieved using a kernel
function. The radial basis function (RBF) kernel is the most commonly chosen option due to its ability
to effectively balance model complexity and generalization capability, the support vector regression (SVR)
model directly applies the radial basis function (RBF) kernel in its computations. This study also adopts the
RBF kernel as the kernel function, as shown in Eq. (4).

2
K(xi,xj) = exp (—w) (4)

In the equation, x; and y; represent data points in the input space; |x; — y;| denotes the Euclidean
distance between the two data points; and o is the bandwidth of the kernel function, which controls its range
of influence.

2.2 Random Forest Prediction Model

The random forest prediction model constructs multiple decision trees and combines their prediction
results using feature random selection and sample resampling techniques, effectively handling high-
dimensional gas extraction data, noise, and missing values, thereby predicting gas extraction volume. During
prediction, Bootstrap sampling is first performed on the training set, where multiple subsample sets are
randomly drawn with replacement from the training data. Each subsample set has the same size as the
original training set but contains duplicate data points. A decision tree is trained for each subsample set. At
each node split, a subset of all features is randomly selected, and the best feature from this subset is chosen
for splitting, minimizing the mean squared error (MSE) between the resulting child nodes. By repeating
the above steps, multiple decision trees are generated, each trained on different Bootstrap samples and
randomly selected feature subsets. Each decision tree makes independent predictions on new data, and the
final prediction value is obtained by averaging the results from all decision trees. The algorithm framework
is shown in Fig. 2
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Figure 2: Flowchart of the Random Forest algorithm
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2.3 Model Parameter Optimization Based on Genetic Algorithm

Given that genetic algorithms (GA) have strong global search capabilities, high parameter adaptability,
robustness, and reliable principles, they are suitable for optimizing the hyperparameters of SVR and RE
This study applies GA to optimize the parameters of SVR and RF prediction models and compares the gas
extraction volume prediction performance before and after hyperparameter optimization. The GA-based
hyperparameter optimization process begins with the random generation of an initial population, where each
hyperparameter combination represents an individual. The performance of each individual in the training set
is evaluated based on its mean squared error, with the training-to-testing set ratio set at 1:3. Individuals with
higher fitness are further selected as parents for breeding the next generation to preserve favorable genes. In
the crossover operation, certain characteristics of parent individuals are randomly combined to form new
offspring individuals, introducing new solution space exploration. The mutation operation further increases
population diversity by randomly altering the hyperparameter values of individuals to avoid local optima. As
generations iterate, individuals with lower fitness in the population are replaced, gradually optimizing toward
the best hyperparameter combination. In this study, the genetic algorithm’s hyperparameter optimization
process is set to iterate 90 times, with a population size of 8. The genetic algorithm-based optimization process
is illustrated in Fig. 3.
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Figure 3: Genetic algorithm-based model parameter optimization process

The hyperparameters to be adjusted in the SVR model include kernel function bandwidth o, penalty
coefficient C, and insensitive zone width e. The default kernel function bandwidth is 0.1, with an optimization
range of [0.1, 0.3] and a gradient of 0.05. The default penalty coefficient is 10, with an optimization range
of [10, 100] and a gradient of 10. The default insensitive zone width is 0.1, with a search range of [0.1, 0.3]
and a gradient of 0.05. The prediction performance of the RF model is influenced by the number of trees and
the maximum depth of each decision tree. The default number of trees is 50, with a range of [50, 500] and
a gradient of 50. The default maximum depth starts at 5 and grows until the minimum sample number is
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reached, with a gradient of 5. The gas extraction volume prediction performance of models constructed with
SVR and RF before and after GA parameter optimization is compared.

3 Selection of Gas Extraction Pure Volume Prediction Model

The gas extraction prediction models developed using support vector regression (SVR) and random
forest (RF) are fundamentally regression-based. Therefore, it is essential to evaluate the predictive accuracy
of these models. By applying appropriate evaluation metrics and leveraging field-acquired data for model
training and validation, the predictive performance of each model can be systematically analyzed to identify
the most effective model.

3.1 Performance Evaluation Metrics for Prediction Models

To quantify the predictive performance of each model, mean absolute error (MAE), root mean square
error (RMSE), and mean absolute percentage error (MAPE) are used to measure the differences between
predicted and actual values. MAE reflects the overall magnitude of the error, RMSE represents the deviation
between predicted and actual values and is more sensitive to outliers, while MAPE measures the accuracy of
the predictions. The calculation methods for these metrics are shown in Eq. (5).
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3.2 Data Sources

To simultaneously predict gas extraction for four different locations, a random sampling approach was
used to construct the dataset during model development.

Gas extraction data from the 8005 working face of a high-gas coal mine were selected for model training
and testing. The mining area covers 69.33 km” and has an annual production capacity of 1.3 million tons. The
targeted coal seam exhibits a thickness of 5.54 m, an average dip angle of 10°, and a gas content ranging from
7 to 20 m’/t. Gas control strategies employed in the mine include surface well extraction, cross-seam drilling,
and in-seam drilling. Initially, both gas concentration and pure extraction volume are relatively high during
in-seam and cross-seam extraction. However, as extraction proceeds, both parameters decline rapidly. This
rapid decline poses challenges in meeting the safety standards required for continuous mining operations.

At the selected working face, gas was extracted sequentially via surface wells, cross-seam drilling from
the bottom extraction roadway, and in-seam drilling from the transportation and return air roadways. To
evaluate the predictive accuracy of the models under various extraction methods, gas extraction data were
collected from cross-seam drilling in the bottom extraction roadway and from in-seam drilling in both
the transportation and return air roadways. One dataset was selected each from the bottom extraction
and return air roadways, and two datasets from the transportation roadway. Online automated monitoring
and data acquisition systems were employed. Monitoring was performed using a CJZ4/50 laser methane
multi-parameter detector designed for gas extraction pipelines. This device facilitates automatic metering
and real-time monitoring of multiple parameters, including flow rate, pressure, temperature, and gas
concentration in the mixed gas extracted from boreholes. Extraction monitoring data for each borehole
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group are presented in Table 1 and were synchronously collected across different locations. Each location
contributed 124 datasets, totaling 496 across all sites. Each dataset comprises five features.

Table 1: Partial sample data

Extraction  Time (d) Extraction Extraction Extraction Daily total gas
location concentration negative temperature extraction
(%) pressure (kPa) (°C) volume (m*)
1 15.31 30.45 18.40 28944.57
2 14.88 28.69 18.44 27940.56
Bottom
. 3 15.04 29.15 18.41 28172.83
drainage
roadway
123 8.84 19.82 17.07 17308.21
124 9.68 23.26 17.93 21736.73
1 36.1 21.36 17.71 10697.17
2 37.87 23.25 18.05 11442.85
Return 3 3724 31.84 17.52 11821.26
laneway
123 22.77 19.90 16.48 1314718
124 26.21 23.42 16.9 13571.29
1 19.85 31.03 2113 9079.45
2 19.90 29.34 21.04 8491.90
Haulage 3 20.38 29.77 20.14 8720.35
gateway 1#
123 15.12 21.48 1716 5345.55
124 15.34 24.69 16.81 6113.89
1 19.94 30.91 18.84 9281.63
2 20.00 29.25 18.72 9002.20
Haulage 3 20.55 29.70 18.00 9120.59
gateway 2#
123 14.93 21.67 16.33 5703.72
124 14.98 24.80 15.97 6101.78

The trend graphs of extraction concentration, negative pressure, temperature, and daily extraction

volume for the bottom drainage roadway, return air roadway, and transportation roadways 1 and 2 are

shown in Fig. 4. Under similar negative pressure conditions, the bottom drainage roadway has the highest

extraction volume. Its extraction volume and concentration are also more sensitive to changes in negative

pressure, which is a result of permeability enhancement measures that improved coal seam permeability.

The overall increase in permeability offset the variations in gas enrichment conditions caused by local
geological structures, reducing abnormal data occurrences and better reflecting the corresponding effects
of parameters. The boreholes in the bottom drainage roadway have been extracting for a long period,
which explains the relatively low extraction concentration. The extraction systems in the return air and

transportation roadways were formed after multiple rounds of extraction, resulting in generally lower

extraction volumes. However, a corresponding relationship with extraction negative pressure can still be
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observed. Due to regional geological structure differences, the correlation between extraction concentration
and negative pressure in the boreholes of the return air and transportation roadways is relatively weak,
leading to more abnormal data, which is more evident in the return air roadway borehole extraction data.
Therefore, these four data sets can represent the parameter variations in a typical extraction network after
multiple rounds of extraction.
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Figure 4: Gas extraction data variation at each testing location in the 8005 working face

3.3 Model Training and Evaluation

To improve the prediction accuracy of the model, data from all four locations were used to create
the dataset, with location numbers added for differentiation. The SVR model was trained and tested using
random sampling, while the RF model adopted Bootstrap self-sampling. The training set ratio was 0.75 for
both models, and their prediction performances are shown in Fig. 5.
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The calculated values of MAE, RMSE, and MAPE are presented in Table 2.

Table 2: Comparison of model prediction effects

Model MAE RMSE MAPE

SVR 475.81 854.18  0.032
GA-SVR  303.62 565.42 0.023
RF 1089.85 1914.02  0.077
GA-RF 73156 1134.62 0.054

Front Heat Mass Transf. 2025;23(3)

Figure 5: Comparison of prediction performance among different models

As shown in Table 2, the performance metrics of the SVR and GA-SVR models consistently exceed

those of the RF and GA-RF models. This suggests a significant difference in predictive accuracy between
the two groups of models. Among all models, the GA-optimized SVR model exhibits the highest predictive
performance. It outperforms all other models across all evaluation metrics. Its mean absolute error (MAE) is

303.62. The mean absolute percentage error (MAPE) is merely 0.023. This meets the accuracy requirements

for daily gas extraction volume forecasting in the mine.

Fig. 6 also shows that the GA-SVR model has higher stability and accuracy in predicting daily gas

extraction volume compared to the other models, with fewer outliers and greater prediction stability.
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Figure 6: Comparative error analysis of different models

4 Gas Extraction Adaptive Control Technology Based on GA-SVR Model

Numerous factors influence gas volume and concentration during mine extraction. These include
extraction negative pressure, location, temperature, and additional operational parameters. Among them, the
gas occurrence conditions at different extraction sites are the primary determinant of gas extraction volume,
the extraction negative pressure is identified as the second most influential factor. Therefore, maintaining an
appropriate negative pressure is critical to ensuring adequate gas extraction.

4.1 Adaptive Control Process for Gas Extraction

Accurate prediction of gas extraction volume not only enhances the efficiency and management of gas
extraction in mines but also enables the implementation of adaptive control measures to further increase
extraction volume and efficiency. Therefore, this study utilizes the GA-SVR model to predict gas extraction
concentration and, based on this, further employs the GA-SVR model to predict the required extraction
negative pressure for a target gas extraction volume. Through adaptive regulation of extraction negative
pressure, gas extraction volume is further enhanced, as illustrated in the process flow shown in Fig. 7.

As shown in Fig. 7, under the precondition that the residual gas content in the coal seam has not yet
reached the target and the extraction negative pressure is less than 40 kPa, gas extraction parameters are
monitored during the extraction process. The GA-SVR model is used to predict the gas extraction volume for
the next stage, denoted as S”. Since the median absolute percentage error of the GA-SVR model is 2.3%, the
confidence interval for the prediction model is set at 2.3%. If the error meets conditions ’S i — St | /Si >0.023
and S; < S?, the extraction volume is considered too low, indicating room for regulation.

Considering the presence of outliers, a tolerance for abnormal occurrences is introduced in the
regulation model to enhance robustness. The number of times the extraction volume is deemed too low is
recorded as n, while the total number of evaluations is recorded as n,. If n/n, < 50%, the instances of low
extraction volume since monitoring began are deemed insufficient to trigger a regulatory action. However,
if the number of anomalies accumulates to 7/n, > 50%, it is determined that measures should be taken to
increase negative pressure to enhance extraction volume.
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Figure 7: Flowchart of adaptive control for gas extraction

Based on the first , gas extraction volume predictions, a GA-SVR prediction model is established. The
monitored gas extraction data is input, with the extraction volume corrected to the predicted value. The
model is then trained in reverse with extraction negative pressure as the target. Once training is complete,
the model switches to prediction mode to determine the required regulated negative pressure. This value
is then used to adjust the negative pressure of the target boreholes, achieving adaptive regulation aimed at
maximizing gas extraction flow.

4.2 Assessment of Adaptive Control Effectiveness in Gas Extraction

A 30-day field validation of the proposed adaptive regulation strategy was conducted at the 8005
working face of a high-gas mine. The experimental and control borehole groups were both located in the
return airway of the 8005 working face. Before regulation, the extraction negative pressure of both borehole
groups was 23.42 kPa. The comparison of gas extraction volumes over the 30-day regulation period is shown
in Fig. 8.

As shown in Fig. 8, the adaptive regulation group demonstrated a noticeable improvement in extraction
efficiency compared to the control group. Over the 30-day extraction period, the total average extracted
gas volume for the control group was 24,883.75 m?>, whereas the regulated group achieved 26,148.95 m’,
representing an overall increase of 5.08%. The regulation effect was more pronounced in the first 15 days,
with gas extraction volume increasing by 715%. This is due to the gradual reduction in gas pressure and
concentration within the coal seam as extraction progressed, along with a decrease in coal seam permeability.
As extraction continues, the gas pressure in the coal seam gradually decreases, reducing the driving force
for gas flow and weakening the regulatory effect. Additionally, pressure reduction causes pore and fracture
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closure, further diminishing extraction control effectiveness. In conclusion, an adaptive regulation strategy
with a 30-day control cycle can effectively enhance gas extraction volume.
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Figure 8: Comparison chart of adaptive control extraction borehole performance

5 Discussion

Proper regulation of negative pressure is essential for maintaining safe mining operations. This study
proposes an adaptive regulation technology for gas extraction. It integrates historical data with a GA-SVR
model to predict gas extraction volumes. Predicted values are compared against actual measurements to
assess whether borehole pressure adjustments are necessary. Additionally, historical extraction data are used
to train a model with negative pressure as the prediction target. This enables the estimation of the negative
pressure required to achieve a desired extraction volume. Subsequently, the borehole group’s negative
pressure is adjusted to maximize the gas flow rate. This creates a closed-loop control system for adaptively
regulating negative pressure during gas extraction.

Currently, the GA-SVR-based adaptive regulation framework has largely achieved autonomous control
of negative pressure in borehole gas extraction. However, several limitations remain. First, the computational
efficiency of the genetic algorithm declines significantly with increasing data volume, due to its inherent
limitations. This issue is particularly pronounced in large-scale mine gas extraction datasets. Currently,
model training and inference are conducted using daily-averaged data. Compared to high-resolution data
(e.g., per-minute or per-second), this approach reduces predictive granularity. However, using higher-
frequency data substantially increases the volume of input data. This imposes a computational burden
and slows down the overall regulatory response. Second, due to constraints imposed by mining schedules,
the field experiment for adaptive regulation was limited to a 30-day duration. This duration is relatively
insufficient for robust evaluation of the regulation system’s performance. Future research will focus on
enhancing the model and further advancing adaptive gas extraction regulation technology. Full-scale gas
extraction experiments across the entire working face will be conducted to validate the regulation framework.
This will support the robust deployment and broader application of the proposed technology.
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6 Conclusions

(1)  Following multiple rounds of gas extraction, the residual gas content in the coal seam decreases
significantly, thereby diminishing the influence of extraction negative pressure on both extraction
concentration and extracted pure volume. Consequently, during stratified borehole extraction, the
influence of negative pressure on concentration weakens, yet it remains correlated with the extracted
pure volume. During cross-layer borehole extraction, permeability enhancement measures mitigate
variations in gas enrichment conditions induced by local geological structures, thereby minimiz-
ing anomalies in gas extraction data. As a result, both extracted pure volume and concentration
demonstrate increased sensitivity to variations in negative pressure.

(2)  Given the nonlinear nature of gas extraction data and the necessity for random sampling in multi-
region predictive modeling, a GA-SVR model is introduced to forecast the daily cumulative extracted
pure volume. Comparative analysis with similar predictive models indicates that the GA-SVR model
exhibits superior absolute error metrics and enhanced prediction stability, achieving a median absolute
percentage error of just 2.6%.

(3) The GA-SVR model training results indicate that variations in negative pressure exert the most
substantial influence on extracted pure volume at a given location. Consequently, an adaptive neg-
ative pressure regulation technique, informed by the GA-SVR predictive model, is proposed. Field
experiments demonstrate that, over a 30-day regulation cycle, the adaptive control model enhances
the average extracted pure volume in the test borehole group by 5.08% relative to the control group.
Furthermore, within the initial 15 days, the extracted pure volume rises by 715%, laying a robust
foundation for the long-term sustainable and efficient utilization of gas.
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