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ABSTRACT: Viscoelastic nanofluid flow has drawn substantial interest due to its industrial uses, including research
and testing of medical devices, lubrication and tribology, drug delivery systems, and environmental remediation. This
work studies nanofluid flow over a viscoelastic boundary layer, focusing on mass and heat transmission. An analysis
is performed on the flow traversing a porous sheet undergoing nonlinear stretching. It assesses the consequences
of viscous dissipation and thermal radiation. The scientific nanofluid framework laid out by Buongiorno has been
exploited. The partial differential equations illustrating the phenomena can be transfigured into ordinary differential
equations by utilizing appropriate similarity transformations. The simplified equations are unmasked using the Homo-
topy Analysis Method (HAM), a semi-analytical approach designed to solve nonlinear ordinary and partial differential
equations commonly encountered in numerous scientific and engineering disciplines. Calculations are executed to
ascertain the numerical solutions related to temperature, concentration, and velocity fields, accompanied by the skin
friction coefficient, local Nusselt number, and local Sherwood number. Visualizations of the results are accompanied
by pertinent explanations grounded in scientific principles. The temperature distribution and corresponding thermal
layer have been enhanced due to radiative and viscous dissipation characteristics. Additionally, it has been noted that
a delay in fluid movement results from an improvement in the porous medium parameter and magnetic field values.
A falling trend in the Nusselt number is observed as the Eckert and thermophoresis parameters increase. The current
numerical results have been effectively validated against previous difficulties.
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1 Introduction
Due to the astounding ability of nanofluids to boost heat and mass transport qualities, which are

significantly beyond those of conventional fluids, scientists must seek out the dynamics of nanofluids.
In addition to having boosted thermal conductivity, viscosity, and convective heat transfer coefficients,
nanofluids, which are nanoparticle suspensions in base fluids, also have improved viscosity. Because of
such benefits, they are incredibly well-suited for use in applications involving thermal management, energy
systems, the cooling of electronic equipment, and medicinal devices. The exploration of nanofluids stems
from the contributions of Choi et al. [1], which incorporated nanometre-scale particles into a base fluid
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characterized by low-temperature conductivity. Nanoparticles significantly increase nanofluids’ thermal
conductivity, enhancing their ability to transmit heat. Bhatti et al. [2] explored non-Newtonian fluids in their
perusal of chemical interactions and the effects of thermal radiation on nanoparticles by examining two
unique classifications of non-Newtonian fluids: time-dependent and time-independent. Sumathi et al. [3]
examined a nanofluid’s magnetohydrodynamic (MHD) flow across an inclined strained sheet and the
consequence related to different factors. Elements of the energy formulation include the results of heat
production, absorption, and thermal radiation. Shahidian et al. [4] studied the numerical investigation
of nanofluid properties of the flow field as well as the temperature distribution in a MHD pump using
finite difference techniques. The effect of static radial magnetic field on natural convection heat transfer
in a horizontal cylindrical annulus enclosure filled with nanofluid is investigated numerically using the
Lattice Boltzmann method was proposed by Ashorynejad et al. [5]. Ghadimi et al. [6] discussed the stability
of nanofluids which play a major role in heat transfer enhancement. Many experts [7–10] have looked
into nanofluids under multifaceted flow conditions owing to their profound significance and wide-ranging
applications in science and technology.

For researchers, comprehending non-Newtonian fluids has become crucial for enhancing operations in
polymer manufacturing, biomedical engineering, oil recovery, food processing, and cosmetics production. It
facilitates the advancement of more efficient equipment design, enhanced material compositions, and supe-
rior control over industrial operations. Furthermore, examining non-Newtonian fluids facilitates progress
in theoretical models and computational simulations, which are essential for engineering systems where
traditional fluid dynamics inadequately represent real-world complexities. Integrating this comprehension
into research fosters more innovative solutions across disciplines, establishing it as a pivotal focus for
scientists and engineers striving to advance the frontiers of fluid mechanics and its applications. Sarada
et al. [11] developed a computational framework to characterize the structure of a non-Newtonian (Jeffrey
and Oldroyd-B) liquid’s mass transfer, flow, and heat transmission over a stretching sheet. Sharma et al. [12]
documented the mass and heat transfer in two-dimensional MHD flows associating non-Newtonian fluids
subjected to various repercussions. It flows through an expanding domain with varying thicknesses. Under
conditions of variable thermal conductivity caused by an exponentially stretched sheet, Anwar et al. [13]
addressed the MHD flow of second-grade nanofluids. Elgazery et al. [14] explored multiple strategies for the
flow of non-Newtonian Casson nanofluids past a moving, expanding sheet in a porous medium with varying
thermal conductivity and nonlinear radiation, considering convective boundary factors.

For researchers, comprehending non-Newtonian fluids has become crucial for enhancing polymer
manufacturing and biomedical operations. Exploring features of viscoelastic fluids, a key group of non-
Newtonian fluids is paramount for researchers in light of its distinctive capacity to display both viscous and
elastic properties, contingent upon the flow circumstances. The dual nature of viscoelastic fluids renders
them very pertinent in various applications where conventional Newtonian models inadequately represent
the fluid’s behavior. Examining viscoelastic fluids enables researchers to get novel insights into material
behavior under dynamic settings, facilitating advancements in material design, process optimization, and
energy-efficient technologies. Consequently, research on viscoelastic fluids is essential for progressing both
theoretical fluid dynamics and actual engineering applications. Nadeem et al. [15] investigated the two-
dimensional Maxwell micropolar fluid flow over a stretching surface. They highlighted the impacts of
viscoelasticity to analyze the flow behavior under the assumptions of nanomaterial over a stretching surface.
Swain et al. [16] investigated the heat and mass transfer of MHD viscoelastic (Walters’ B’ model) nanofluid
flow over a stretching sheet embedded in a saturated porous medium subject to thermal slip and temperature
jump. Alrehili [17] examined the significance of velocity slip by employing a computational approach to the
flow of viscoelastic fluids over an extended surface. The porous medium is a substance with empty spaces
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or pores, which can be either connected or separated and arranged in different patterns, whether regular or
random. These empty spaces can be filled with various substances, such as air, water, or oil. The ratio of these
empty spaces to the entire volume of the substance affects its overall permeability, indicating the substance’s
ability to allow fluid to flow through it. The composition of the porous material determines permeability
and is typically correlated with the average dimensions of the pores. Multiple research has investigated
the attributes and actions of materials with pores. Mahanthesh et al. [18] performed an investigation
regarding the subject of non-linear convective motion in a nano Maxwell fluid that included radiation. Hsiao
et al. [19] explored the buoyant effect and the electric number E1 coupled with magnetic parameter M to
represent the dominance of the electric and magnetic effects and added the specific item of nonuniform
heat source/sink. Venkatadri et al. [20] explored heat conduction in non-Newtonian fluids through porous
materials. While utilizing nanofluids, Mahdi et al. [21] extensively examined heat transmission and fluid
dynamics in porous media. Their analysis centered on multiple characteristics, such as the porous media’s
geometry, the nanofluid’s thermophysical properties, various thermal boundary conditions, and the varieties
of nanofluids employed. The impact of the porous medium on heat transfer is accounted for by examining
the variations in energy dissipation and thermal conductivity affected by the porous structure. Including
the dissipative factor in the energy equation signifies the influence of internal friction and heat production
resulting from viscous dissipation. This methodology aligns with previous research on heat transmission in
porous material, and pertinent references have been included for corroboration. These concepts encapsulate
the cumulative impacts of fluid resistance and improved thermal conduction inside the porous structure.

It has been essential to look into fluid flow dynamics across a nonlinear stretching sheet owing to its
widespread applicability in industrial processes like metal stretching, paper making, polymer extrusion, fiber
spinning, and glass forming. These nonlinear profiles better depict complex physical events in such processes.
Consideration of flow over a nonlinear stretching sheet improves heat and mass transfer predictions,
boundary layer behavior comprehension, and viscous and thermal models. Ali et al. [22] reported that when
radiation and Hall current have been assessed together over a nonlinear stretching sheet, tiny fragments
delivering fluid have more potent heat transfer features than separately addressed. Jabeen et al. [23] examined
the consequence of viscous and Ohmic dissipation on magnetohydrodynamic flow in porous media under
conditions of suction and injection. Khan et al. [24] looked at the characteristics of Sisko nanofluid on a sheet
that stretched nonlinearly.

HAM is ideal for solving viscoelastic nanofluid model strongly nonlinear differential equations,
including the impacts of nonlinear stretching, viscous dissipation, and thermal radiation. The Homotopy
Analysis Method (HAM) offers several advantages over traditional analytical and numerical methods. It
provides a flexible framework to construct approximate solutions for nonlinear problems, allowing for the
adjustment of convergence via an auxiliary parameter. Unlike perturbation methods, HAM is not limited
by small parameters, making it applicable to a broader range of problems. Additionally, HAM ensures high
accuracy by controlling series solutions and allows for explicit, analytical forms that are computationally
efficient. Its adaptability and robustness make it a powerful tool for solving complex mathematical models.
Unlike conventional perturbation methods, HAM has zero reliance on small or linear coefficients. Tricky
issues in fluid dynamics, heat transfer, and other applied sciences can be effectively addressed with this
method, which generates solutions that converge quickly and precisely. The flexibility and accuracy of
HAM have made it a go-to method for nonlinear analysis. Yang et al. [25] exhibited that the degree of
precision of the HAM approach outweighs that of the HTR method, with the former’s approximations
being significantly more precise than those of the latter in the same order. Masjedi et al. [26] delivered
innovative analytical solutions for arbitrary three-dimensional massive deflections of geometrically exact
beams. Ibrahim et al. [27] developed a model for the study of heat source on MHD convection flow of Casson
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nanofluid over a nonlinear stretching sheet by employing HAM method. The repercussion of Joule radiative
heating MHD flow of Jeffrey fluid over a stretching sheet with the help of HAM technique was studied
by Kumar et al. [28]. Pavan Kumar et al. [29] explored the Homotopy analysis method for investigating
the thermal behavior of a porous longitudinal fin under fully wet condition, focusing on the impacts of
convection and radiation. Refer to [30–34] for more knowledge addressing the implementation of indicated
point procedures.

Three innovative attributes supported our present undertaking. This study primarily aims to simulate
and assess the progress of a viscoelastic nanofluid across a porous stretched sheet under various limitations.
Earlier studies have inadequately addressed this specific area of the HAM technique. This paper examines
this deficiency. As research advances, we may observe other applications for these strategies. Our study
uses Buongiorno’s nanofluid model to study the synergistic effects of nonlinear stretching, porous media,
heat radiation, and viscous dissipation on viscoelastic nanofluid flow, providing a deep understanding of
nanoparticle behavior. The Homotopy Analysis Method (HAM) is innovative, giving an entire analyti-
cal framework with convergence control to solve complex coupled equations and overcome numerical
approaches’ limitations. This research illuminates critical parameter effects on flow, heat, and mass transfer
in viscoelastic nanofluid systems, which can be used to optimize energy and biomedical applications. This
study has significant industrial and engineering applications. It is pivotal in optimizing heat and mass
transfer processes in industries such as polymer extrusion, thermal management in nanotechnology, and
advanced material manufacturing. The analysis aids in designing efficient cooling systems for electronic
devices, improving coating technologies, and enhancing energy systems like solar collectors and thermal
insulators. By understanding flow dynamics and thermal behavior, the study supports advancements in
chemical processing, biomedical engineering, and aerospace engineering.

2 Mathematical Formulation
The primary goal of the ongoing scrutiny is to examine the flow of non-Newtonian viscoelastic nanofluid

flow in a porous medium influenced by a variable stretching sheet. We have established a rectangular
coordinate system. x-axis and y-axis alongside and orthogonal to the surface. Where u, v are the horizontal
and vertical velocity factors, respectively. The fluid motion is achieved by elongating the surface from the
slot and facing equal opposite forces along the x-axis. The temperature and concentration are respectively
represented as T and C, at the stretching surface Tw and Cw at the surrounding environment T∞ and C∞. The
stretching velocity of the sheet is Uw = U0 ( x

l )
m , where U0 is a dimensional constant, l is the characteristic

length, m is the nonlinear stretching parameter. The characteristic length is the gap. x evaluated from the slot
where the stretching velocity Uw = U0. A variable magnetic field B (x) = B0 ( x

m-1
2

l
m
2
) is applied perpendicular

to the surface. None of the external forces and pressure gradient are considered. The physical model is given
in Fig. 1.

Assuming the foregoing, the equations that control the boundary layer are (Nadeem et al. [35])

∂u
∂x
+ ∂v
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u ∂C
∂x
+ v ∂C

∂y
= DB

∂2C
∂y2 +

DT

T∞
∂2T
∂y2 , (4)

α = k
(ρC) f

, K∗ = K∗0 l m

xm-1 , τ =
(ρC) f

(ρC)p
.

The corresponding boundary constraints are given by

u = Uw , v = 0, T = TW , DB (
∂C
∂y
) + DT (

∂T
∂y
) = 0 at y = 0,

u → 0, v → 0, T → T∞, C → C∞ as y →∞.
(5)

Following Ross eland’s approximation, the radiative heat flux is

qr = −
4σ∗∂T4

3k∗∂y
.

Figure 1: Geometric analysis of a fluid motion problem

Moreover, we infer that the internal temperature difference of the flow is sufficiently significant that
T4 is deliberated as a linear function in temperature. Linearizing the temperature term T4 simplifies the
equations for analytical or numerical analysis. Due to negligible higher-order terms, it approximates but
does not affect accuracy for tiny temperature fluctuations. Simpler solutions may affect outcomes with large
heat gradients, so they should be tested against accurate or experimental solutions. Consequently, with the
process of expanding T4 in Taylor’s series about T∞ by precluding terms of higher order, we obtain

T4 ≅ 4T∞3T − 3T∞4.

Here, the nonlinear ordinary differential equations are derived using the stream function.
ψ = ψ (x , y), where

u = ∂ψ
∂y

, v = −∂ψ
∂x

, (6)
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where Eq. (1) is satisfied precisely. The similarity transformations are

ψ = A(x) f (ζ) , ζ = Z (x) y, θ (ζ) = T − T∞
Tw − T∞

, ϕ (ζ) = C − C∞
Cw − C∞

,

A(x) = ν
√

Re(x
l
)

m+1
2

, Z (x) =
√

Re
l
(x

l
)

m−1
2

, Re = U0 l
ν

.
(7)

By substituting Eq. (7) in Eqs. (2) to (5), we get the following nonlinear ordinary differential equations.

f ′′′ + (m + 1
2
) f f ′′ −m f ′

2 + k1 ((3m − 1) f ′ f ′′′ − (m + 1
2
) f f ′′′′ − (3m − 1

2
) f ′′

2)
−(M + K) f ′ = 0,

(8)

(1 + 4
3

R) θ′′ + (m + 1
2
)Pr f θ′ + Pr Nb ϕ′θ′ + Pr Nt θ′

2
+ Pr Ec f ′′

2
= 0, (9)

ϕ′′ + (m + 1
2
) Sc f ϕ′ + Nt

Nb
θ′′ = 0. (10)

The boundary conditions are

f (ζ) = 0, f ′ (ζ) = 1, θ (ζ) = 1, Nb ϕ′ (ζ) + Nt θ′ (ζ) = 0 at ζ = 0,
f ′ (ζ) → 0, θ (ζ) → 0, ϕ (ζ) → 0 as ζ →∞.

(11)

where k1 = k0 Uw
μx , M = σ B2

0
ρU0

, K = ν
K∗0 U0

, Nb = τDB(Cw−C∞)
ν , Nt = τDT(Tw−T∞)

T∞ν , R = 4T∞3 σ∗
kk∗ , Ec = Uw

2

CP(Tw−T∞) ,
Pr = ν

α , Sc = ν
DB

.
The physical parameters have been defined as

C f =
τw

ρUw
2 , (12)

is the skin-friction,

Nu =
xqw

k (Tw − T∞)
(13)

is the Nusselt number,

Sh = xqm

DB (Cw − C∞)
(14)

is the Sherwood number,
where

qm = −DB
∂C
∂y

, qw = −(k + 16σ∗T3
∞
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∂y
,

τw = μ (∂u
∂y
) + k0 (u ∂2u

∂x∂y
+ v ∂2u

∂y2 − 2 ∂u
∂y

∂v
∂y
) , at y = 0.

(15)

Utilizing parameters in Eq. (5), we obtain

C f x = (1 + k1 (
7m − 1

2
)) f ′′ (0) , Nux = −(1 +

4R
3
) θ′ (0) , Shx = −ϕ′ (0) . (16)
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3 HAM
We employ the specified initial estimates and linear operators to incorporate the homotopic method-

ologies to Eqs. (7) to (10). The subsequent procedure is visualized in Fig. 2.

Figure 2: Diagrammatic representation of HAM process
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f0 (ζ) = 1 − e−ζ ,
θ0 (ζ) = e−ζ ,

ϕ0 (ζ) = −(
Nt
Nb
) e−ζ ,

L1 ( f ) = f ′′′ − f ′,
L2 (θ) = θ′′ − θ ,
L3 (ϕ) = ϕ′′ − ϕ,

with

L1 ( j1 + j2eζ + j3e−ζ) = 0,
L2 ( j4eζ + j5e−ζ) = 0,
L3 ( j6eζ + j7e−ζ) = 0,

where ji (i = 1 to 7) are the arbitrary constants.
We construct the zeroth-order deformation equations.

(1 − p) L1 ( f (ζ ; p) − f0 (ζ)) = p h̵1N1 [ f (ζ ; p)] , (17)
(1 − p) L2 (θ (ζ ; p) − θ0 (ζ)) = p h̵2N2 [ f (ζ ; p) , θ (ζ ; p) , ϕ (ζ ; p)] , (18)
(1 − p) L3 (ϕ (ζ ; p) − ϕ0 (ζ)) = p h̵3N3 [ f (ζ ; p) , θ (ζ ; p) , ϕ (ζ ; p)] , (19)

subject to the boundary conditions

f (0; p) = 0, f ′ (0; p) = 1, f ′ (∞; p) = 0,

θ (0; p) = 1, θ (∞; p) = 0,

Nb ϕ′ (0; p) + Nt θ′ (0; p) = 0, ϕ (∞; p) = 0,

(20)
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2
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3
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)

2
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2
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N3 [ f (ζ ; p) , θ (ζ ; p) , ϕ (ζ ; p)] = ∂2ϕ (ζ ; p)
∂ζ2 + Sc (m + 1

2
)( f (ζ ; p) ∂ϕ (ζ ; p)

∂ζ
)

+ Nt
Nb

∂2θ (ζ ; p)
∂ζ2 ,

(23)
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where p ∈ [0, 1] is the embedding parameter, h̵1 , h̵2 and h̵3 are non-zero auxiliary parameters and N1 , N2
and N3 are nonlinear operators.

The nth-order deformation equations are as follows.

L1 ( fn (ζ) − χn fn−1 (ζ)) = h̵1R f
n (ζ) , (24)

L2 (θn (ζ) − χn θn−1 (ζ)) = h̵2Rθ
n (ζ) , (25)

L3 (ϕn (ζ) − χn ϕn−1 (ζ)) = h̵3Rϕ
n (ζ) , (26)

with the following boundary conditions

fn (0) = 0, f
′

n (0) = 0, f
′

n (∞) = 0,

θn (0) = 0, θn (∞) = 0,

Nb ϕ
′

n (0) + Nt θ
′

n = 0, ϕn (∞) = 0,

(27)

where

R f
n (ζ) = f
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2
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f
′
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′
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2
)
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∑
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fn−1−i f
′′′′

i − (
3m − 1

2
)

m−1
∑
i=0

f
′′

n−1−i f
′′

i )

−(M + K) f ′n−1 ,

(28)

Rθ
n (ζ) =

1
Pr
(1 + 4R

3
) θ

′′

n−1 + (
m + 1

2
)

n−1
∑
i=0

fn−1−i θ
′

i + Nb
n−1
∑
i=0

θ′n−1−i ϕ
′

i + Nt
n−1
∑
i=0

θ′n−1−i θ
′

i

+Ec
n−1
∑
i=0

f ′′n−1−i f
′′

i ,
(29)

Rϕ
n (ζ) = ϕ

′′

n−1 + (
m + 1

2
) Sc (

n−1
∑
i=0

fn−1−i ϕ
′

i) +
Nt
Nb

θ
′′

n−1 , (30)

χn = {
0, n ≤ 1,
1, n > 1.

4 Convergence of HAM
The auxiliary factors significantly greatly affect the convergence and interpolation rates of the specific

inferences h̵1 , h̵2 & h̵3. Therefore, in Fig. 3, h̵ curves are recognized as necessary to accomplish the parameter
quantities. Based on such an extensive overview, we can figure out that the primary parameter paradigm is
all about [−1.5, 0.0]. For h̵1 = h̵2 = h̵3 = −0.67, the series solutions are convergent across the whole ζ area.
The convergence of the approach is insinuated by Table 1.

5 Results and Discussion
The mathematical frameworks that reflect the features of magnetohydrodynamic (MHD) viscoelastic

nanofluids, a category of non-Newtonian fluids, are laid out in this portion of the article. The flow of
this fluid through a porous medium over a nonlinearly stretched sheet is the main emphasis. We examine
the influence of diverse physical parameters on the distinctive flow features, specifically fluid velocities,
thermal profiles, and concentration. The differential equations are transformed via an appropriate similarity
transformation and solved analytically using HAM. Fig. 4 describes the problem’s flow chart. Typically, the
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values of parameters are systematically changed for most figures to study their repercussions while keeping
other parameters constant during the simulation, such as:

k1 = K = R = Ec = 0.1, M = 0.2, m = 0.5, Nb = 0.5, Nt = 0.3, Pr = 1.5, Sc = 1.0.

Figure 3: Curves of f ′′ (0), θ′ (0) and ϕ′ (0)

Table 1: Convergence of HAM solutions for different orders of approximations when k1 = K = R = Ec = 0.1, M =
0.2, m = 0.5, Nb = 0.5, Nt = 0.3, Pr = 1.5, Sc = 1.0

Order − f ′′ (0) −θ′ (0) −ϕ′ (0)
5 −0.974372 0.737291 −0.442374
10 −0.973845 0.740528 −0.444317
15 −0.973808 0.738044 −0.442827
20 −0.973803 0.737412 −0.442447
25 −0.973802 0.737706 −0.442624
30 −0.973802 0.737679 −0.442607
35 −0.973802 0.737663 −0.442598
40 −0.973802 0.737672 −0.442603
45 −0.973802 0.737670 −0.442602
50 −0.973802 0.737670 −0.442602
55 −0.973802 0.737670 −0.442602
60 −0.973802 0.737670 −0.442602

Figs. 5–7 illustrate the repercussion of the viscoelastic parameter on f ′ (ζ), θ (ζ) and ϕ (ζ). The reason
behind the obtained outcomes is that fluid viscosity has a negative correlation with the viscoelastic parameter.
Fluids with higher values of the viscoelastic parameter have lower viscosities, enabling the fluid to extend and
flow more easily, thereby improving f ′ (ζ). Because the fluid moves more quickly, there is less time for heat
and mass diffusion close to the surface, which might reduce the thickness of the thermal and concentration
boundary layers.

f ′ (ζ), θ (ζ) and ϕ (ζ) all fall as the stretching parameter m elevates, since it is readily apparent that
elevated numbers of the parameter thin the boundary layer. This is shown in Figs. 8–10.
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Figure 4: Analysis of the flow problem

Figure 5: Repercussion of k1 on f ′ (ζ)

Figure 6: Repercussion of k1 on θ (ζ)
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Figure 7: Repercussion of k1 on ϕ (ζ)

Figure 8: Repercussion of m on f ′ (ζ)

Figure 9: Repercussion of m on θ (ζ)

Figure 10: Repercussion of m on ϕ (ζ)
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Figs. 11–13 depict the effect of the magnetic parameter M concerning f ′ (ζ), θ (ζ) and ϕ (ζ). As M
grows, f ′ (ζ) demonstrates a diminishing trend, whereas θ (ζ) and ϕ (ζ) exhibit augmenting trends. This
phenomenon arisesowing to the heightened Lorentz force produced through the magnetic field, that provides
additional barrier to fluid movement, resulting in its deceleration. The resistance causes an enhancement in
θ (ζ) and ϕ (ζ).

Figure 11: Repercussion of M on f ′ (ζ)

Figure 12: Repercussion of M on θ (ζ)

Figure 13: Repercussion of M on ϕ (ζ)

Figs. 14–16 depict the effect of the porous medium parameter K concerning f ′ (ζ), θ (ζ) and ϕ (ζ). Fluid
motion is reduced and f ′ (ζ) near the stretched sheet is lowered as a result ofenhanced resistance caused by
high values of K as shown in Fig. 14. θ (ζ) rises because the boundary layer retains more heat as a result of
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the reduced f ′ (ζ) caused by the accelerated resistance. Higher values of K also cause a higher ϕ (ζ)in the
boundary layer, as species have more time to accumulate near the surface as shown in Figs. 15 and 16.

Figure 14: Repercussion of K on f ′ (ζ)

Figure 15: Repercussion of K on θ (ζ)

Figure 16: Repercussion of K on ϕ (ζ)

Fig. 17 illustrates that an enhancement in the Prandtl number Pr yields a reduction in θ (ζ). This
phenomenon arises owing to a larger Pr is linked to an augmented viscosity and a diminished thermal
conductivity.

As the radiation parameter R is elevated, θ (ζ) significantly accelerates. Higher R augment thermal
radiation inside the fluid, resulting in elevated heat transfer to the fluid. Consequently, the comprehensive
θ (ζ) rises. This is depicted in Fig. 18.
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Figure 17: Repercussion of Pr on θ (ζ)

Figure 18: Repercussion of R on θ (ζ)

Conduction transfers thermal energy at low Eckert numbers, with little viscous dissipation. This regime
applies to low-velocity, temperature-gradient flows. Viscous dissipation turns flow kinetic energy into
thermal energy, causing high Eckert numbers. Viscous heating can substantially alter fluid properties and
temperature distributions in high-speed flows. Ec number impacts polymer extrusion viscosity and flow
uniformity by affecting viscous dissipation heat generation. Viscous heating elevates surface temperatures
to critical levels, compromising aircraft thermal shielding. A larger Eckert number Ec indicates that viscous
forces transform more mechanical energy into heat. This results in heightened fluid resistance, necessitating
increased energy expenditure to surmount these forces. Consequently, θ (ζ) accelerates due to the dissipation
of excess energy. This is depicted in Fig. 19.

Figure 19: Repercussion of Ec on θ (ζ)



872 Front Heat Mass Transf. 2025;23(3)

Figs. 20 and 21 illustrate the repercussion of the Brownian motion factor Nb on θ (ζ) and ϕ (ζ) curves.
The broader spectrum of Nb enhances nanoparticle kinetic energy, facilitating more particles to surpass the
surface, increasing θ (ζ) while diminishing ϕ (ζ). The repercussion of the Brownian motion parameter on
temperature is insignificant, as it leads poorly to thermal energy transfer.

Figure 20: Repercussion of Nb on θ (ζ)

Figure 21: Repercussion of Nb on ϕ (ζ)

The thermophoresis component Nt alters θ (ζ) and ϕ (ζ)distributions in Figs. 22 and 23. The parameter
Nt propels nanoparticles from regions of hot to cold, altering the θ (ζ). Additionally, modifies ϕ (ζ) in a
comparable manner.

Figure 22: Repercussion of Nt on θ (ζ)

Elevated Schmidt number Sc indicate diminished mass diffusivity, hence impeding the transit of species
from the surface and resulting in a drop-in ϕ (ζ) in near to the surface as shown in Fig. 24.
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Figure 23: Repercussion of Nt on ϕ (ζ)

Figure 24: Repercussion of Sc on ϕ (ζ)

From Fig. 25, it is noticed that skin friction coefficient accelerates with the increase of M and k1.

Figure 25: Repercussion of k1 and M on C f x

Convection over conduction effective surface heat transfer is indicated by a high Nusselt number. Heat
exchangers and cooling systems that demand fast heat dispersion benefit from this. Insulating materials or
stagnant fluid layers have low Nusselt values, indicating conduction heat transfer. In electrical device thermal
management, the Nusselt number reduces overheating by increasing heat dissipation. In contrast, insulating
design reduces heat losses with low Nusselt. A declining pattern in the Nusselt number becomes apparent
with an upsurge in the Ec and Nt which is given in Fig. 26.
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Figure 26: Repercussion of Ec and Nt on Nux

Convective mass transfer is necessary for drying, distillation, and catalytic reactions with high Sher-
wood numbers. Low Sherwood numbers suggest diffusion-dominated mass movement in stationary or slow
diffusion systems. To optimize catalyst surface reactant movement, chemical engineers want high Sherwood
numbers in packed bed reactors. Water removal efficiency is seen during drying. The rate of mass transfer
rises at the plate in the presence of M and Sc. This is shown in Fig. 27.

Figure 27: Repercussion of Sc and M on Shx

To evaluate the numerical scheme’s accuracy, we assess the most current findings. of− f ′′ (0)and−θ′ (0)
with the findings of Nayak et al. [36], Wahid et al. [37] and Goyal et al. [38] in Tables 2 and 3.

Table 2: Comparing − f ′′ (0) for distinct values of k1, K, M and m = 1

k1 M K Nayak et al. [36] Wahid et al. [37] HAM
0.5 0.5 0.01 1.00333 1.00333 1.003332
0.5 0.5 2.0 1.52753 1.52753 1.527534
0.5 1.0 0.01 1.15758 1.15758 1.157581
0.5 1.0 2.0 1.63299 1.63299 1.632988
1.0 0.5 0.01 0.86891 0.86891 0.868908
1.0 0.5 2.0 1.32288 1.32288 1.322867
1.0 1.0 0.01 1.00250 1.00250 1.002511
1.0 1.0 2.0 1.41421 1.41421 1.414229
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Table 3: Comparing −θ′ (0) for distinct values of Pr when Sc = 10, Nb = Nt = 10−6, k1 = 0.0, m = 1.0

Pr Goyal et al. [38] HAM
0.2 0.1691 0.161973
0.7 0.4539 0.453914
2.0 0.9113 0.911308

6 Conclusions
This work examines the mass and heat transfer characteristics of nanofluid flow within a viscoelastic

boundary layer over a porous sheet undergoing nonlinear stretching. The analysis, based on Buongiorno’s
empirical nanofluid framework, incorporates the effects of viscous dissipation and heat radiation. The
governing equations are solved using the Homotopy Analysis Method (HAM), and the results are validated
against known research.

• The fluid’s velocity grows with a rise in the viscoelastic parameter, signifying improved momentum
transfer attributable to the fluid’s elasticity, which aids its flow. In contrast, velocity diminishes with
increased levels of the magnetic parameter, porous medium parameter, and stretching sheet index.
This behavior illustrates the cumulative impact of Lorentz forces, augmented drag inside the porous
medium, and resistance due to non-linear stretching, all of which counteract fluid motion. These findings
underscore the essential importance of these factors in regulating fluid dynamics in applications such as
electromagnetic flow control and filtration in porous media.

• The temperature profile increases with a rise in the radiation parameter, indicating improved thermal
energy transfer from intensified radiative heat flux. Likewise, elevated levels of the Brownian motion
and thermophoresis factors enhance temperature, as nanoparticle mobility and thermophoretic effects
facilitate heat diffusion. The positive effect of the Eckert number underscores the transformation of
kinetic energy into internal energy via viscous dissipation, hence increasing the temperature. These
findings highlight the significance of these factors in enhancing thermal management in nanofluid
systems for sophisticated heat transfer applications.

• The concentration profile diminishes as the Brownian motion parameter increases, indicating the
augmented dispersion of nanoparticles that lessens concentration gradients. A greater Schmidt number
corresponds to a decrease in concentration, indicating less molecular diffusivity, which restricts the
transit of solute particles. These results underscore the significant impact of these factors on mass transfer
processes, with ramifications for applications like chemical mixing and separation technologies.

• The skin friction coefficient increases with the elevation of both the magnetic parameter and the
viscoelastic parameter. The magnetic parameter intensifies the Lorentz force, augmenting resistance
to fluid motion at the surface, whereas the viscoelastic value boosts the elastic properties of the fluid,
resulting in elevated surface shear stress. These findings emphasize the impact of electromagnetic forces
and fluid elasticity on shear properties, with consequences for the design of systems that incorporate
viscoelastic and magnetohydrodynamic flows.

• An ascending tendency in the Sherwood number is evident with the elevation of Sc and M.
• The insights gained through HAM align closely with the prior findings.
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Nomenclature
U0 Dimensional constant
u, v Velocity components in x and y direction
l Characteristic length
B (x) Applied magnetic field
B0 Constant
Uw (x) Stretching velocity
k0 Elastic parameter
σ Electrical conductivity
ρ Density of the fluid
(ρC)p Heat capacity of the nanoparticles
(ρC) f Fluid heat capacity
K∗ Permeability of the medium
K∗0 Constant
τ Heat capacity ratio
qr Radiative heat flux
ν Kinematic viscosity
Cp Specific heat
m Nonlinear stretching sheet index
α Thermal diffusivity
T Temperature of the fluid
C Concentration of the fluid
Tw Wall temperature
Cw Wall concentration
T∞ Ambient temperature
C∞ Ambient concentration
C f Coefficient of Skin Friction
Nux Local Nusselt number
Shx Local Sherwood number
τw Stress with the stretched surface
qw Wall heat flux
qm Mass heat flux
k Thermal conductivity
DB Brownian diffusion coefficient
DT Thermophoresis diffusion coefficient
ψ Stream function
A(x) , Z (x) Scaling functions
Re Local reynolds number
M Magnetic field parameter



Front Heat Mass Transf. 2025;23(3) 877

K Porous medium parameter
k1 Visco-elastic parameter
Pr Prandtl number
R Radiation parameter
Ec Eckert number
Nb Brownian factor
Nt Thermophoresis factor
Sc Schmidt number
ζ Similarity variable
f ′ (ζ) Velocity field
θ (ζ) Temperature field
ϕ (ζ) Concentration
σ∗ Stefan-Boltzman constant
k∗ Mean absorption coefficient
h̵1 , h̵2& h̵3 Auxiliary parameters
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