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ABSTRACT: This article explores the optimization of heat transport in a magnetohydrodynamic nanofluid flow with
mixed Marangoni convection by using the Response Surface Methodology. The convective flow is studied with external
magnetism, radiative heat flux, and buoyancy. An internal heat absorption through the permeable surface is also taken
into account. The governing system includes the continuity equation, Navier-Stokes momentum equation, and the
conservation of energy equations, approximated by the Prandtl boundary layer theory. The entropy generation in the
thermodynamic system is evaluated. Experimental data (Corcione models) is used to model the single-phase alumina-
water nanofluid. The numerical solution for the highly nonlinear differential system is obtained via Ralston’s algorithm.
It is observed that the applied magnetic field leads to a higher entropy generation which is engendered by the Lorentz
force within the fluid system. The thermal radiation leads to a higher Bejan number, indicating the importance of the
irreversibility of heat transport. Also, the heat absorption process via a permeable surface can be employed to regulate
the thermal field. An optimized Nusselt number of 13.4 is obtained at the high levels of radiation, injection, and heat sink
parameters. The modeled fluid flow scenario is often seen in drying, coating, and heat exchange processes, especially
in microgravity environments.

KEYWORDS: Nanofluid; marangoni convection; entropy generation; ralston’s algorithm; nusselt number; response
surface methodology

1 Introduction
Drying of silicon wafers, electron beam melting, growth of crystals, and convection cells involve surface

tension gradient-induced flows. Such flows are called Marangoni convective flows in which the change in
surface tension can be brought about by gradients in temperature (called thermal Marangoni convection)
or solute (called solutal Marangoni convection) [1]. The Marangoni flow is undesirable in crystal growth
and thermal Marangoni convection is dominant in semiconductor melts of Silicon [2]. At the interface, the
surface tension (σ) is modeled such that it varies linearly with temperature as given below [3]:

σ = σ∞ − σT (T − T∞) (1)

where, σT = − d σ
d T > 0 and σ∞ is the surface tension at T∞. The steady flow of liquids in slots considering

thermal Marangoni convection was analyzed by Sen et al. [4]. The deflection of the liquid-gas interface due
to the considered pressure gradient is studied. Chamkha et al. [5] explored the mixed Marangoni flow by
considering gravitational and pressure gradient effects in a small fluid flayer. The substantial impact of the
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mixed convective parameter on heat transport was concluded. Khan et al. [6] used the cylindrical coordinate
system to analyze the thermal Marangoni flow with dissipative forces and an irregular heat source. Moreover,
the entropy generated in the system was analyzed, and concluded a boost in entropy generation due to the
Marangoni aspect. The optimized heat transport rate in the Marangoni boundary layer flow of a hybrid
nanomaterial was reported by Mackolil et al. [7]. The radiated thermal profile was studied in detail along
with an exponentially varying heat source and a magnetism that is inclined. Recently, Jiang et al. [8] explored
the effect of hydrothermal wave propagation on the thermal Marangoni convective flow of a nanofluid. One
of the major conclusions of this study was that the instability of the nanofluid thermocapillary convection
can be regulated by changing the volume fraction of nanoparticles.

An applied magnetic field can be utilized to regulate the fluid flow and lead to higher thermal profiles.
Therefore, magnetohydrodynamic (MHD) flows prove to be useful for nanofluid flow applications. In silicon
crystal growth and semiconductor processing, the Lorentz force formed due to the magnetism can decrease
the unfavorable Marangoni velocity in the fluid layer. Since then, there have been various studies in this
direction that analyze MHD flows, especially surface tension gradient-induced ones. The fully developed
MHD flow over a revolving disk that involves a slip (second-order) and is optimized for entropy was analyzed
by Abbas et al. [9]. The significant effect of applied magnetism was highlighted in the study. Recently, Jawad
et al. [10] studied the flow of a nanomaterial past a vertical plate that involved surface tension gradients
and cross-diffusion. The retardation of fluid velocity via the applied magnetic field was reported. The MHD
Marangoni flow of a nanofluid across a porous medium was studied by Sneha et al. [11]. The significant
influence of the fluid flow by the magnetic effect was reported. Some more studies that investigate the MHD
flows in different convective scenarios can be found in the literature [12–14].

Conventional working fluids of machinery and thermal equipment have been replaced with nanofluids
owing to their superior thermophysical properties. Suspensions of nano-sized particles like metals, metal
oxides, carbides, or nanotubes are called nanofluids (as seen in the pioneering works of Choi et al. [15]).
Driven by the practical applicability, researchers have adapted to nanofluids for convective flows past various
geometries. Advances in nanofluid flows can be referred to from the extensive review by Mahian et al. [16].
The Marangoni convective flow of gasoline oil with aluminum alloy and Boehmite alumina nanoparticles
was analyzed by Ullah [17]. The thermal performance and heat transfer of the nanofluid were scrutinized.
Rehman et al. [18] explored the Marangoni convection on a nanofluid by dispersing carbon nanotubes over an
elongated surface. The decrease in nanofluid velocity by increasing nanoparticle concentration was reported.
Some more studies that analyze such nanofluid flows are found in the literature [19–21].

Statistical optimization using Response Surface Methodology (RSM) is an efficient methodology to
estimate the optimum levels of the factor variables. RSM is used to study the interactive effects and to
optimize a response variable. It is based on a designed experiment that is chosen based on the cost
efficiency and minimization of the error. Further, the estimated model for the response can be used to
find the sensitivity. This methodology has recently been used in fluid flow problems to optimize the heat
and mass transport in the flow. Shirvan et al. [22] evaluated the sensitivity of heat transport and heat
exchanger effectiveness in the nanomaterial flow through a double-pipe heat exchanger. In this direction,
Shafiq et al. [23] analyzed the bioconvective flow of a tangent hyperbolic nanomaterial. The sensitivity of
the motile microorganism number and the Nusselt number against the variation in the thermophoresis
parameter, Lewis number, and Brownian motion aspect was explored. Mahanthesh et al. [24] optimized the
heat transport in the flow of a hybrid nanofluid over a wedge. The Brownian random motion aspect was
found to have the highest sensitivity and the optimized heat transport was estimated using the quadratic
model obtained from the RSM analysis. A detailed statistical analysis has been carried out to optimize the
convective heat transfer in a square cavity by Huda et al. [25]. A correlation for the average heat transport
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with respect to the chosen input variables was modeled using RSM. Of late, such analysis methods have been
widely used to analyze fluid flow phenomena [26–28].

The radiative heat transport in the mixed convective Marangoni boundary layer flow of a nanomaterial
with heat sink, external magnetic field, and suction/injection has not yet been studied. Moreover, the
optimization of the heat transfer and the sensitivity at various levels has not yet been reported in the literature.
This information is useful for applications like semiconductor crystal heat transfer, growth of silicon wafers,
and coating processes. Hence, the objectives of the present study are as follows:

• Model the physical phenomenon of the mixed Marangoni nanomaterial flow with thermal radiation,
heat sink, magnetic field, and suction/injection.

• Explore the effect of the external parameters and discuss the physical significance.
• Analyze the entropy generation thermodynamics in the fluid system.
• Estimate the optimum heat transport in the system utilizing the optimization procedure-RSM.
• Calculate the heat transport sensitivity at different parameter levels.

2 Mathematical Modeling

2.1 Governing Equations
The surface-tension-induced boundary layer mixed convective flow of alumina-water nanomaterial

is considered along with a significant buoyancy force. The buoyant force is significant because of the
gravitational pull on the surface of the Earth. The working fluid considered in the study is alumina water as
it possesses higher thermophysical properties, making it suitable for heat transfer applications. The alumina
nanoparticles are suspended uniformly in thermal equilibrium and without slip. Fluid is incompressible and
a laminar flow is considered. The nanomaterial is modeled using the homogeneous single-phase approach
which includes the effective thermophysical properties of the nanomaterial. As seen in Fig. 1, the x-axis
is along the fluid interface, and the y-axis is in the normal direction. A varying magnetic field is applied
perpendicular to the interface and thermal radiative heat flux is considered in the system. There is no induced
magnetic field as the magnetic Reynolds number is considered to be negligibly small. This results in a
purely diffusive magnetism with an insignificant advection. Viscous dissipation and Joule heating effects
are negligibly small. The vector form of the governing equations by using the conservation laws yield the
following equations (see Chamkha et al. [5], and Golia et al. [29]):

∇ ⋅ q = 0, (2)

ρn f (
∂q
∂t

+ (q ⋅ ∇) q) = −∇p + μn f ∇2q − Γ {(ρβT)n f (T − T∞)} g + F L , (3)

(ρcp)n f (
∂T
∂t

+ (q ⋅ ∇)T) = −∇(qr − kn f ∇T) − Q0(T − T∞). (4)

In the above equations, the velocity vector for the two-dimensional flow is q = (u, v) in (x, y) direction,
p is the pressure, T is the fluid temperature, t is time, T∞ is the ambient temperature, F L = J × B is the
Lorentz force, J is the current density vector, B is the magnetic field vector, and Q0 > 0 is the heat sink
coefficient. ∇ and ∇2 gradient and Laplacian operators. The gravity vector is aligned downward along with
the interface. Also, as the normal component of gravity vector is assumed to be neglected, hence the curvature
of the interface can be ignored. Moreover, the order-of-magnitude analysis also underpin this (see Napolitano
et al. [30]). The Rosseland radiative heat flux is denoted by qr = − 4σ∗

3k∗∇T4, where, σ∗ (= 5.67 × 10−8 W/m2K4)
is the Stefan-Boltzmann constant and k∗ is the coefficient of mean absorption. The nanofluid thermophysical
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properties are μ (viscosity), ρ (density), cp (specific heat), βT (thermal expansion coefficient), and k (thermal
conductivity). The subscripts nf and f represent the nanofluid and basefluid correspondingly.

Figure 1: Physical model and geometry

Neglecting the displacement currents, the Maxwell field equations (electromagnetic) are as follows (see
Sutton et al. [31]):

∇ ⋅ B = 0,∇× B = μ0 J ,∇× E = −∂B
∂t

, (5)

J = (σe)n f [E + q × B] , (6)

where, (σe)n f is the electrical conductivity of the nanofluid, E is the electrical field vector, and μ0 is the
magnetic permeability. But since there is no applied electric field, E = 0. It is customary to assume that the
magnetic field lines are fixed for the fluid. Moreover, Hall current and ion-slip currents are neglected.

Under the Boussinesq and Prandtl’s boundary layer approximations, the governing equations for the
two-dimensional steady flow are as follows:

∂u
∂x

+ ∂v
∂y

= 0, (7)

ρn f (u ∂u
∂x

+ v ∂u
∂y

) = ρn f ue
due

dx
+ μn f

∂2u
∂y2 − (σe)n f B2(u − ue) − Γg (ρβT)n f (T − T∞) , (8)

(ρcp)n f (u ∂T
∂x

+ v ∂T
∂y

) = kn f
∂2T
∂y2 − ∂qr

∂y
− Q0 (T − T∞) . (9)
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The boundary conditions are given below:

At y = 0, v = v0, T = Ts = T∞ + Axn+1 , μn f
∂u
∂y

= −∂σ
∂x

= − dσ
dT

∂T
∂x

.

As y → ∞, u → ue (x) , T → T∞. (10)

where, ue denotes the external velocity, v0 is the suction/injection velocity and A is a constant. The third
boundary condition at the interface (y = 0) is due to the Marangoni effect which is not a bulk phenomenon
and hence occurs at the boundary [32]. Here, the gradient of the stress tensor at the surface is equated to the
surface tension gradient [33]. From the application point of view, it is imperative to study the heat transport
characteristics associated with the flow problem. This can be quantified using the Nusselt number which is
defined as follows:

Nux = −x
k f (Ts − T∞) (kn f

∂T
∂y

− qr)
y=0

. (11)

In Eq. (8), the pressure gradient is reduced due to the presence of external flow, as shown below:

d p
dx

= −ρn f ue
due

dx
− (σe)n f B2ue . (12)

In various flow scenarios, the buoyant forces may assist or oppose the convective flow and hence, the
dimensionless parameter Γ = ±1 (for buoyancy forces that assist and oppose the flow) is used to distinguish
these flow cases.

The optically dense nature of the water-based nanomaterial makes the Rosseland approximation suitable
to model the radiative heat flux (see Rosseland [34]). Therefore, it is modeled as follows:

qr = −4σ∗

3k∗
∂T4

∂y
= − 16σ∗T3

∞

3k∗
∂T
∂y

. (13)

The expression in Eq. (13) is obtained by approximating the Taylor series expansion of T4 about T∞
linearly. Therefore, Eq. (9) becomes:

(ρcp)n f (u ∂T
∂x

+ v ∂T
∂y

) = (kn f +
16σ∗T3

∞

3k∗
) ∂2T

∂y2 − Q0 (T − T∞) . (14)

2.2 Nanofluid Models
The single-phase nanofluid model is employed in conjunction with experimentally obtained relations

to capture the properties of the 47 nm alumina-water nanomaterial. The nanomaterial viscosity is modeled
using the Corcione model [35] which is an experimentally estimated relation as given below:

μn f =
μ f

1 − 34.87 ( d p
d f
)
−0.3

ϕ1.03
, (15)

where, dp = 47 is the nanoparticle diameter, d f = 0.1( 6 W
N πρ f

)
1
3 , W is the molecular weight of water, N denotes

the Avogadro number, ϕ denotes the nanoparticle loading and ρ f denotes the density of water at room
temperature. The above model is valid for 25 nm ≤ dp ≤ 200 nm, 0.01% ≤ ϕ ≤ 7.1%, and in the temperature
range 293–323 K.
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The thermal conductivity is also modelled using the Corcione model [35] which is given as follows:

kn f = k f

⎧⎪⎪⎨⎪⎪⎩
1 + 4.4(Ren f )0.4Pr0.66 ( T

Tf r
)

10

(
kp

k f
)

0.03

ϕ0.66
⎫⎪⎪⎬⎪⎪⎭

, (16)

where, Ren f =
2ρ f kB T
π μ2

f d p
—nanomaterial Reynolds number, kB—Boltzmann constant, μ f —dynamic viscosity of

water, Pr—Prandtl number of water, T—nanomaterial temperature, Tf r—freezing point of water, and kp
denotes the thermal conductivities of alumina nanoparticle. This model is valid for 10 nm ≤ dp ≤ 150 nm,
0.2% ≤ ϕ ≤ 9% and 294 K ≤ T ≤ 324 K. The remaining nanomaterial properties are computed using the
conventional mixture theory (see Table 1).

Table 1: The effective thermophysical properties of the nanomaterial [36]

Specific heat capacity (ρcp)n f = (1 − ϕ) (ρcp) f + ϕ (ρcp)s
Density ρn f = (1 − ϕ) ρ f + ϕρs

Electrical conductivity (σe)n f = σe f

⎛
⎜⎜⎜⎜⎜
⎝

1 +
3( σe s

σe f
− 1)ϕ

( σe s
σe f

+ 2) − ( σe s
σe f

− 1)ϕ

⎞
⎟⎟⎟⎟⎟
⎠

Coefficient of thermal expansion (ρβT)n f = (1 − ϕ) (ρβT) f + ϕ (ρβT)s

Note: The subscript s in the table represents nanoparticles.

2.3 Non-Dimensionalization
The following variables are used to arrive at non-dimensionality in the equations.

U = u
Uc

, Ue (X) = ue (x)
Uc

, V = v
δUc

, V0 = v0

δUc
,

X = x − L0

L
, Y = y

δL
, T1 =

T − T∞
ΔT

, T1S = Ts (x) − T∞
ΔT

. (17)

In the above equations, Uc is the reference velocity defined as ν f
Lδ2 , Re is the Reynolds number defined

as σT ΔTL
ν f μ f

, δ is the scale factor defined as Re− 1
3 , and L is the scale length. Also, the origin of the x-axis is at L0

and ΔT represents the incremental temperature in the system.
Using (17) in Eqs. (7)–(10), one can get:

∂U
∂X

+ ∂V
∂Y

= 0, (18)

ρn f

ρ f
(U ∂U

∂X
+ V ∂U

∂Y
) =

ρn f

ρ f
Ue

dUe

dX
+

μn f

μ f

∂2U
∂Y 2 − (

σen f

σe f

) M∗(U − Ue) − Γ
(ρβT)n f

(ρβT) f
λT1 , (19)

(ρcp)n f

(ρcp) f

(U ∂T1

∂X
+ V ∂T1

∂Y
) = 1

Pr
(

kn f

k f
+ R) ∂2T1

∂Y 2 − Q∗T1 , (20)
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At Y = 0∶V = V0, T1 = T1S (X) ,
μn f

μ f

∂U
∂Y

= ∂T1

∂X
. (21)

As Y → ∞∶U → Ue (X) , T1 → 0. (22)

where,

Pr =
μ f cp f

k f
(Prandtl number),

λ =
g(βT) f ΔTL

U 2
c

(thermal buoyancy parameter),

Q∗ = Q0L
(ρcp) f Uc

(heat sink factor),

M∗ =
(σe) f LB2

ρ f Uc
(magnetic factor),

R = 16σ∗T3
∞

3k∗k f
(radiation parameter).

Self-similar solutions are computed by using the similarity transformations given below (see Golia
et al. [29]):

U = U0 X3 f ′ (ζ) , V = −U0 l0 X [2 f (ζ) + ζ f ′ (ζ)] , T1 = −t0 X5θ (ζ) ,

V0 = −U0 l0 XS , Ue (X) = U0 X3, B = B0 X
l0

, Q0 = QX2

l 2
0

ζ = XY
l0

. (23)

where, f ′, θ , S are respectively the dimensionless velocity, temperature, and suction/injection parameter
and prime denotes the differentiation with respect to the similarity variable. U0, l0, t0 are constant non-
dimensional scale factors such that (see Golia et al. [29]):

U0 l 2
0 = 1

2
, t0 l 2

0
U0

= 1, t0 l0

U0
= 1

5
. (24)

The set of ordinary differential equations is obtained as follows:

μn f

μ f
f ′′′ + 3

2
ρn f

ρ f
(1 − ( f ′)2) +

ρn f

ρ f
f f ′′ + Γ

(ρβT)n f

(ρβT) f
λθ − (

σen f

σe f

) M( f ′ − 1) = 0, (25)

1
Pr

(
kn f

k f
+ R) θ′′ −

(ρcp)n f

(ρcp) f

(5
2

f ′θ − θ′ f ) − Qθ = 0, (26)

with

f (0) = S ,(
μn f

μ f
) f ′′ (0) = −1, θ (0) = 1,

f ′ (∞) → 1, θ (∞) → 0. (27)
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The non-dimensional scaled form of Eq. (11) is obtained as follows:

Nux = −(
kn f

k f
+ R) θ′(0). (28)

2.4 Entropy Generation
It is extremely important to make the heat transfer thermodynamically stable. Heat transfer produces

thermodynamic irreversibility or entropy generation. Therefore, it is worth studying entropy generation.
Lower entropy leads to lower energy loss. The viscous and Joule heating effects have been neglected in the
energy equation to study heat transfer. But an order of magnitude analysis indicates that they are important
in studying the entropy generation. Therefore, the entropy generation can be modelled as follows (see
Bejan [37]):

SG =
k f

T2
∞

(
kn f

k f
+ 16σ∗T3

∞

3k∗k f
)(∇T)2 +

μn f

T∞
(∇u)2 +

(σe)n f B2

T∞
u2. (29)

Under the assumptions of the present problem:

SG =
k f

T2
∞

(
kn f

k f
+ 16σ∗T3

∞

3k∗k f
)(∂T

∂y
)

2

+
μn f

T∞
(∂u

∂y
)

2

+
(σe)n f B2

T∞
u2, (30)

The terms of SG respectively represent the irreversibility due to the heat transfer, viscous dissipation,
thermal radiation, and Joule heating. After non-dimensionalization and suitable scaling, the dimensionless
form is obtained as follows:

NG = (
kn f

k f
+ R)(θ′)2 +

μn f

μ f
Br ( f ′′)2 +

(σe)n f

(σe) f
MBr ( f ′)2 , (31)

where, NG = SG T2
∞

δ2 L2 l 2
0

k f (ΔT)2 t2
0 X 12 and Br = μ f U 2

c T∞U 2
0

k f (ΔT)2 t2
0 X4 .

The ratio of heat transfer irreversibility to the total irreversibility is called the Bejan number (Be) which
is given as Be = Entropy rate due to heat transfer

Total entropy .

i.e., Be =
(

kn f

k f
+ R)(θ′)2

(
kn f

k f
+ R)(θ′)2 +

μn f

μ f
Br ( f ′′)2 +

(σe)n f

(σe) f
MBr ( f ′)2

, (32)

The value of Be ranges between 0 and 1, where 0 signifies the case where there is no generation of entropy
due to heat transport and 1 signifies the case where the generation of entropy is only due to heat transport.

2.5 Numerical Solution
The system of equations Eqs. (25)–(27) is converted to a set of first-ordered differential equations using

f = y1 , f ′ = y2, f ′′ = y3, θ = y4, and θ′ = y5 to get the equations below:

y
′

1 = y2, (33)

y
′

2 = y3, (34)
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y
′

3 =
⎧⎪⎪⎨⎪⎪⎩
(

ρn f

ρ f
)[(3

2
) ((y2)2 − 1) − y1 y3] − Γ

(ρβT)n f

(ρβT) f
λy4 − (

σen f

σe f

) M (1 − y2)
⎫⎪⎪⎬⎪⎪⎭
(

μ f

μn f
) , (35)

y
′

4 = y5, (36)

y′5 =
Pr{(

(ρc p)n f

(ρc p) f
) [( 5

2) y2 y4 − y1 y5] + Q y4}

[( kn f
k f

) + R]
. (37)

This obtained system is then solved using Ralston’s fourth-order method [38]. This method is a self-
starting numerical method with minimum truncation error which makes it advantageous to record accurate
results. The method is a modified Runge-Kutta method which involves the following set of equations in the
algorithm [38]:

yn+1 − yn = 0.17476028 k1 − 0.55148066 k2 + 1.2055356 k3 + 0.17118478 k4, (38)

where,

k1 = h f (xn , yn) , (39)
k2 = h f (xn + 0.4 h, yn + 0.4 k1) , (40)
k3 = h f (xn + 0.45573725h, yn + 0.29697761 k1 + 0.15875964 k2) , (41)
k4 = h f (xn + h, yn + 0.2181004 k1 − 3.05096516 k2 + 3.83286476 k3) . (42)

In the computations, infinity is rescaled to 5 as increasing this value does not have a significant change
in the results. The domain is divided into 100 subintervals in the computational frame. The missing boundary
conditions ( f ′ (0) and θ′(0)) are estimated with the help of suitable guess values. The accuracy of the results
is ensured by utilizing a relative error tolerance of 10−6 in the computations.

The numerical accuracy of the method is evaluated by a restrictive correspondence with the literature.
The Marangoni-buoyant boundary layer case when the buoyancy is opposing is considered in the absence
of radiative, magnetic, and heat sink effects. Golia et al. [29] employed the quasi-linearization method to
arrive at numerical solutions whereas Chamkha et al. [5] used an implicit finite difference method. As seen
in Table 2, the numerical values are accurate and hence uphold the accuracy of the numerical methodology
employed in the present study.

Table 2: Comparison of f ′(0) and −θ′(0) values for some values of Pr when λ = Γ = 1, R = Q = M = ue
due
d x = ϕ = 0

f ′ (0) −θ′ (0)
Pr Golia

et al. [29]
Chamkha
et al. [5]

Present study Golia
et al. [29]

Chamkha
et al. [5]

Present study

0.13 1.230 1.2311 1.23061 0.535 0.5371 0.53589
0.25 1.196 1.1973 1.19717 0.762 0.7627 0.76240
0.50 1.155 1.1556 1.15555 1.106 1.1064 1.10623
0.74 1.130 1.1301 1.13031 1.363 1.3636 1.36344
1.00 1.111 1.1109 1.11086 1.599 1.5996 1.59928
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3 Optimization Procedure
RSM is a robust tool based on Design of Experiments (DoE) which involves mathematical and statistical

aspects. RSM is beneficial especially in situations to optimize a process and to study the interactive effects.
Here, the heat transfer rate (quantified by Nux ) is used as the response variable and injection (0.1 ≤ S ≤ 0.9),
internal heat sink (0.1 ≤ Q ≤ 0.3), and thermal radiation (1 ≤ R ≤ 3) are chosen as the factor variables. The
factor variables are coded as X1 ,X2 and X3, respectively. Due to the advantage of including extreme points
in the design, the face-centered (fc) Central Composite Design is employed in the computations. The count
of runs in the design is calculated based on the formula 2q + 2q + p, where q and p represent the number of
parameters and faces respectively. Table 3 gives the numerical experimental design. This methodology yields
an empirical relation which is of quadratic order as given below:

Y = r0 +∑3
i=1 riXi +∑∑3

i≤ j=1 ri jXiX j (for i , j = 1, 2, 3), (43)

where, r0 is an intercept, ri and ri j denote the respective regression coefficients, and Y and X denote the
response and independent variables, respectively.

Table 3: Response (Nux ) based on f c − CCD design

Runs Coded values Real values Response

X1 X2 X3 S Q R Nux

1 −1 −1 −1 0.1 0.1 1 7.60079
2 1 −1 −1 0.9 0.1 1 10.47452
3 −1 1 −1 0.1 0.3 1 7.77145
4 1 1 −1 0.9 0.3 1 10.63271
5 −1 −1 1 0.1 0.1 3 10.45930
6 1 −1 1 0.9 0.1 3 13.14383
7 −1 1 1 0.1 0.3 3 10.70181
8 1 1 1 0.9 0.3 3 13.37675
9 −1 0 0 0.1 0.2 2 9.25819
10 1 0 0 0.9 0.2 2 12.01400
11 0 −1 0 0.5 0.1 2 10.45254
12 0 1 0 0.5 0.3 2 10.65809
13 0 0 −1 0.5 0.2 1 9.02754
14 0 0 1 0.5 0.2 3 11.84890
15 0 0 0 0.5 0.2 2 10.55589
16 0 0 0 0.5 0.2 2 10.55589
17 0 0 0 0.5 0.2 2 10.55589
18 0 0 0 0.5 0.2 2 10.55589
19 0 0 0 0.5 0.2 2 10.55589
20 0 0 0 0.5 0.2 2 10.55589

Optimization of the response variable is done based on the desirability value approach. The range of the
desirability value is 0 to 1. For the maximization objective, the desirability value for each run is calculated as
follows:
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di = 0, Yi ≤ YL ,

di =
Yi −YL

YH −YL
, YL ≤ Yi ≤ YH ,

di = 1, Yi ≥ YH ,

(44)

where, YH and YL denote the highest and lowest response respectively. The total desirability (D) is the
geometric mean of the individual desirabilities which is maximized to obtain the optimum (maximized)
condition. The total desirability is estimated as follows:

D = (
n
∏
i=1

di)
1
n

.

4 Results and Discussion
The findings of the parametric and statistical computations are presented in this section and discussed

with physical interpretations. Furthermore, the sensitivity of the heat transport is analyzed.

4.1 Discussion of Parametric Results
In this subsection, the impact of a single pertinent parameter on the flow and thermal profiles is analyzed

by fixing the other parameters. The profiles for three types of boundaries (i.e., suction, impermeability, and
injection) are compared. The Prandtl number which is a fluid property is fixed at 6.0674 (calculated for water
at 300 K). Moreover, the domain is rescaled to 0 to 3 as there is no appreciable change in the numerical values
by increasing the domain further.

A larger radiative heat flux leads to a higher velocity of the nanomaterial as one can observe from Fig. 2.
This is because of the higher energy supplemented to the system by the radiation. Also, the flow profile in
the irradiative situation (R = 0) possesses the lowest flow profile. Also, the suction flow has a higher velocity
when compared to impermeable and injection flow cases. Furthermore, the effect of the applied magnetic
field is explored in Fig. 3. The Lorentz force produced due to magnetism in the nanomaterial tends to oppose
the flow and therefore the velocity decreases. The flow in the absence of magnetism is depicted by the curves
when M = 0.

Figure 2: Variation in nanofluid velocity due to R
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Figure 3: Variation in nanofluid velocity due to M

The increment in λ leads to higher buoyant force and this has an opposing effect on the fluid thermal
profile as can be seen in Fig. 4. The additional energy provided by the radiative heat flux has a significantly
increasing impact on the thermal profile and hence the regulation of the radiative heat provided to the
nanomaterial can be used to augment the temperature profile (see Fig. 5). In Fig. 6, the temperature rise due
to the applied magnetic field is observed. This trend is seen due to the Lorentz force formed by the magnetic
force. The heat sink absorbs energy from the fluid and hence the nanomaterial temperature decreases
(see Fig. 7). Moreover, it can be observed that the flow with suction possesses a higher thermal profile when
compared to impermeable and injection cases.

Figure 4: Variation in nanofluid temperature due to λ
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Figure 5: Variation in nanofluid temperature due to R

Figure 6: Variation in nanofluid temperature due to M

Figure 7: Variation in nanofluid temperature due to Q
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The characteristics of entropy generation and Bejan number are visualized in Figs. 8–13. The entropy
generation decays with an increment in Br as seen in Fig. 8. Physically this is because the increased heat
generated in the fluid increases the disorderliness and therefore the entropy generation augments. Also, the
Bejan number is decreased (see Fig. 9) which signifies that the viscous heating and Joule heating effects
become more dominant with the increment of Br. Figs. 10 and 11 illustrate the effect of M on NG and Be,
respectively. A rise in NG and a decrease in Be is observed which is because of the enhancement in both
viscous friction forces and magnetic resistance instigated by the Lorentz forces in the fluid system. The
entropy generation and Be are magnified by the increment in R as one can see from Figs. 12 and 13. The
applied thermal radiation provides additional energy that increases the disorderliness and also supplements
the heat transport. Thus, the entropy generation is incremented and the heat transfer irreversibility becomes
more dominant over other irreversibilities considered.

Figure 8: Variation in entropy generation due to Br

Figure 9: Variation in Bejan number due to Br
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Figure 10: Variation in entropy generation due to M

Figure 11: Variation in Bejan number due to M

Figure 12: Variation in entropy generation due to R
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Figure 13: Variation in Bejan number due to R

In Table 4, the heat transport at the interface for buoyancy assisting and buoyancy opposing flow
scenarios are tabulated. The Nusselt number is higher when Γ = 1 when compared with the Γ = −1 case.
Moreover, it can be observed that increment in R increases the heat transport at the interface due to larger
energy in the fluid system. On the other hand, a rise in M decreases Nux which is caused by the Lorentz force
developed in the fluid system. Also, λ has an opposing effect on Nux in both flow scenarios which is caused
by an enhancement in buoyant forces. This result is in agreement with that reported by Chamkha et al. [5].

Table 4: Nusselt number for buoyancy-assisting and buoyancy-opposing flow cases when S = Q = 0.1 and ϕ = 2%

R M λ Nux

Γ = 1 Γ = −1
1 2 2 7.63530 7.06267
2 2 2 9.21295 8.42196
3 2 2 10.54357 9.55446
2 1 2 9.34636 8.47082
2 2 2 9.21295 8.42196
2 3 2 9.10457 8.38360
2 2 1 9.03480 8.64164
2 2 2 9.21295 8.42196
2 2 3 9.38104 8.18245

4.2 RSM Analysis Results
The output of the analysis of variance (ANOVA) table are given in Table 5. The significance of the

RSM model terms is benchmarked via the p-value at 95% level of significance. The significance is assured if
p-value < 0.05. The interaction term of Q and S along with the quadratic term of Q are insignificant and
are therefore removed from the RSM model. Moreover, the coefficient of determination (which indicates
the variation in the dependent variable that could be explained by the chosen independent variables) R2 is
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99.99% which upholds the model accuracy. The fitted quadratic model comprising the significant uncoded
model terms (linear, interaction, and quadratic) is given below:

Nux = 3.2046 S + 0.668 Q + 1.8917 R + 0.5065 S2 − 0.11683 R2 − 0.0689 SQ
− 0.11735 SR + 0.1832 QR + 5.4270. (45)

Table 5: ANOVA (analysis of variance) table

Source Degrees of freedom Adjusted sum
of squares

Adjusted mean
square

F-value p-value

Model 9 39.0156 4.3351 139,222.7000 <0.0001
Linear 3 38.9510 12.9837 416,976.5000 <0.0001

S 1 19.1830 19.1830 616,070.8000 <0.0001
Q 1 0.1020 0.1020 3275.0300 <0.0001
R 1 19.6660 19.666 631,583.5000 <0.0001

Square 3 0.0442 0.0147 473.4100 <0.0001
S2 1 0.0181 0.0181 580 <0.0001
Q2 1 0 0 0.0100 0.9410
R2 1 0.0375 0.0375 1205.5100 <0.0001

Interaction 3 0.0204 0.0068 218.1200 <0.0001
SQ 1 0.0001 0.0001 1.9500 0.1920
SR 1 0.0176 0.0176 566.1300 <0.0001
QR 1 0.0027 0.0027 86.2700 <0.0001

Error 10 0.0003 0
Lack-of-Fit 5 0.0003 0.0001 * *
Pure error 5 0 0

Total 19 39.0159
R2 = 99.99%

This fitted model can be used to accurately estimate the heat transport in the chosen ranges of the
parameters due to high R2. The accuracy of the RSM model is also assured by the residual plots (see Fig. 14)
which indicate the normal nature of the residuals and also show that the maximum error in each run is less
than 1%.

In Fig. 15, the interaction of two parameters is analyzed by fixing the third one at the medium level. Both
Q and S lead to higher heat transport but it is observed that the increment in Q has a low impact on Nux
(see Fig. 15a). The thermal radiation aspect increases the heat transport with a much higher intensity than Q
as one can see from Fig. 15b. Fig. 15c provides a comparison of the relative incremental effect of R and S on
the heat transfer.

Optimized Nux = 13.377 is obtained at the high levels of S , Q , and R with desirability, d = 1. The 95%
Confidence interval for the optimized heat transport is calculated to be [13.3659, 13.3881].
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Figure 14: Residual plots. (a) ‘Normal Probability plot’, (b) ‘Versus fits’, (c) ‘Histogram’, (d) ‘Versus Order’

Figure 15: (Continued)
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Figure 15: 3-D and contour plots for heat transport at the interface. (a) Interactive effects of Q and S. (b) Interactive
effects of R and Q. (C) Interactive effects of R and S

4.3 Sensitivity Analysis

Analyzing the sensitivity of the heat transfer rate at the interface towards S , Q , and R is crucial in
situations where the heat transport needs to be controlled or regulated. The change in the Nusselt number
due to an incremental change in the factor variables is measured by the sensitivity value. A positive sensitivity
signifies that the variables are positively correlated and the magnitude can be used for relative comparison.
The empirical model utilizing the coded factor variables is given below:

Nux = 1.38503X1 + 0.10098X2 + 1.40236X3 + 0.08104X2
1 − 0.11683X2

3

− 0.04694X1X3 + 0.01832X2X3 + 10.5556. (46)

Partial derivatives of Eq. (46) denote sensitivity functions for X1 ,X2 and X3, respectively, which are as
follows:

∂Nux

∂X1
= 1.38503 + 0.16208X1 − 0.04694X3, (47)

∂Nux

∂X2
= 0.10098 + 0.01832X3, (48)
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∂Nux

∂X3
= 1.40236 − 0.04694X1 + 0.01832X2 − 0.23366X3. (49)

Table 6 shows the sensitivity values of Nux at all levels. It is found that the sensitivity towards S , Q ,
and R is positive indicating that a change in these parameters leads to an increment in the heat transfer. The
sensitivity towards the heat sink is relatively lesser.

Table 6: Sensitivity values

X1 X2 X3 Sensitivity values

TowardsX1 TowardsX2 TowardsX3

−1 −1 −1 1.2699 0.0827 1.6646
−1 −1 0 1.2230 0.1010 1.4310
−1 −1 1 1.1760 0.1193 1.1973
−1 0 −1 1.2699 0.0827 1.6830
−1 0 0 1.2230 0.1010 1.4493
−1 0 1 1.1760 0.1193 1.2156
−1 1 −1 1.2699 0.0827 1.7013
−1 1 0 1.2230 0.1010 1.4676
−1 1 1 1.1760 0.1193 1.2340
0 −1 −1 1.4320 0.0827 1.6177
0 −1 0 1.3850 0.1010 1.3840
0 −1 1 1.3381 0.1193 1.1504
0 0 −1 1.4320 0.0827 1.6360
0 0 0 1.3850 0.1010 1.4024
0 0 1 1.3381 0.1193 1.1687
0 1 −1 1.4320 0.0827 1.6543
0 1 0 1.3850 0.1010 1.4207
0 1 1 1.3381 0.1193 1.1870
1 −1 −1 1.5941 0.0827 1.5708
1 −1 0 1.5471 0.1010 1.3371
1 −1 1 1.5002 0.1193 1.1034
1 0 −1 1.5941 0.0827 1.5891
1 0 0 1.5471 0.1010 1.3554
1 0 1 1.5002 0.1193 1.1218
1 1 −1 1.5941 0.0827 1.6074
1 1 0 1.5471 0.1010 1.3737
1 1 1 1.5002 0.1193 1.1401

The highest sensitivity is observed at the low levels of S and R and high level of Q with a sensitivity
magnitude of 1.7013. On the other hand, the lowest is observed when the parameters are at low levels. Further,
the changes in the sensitivity values because of changes in the factor levels can be inferred from Table 6.
This is useful for designers to decide which controlling constraint should be regulated to enhance higher
heat transport.
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5 Conclusions
The heat transfer rate in mixed thermal Marangoni convective flow of alumina-water nanoliquid in

the presence of suction/injection and significant buoyant forces is optimized in this study. Additionally,
radiative heat flux, magnetism, and an internal heat sink are considered in the model. The fourth order is
Ralston’s method is used to find numerical solutions. This prototype developed to analyze the fluid flow and
thermodynamic behavior with heat transfer optimization has led to the following major conclusions:

• The flow profiles and the thermal fields are superior in the presence of suction instead of impermeable
and injection flow scenarios.

• The buoyant force has a prominent opposing effect on the temperature profile.
• The entropy generation increases with more thermal radiation. This also leads to a higher Bejan number,

indicating that heat transfer irreversibility is predominant.
• The applied magnetism forms Lorentz forces in the fluid system which increment the disorderliness and

hence generate more entropy.
• The highest sensitivity of 1.7013 for the Nusselt number is observed at the low levels of injection and

thermal radiation when the heat sink is at the high level.
• The optimized heat transport (Nux = 13.377) is recorded at the high levels of thermal radiation, injection,

and heat sink.
• The 95% Confidence interval for the optimized heat transport is calculated to be [13.3659, 13.3881].
• The numerical results obtained via Ralston’s method were in good corroboration with the results of the

limiting cases reported in the literature.

The model developed in this manuscript is a prototype for semiconductor crystal heat transfer, growth
of silicon wafers, and coating processes [39].
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