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ABSTRACT

Load deviations between the output of ultra-supercritical (USC) coal-fired power units and automatic generation
control (AGC) commands can adversely affect the safe and stable operation of these units and grid load dispatching.
Data-driven diagnostic methods often fail to account for the imbalanced distribution of data samples, leading to
reduced classification performance in diagnosing load deviations in USC units. To address the class imbalance
issue in USC load deviation datasets, this study proposes a diagnostic method based on the multi-label natural
neighbor boundary oversampling technique (MLNaNBDOS). The method is articulated in three phases. Initially,
the traditional binary oversampling strategy is improved by constructing a binary multi-label relationship for the
load deviations in coal-fired units. Subsequently, an adaptive adjustment of the oversampling factor is implemented
to determine the oversampling weight for each sample class. Finally, the generation of new instances is refined by
dynamically evaluating the similarity between new cases and natural neighbors through a random factor, ensuring
precise control over the instance generation process. In comparisons with nine benchmark methods across three
imbalanced USC load deviation datasets, the proposed method demonstrates superior performance on several
key evaluation metrics, including Micro-F1, Micro-G-mean, and Hamming Loss, with average values of 0.8497,
0.9150, and 0.1503, respectively. These results substantiate the effectiveness of the proposed method in accurately
diagnosing the sources of load deviations in USC units.
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NaN Natural Neighbor
λNN λ-Nearest Neighbor
RkNN Reverse k-Nearest Neighbor
TS Temporary Set
BIS Base Instance Set
MLNaNBDOS-RF Multi-Label Natural Neighbor Boundary Oversampling with Random

Forest
DT Decision Tree
RF Random Forest
BLSMOTE Borderline-SMOTE
SLSMOTE Safe level-SMOTE
ROS Random Over Sampler
ADASYN Adaptive Synthesis sampling
MWMOTE Majority Weighted Minority Oversampling Technique
NanBDOS Borderline Oversampling via Natural Neighbor search
NLDAO Natural Local Density-based Adaptive Oversampling algorithm
HL Hamming Loss

1 Introduction

With the rising share of renewable energy, traditional coal-fired power units are gradually shifting
from being “primary energy suppliers” to “providers of flexibility resources” [1]. Enhancing the
operational flexibility of these units has emerged as a paramount technical imperative within the coal-
fired power generation sector. Advanced ultra-supercritical coal-fired power generation technology,
operating at 650°C and above, delivers elevated efficiency in power generation and reduced emissions
of pollutants and carbon. This technology is recognized as a crucial direction for efficient and clean
utilization of coal [2].

Ultra-Supercritical (USC) units follow the load instructions from the grid dispatch center exter-
nally while maintaining energy balance and parameter stability within the boiler and turbine systems.
However, issues such as steam-water mixing and inherent faults in primary and auxiliary equipment
hinder the dynamic response of the coordinated control system (CCS) [3], resulting in deviations
between the USC unit’s load output and the automatic generation control (AGC) load instructions.
Such deviations affect the safe and stable operation of the unit and the grid load dispatch. Therefore,
resolving the load deviation issues of USC units and identifying their causes is crucial for ensuring the
unit’s safe and stable operation.

Currently, the methods for modeling load deviations in thermal power units can be broadly
categorized into two types [4]: first-principles-based modeling methods and data-driven modeling
methods.

First-principles-based modeling methods are founded on specific assumptions and utilize sim-
plified physical model structures, employing the laws of mass conservation and energy conservation
to analyze the operation processes of the system under study. For instance, Fan et al. [5] developed
a dynamic nonlinear mathematical model for the wide-load-range operation of a USC once-through
boiler-turbine unit. Xie et al. [6] introduced an improved separator steam dryness calculation method
to avoid the issue of model switching between the reheating cycle model and the once-through
model. However, due to the complexity of USC units, first-principles-based modeling methods often
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encounter difficulties in accurately depicting the operation process of the units based on limited
knowledge. As a result, these models typically do not achieve high modeling accuracy [7].

In contrast to first-principles-based methods, data-driven modeling methods extract hidden,
previously unrecognized, and potentially valuable information from extensive datasets, uncovering
latent operational patterns of the units and providing decision support for real-time operation.
Zhou et al. [7] constructed a regression model of thermal power unit operation data based on feature
selection and optimized the unit operation using coal consumption as an indicator. Huang et al. [8]
proposed a new data-driven modeling approach based on an improved transformer neural network
and optimization algorithms for the boiler-turbine coupling process in CCS of ultra-supercritical
units. Chen et al. [9] used a dual-driven mechanism and data modeling approach to model the unit
and optimize the steam pressure and cold end system. Tang et al. [10] developed a multi-label random
forest load deficiency diagnosis model based on an improved whale optimization algorithm, where
the compound causes of load deficiency in thermal power units are constructed as binary multi-
label relationships, thus identifying the equipment sources of load deficiency. Currently, data-driven
modeling of thermal power units is mostly used to optimize unit operation based on certain aspects
of operating parameters, and less research has been conducted on unit load-out diagnosis.

In addition, the issue of class imbalance in the operational data of thermal power units negatively
impacts the classification performance of the model. Owing to the limited number of fault samples in
the operational data of thermal power units and the insufficient types of existing fault samples to cover
all possible faults, classification models may exhibit high accuracy for majority classes but perform
poorly for minority classes. Therefore, addressing the class imbalance problem in thermal power unit
datasets, reducing the impact of imbalanced data on the performance of classification models, and
improving the accuracy of fault sample classification is of critical importance.

The utilization of resampling techniques to preprocess imbalanced datasets represents an effec-
tive approach to addressing the uneven distribution of samples in imbalanced datasets. Currently,
resampling methods are relatively limited in the condition monitoring and diagnosis of USC thermal
power units, with most efforts focused on fault diagnosis of power transformers and bearings, and
limited applications in waste incineration power plants and AGC attack detection. Li et al. [11]
introduced an adaptive clustering weighted oversampling method that assigns different oversampling
weights and variable k-nearest neighbors to different samples, thereby increasing the representation of
minority class samples. Hou et al. [12] developed a suitability model for waste incineration power plants
based on the synthetic minority oversampling technique (SMOTE) combined with support vector
machines, which reduces the impact of imbalanced data samples on model classification performance.
Roy et al. [13] introduced a learning algorithm based on support vector data description that utilizes
SMOTE to detect various false information in AGC systems.

Moreover, the natural neighbor theory [14] has been applied to the field of data oversampling,
resulting in the development of various new methods, including NaNSMOTE [15], SMOTE-NaN-DE
[16], NanBDOS [17], and NLDAO [18]. However, these methodologies primarily extend or enhance
SMOTE in binary classification problems and do not adequately address the issue of class imbalance
in multi-dimensional label problems. The adaptability of natural neighbors to multi-dimensional label
datasets remains insufficiently explored and utilized.

In summary, this paper addresses the class imbalance problem present in the USC unit
load deviation dataset by proposing a multi-label natural neighbor boundary oversampling
technique (MLNaNBDOS) for the diagnosis of USC thermal power unit load deviations. Using the
MLNaNBDOS method, this study precisely controls over the generation of new instances, effectively
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preventing the creation of noisy samples. This approach not only improves the class imbalance issue
in the USC unit load deviation dataset but also optimizes and enhances the performance of load
deviation diagnosis in USC units.

2 Problem Description
2.1 Explanation of the Causes of USC Unit Load Deviations

USC units have numerous equipment and a complex generation process. The USC unit consists
of a boiler, turbine, generator, and various auxiliary equipment and systems. The production process
of the USC unit is illustrated in Fig. 1. Initially, pulverized coal is introduced into the furnace under
the impetus of primary air, where it combusts to heat the feedwater within the water wall. This process
causes the heated feedwater to evaporate, creating high-pressure steam. This steam propels the turbine
rotor, enabling it to rotate and perform mechanical work. Subsequently, the turbine is linked to the
generator via a coupling, which then produces electricity. Following this, the steam in the low-pressure
cylinder condenses into feedwater in the condenser. After preheating in the regenerative system, the
feedwater is reintroduced into the furnace. Finally, the flue gas produced are processed through dust
removal, desulfurization, and denitrification before being released into the external environment,
thereby completing the production process of the USC unit [10]. The USC unit’s production process
encompasses multiple stages and involves coordinated operation of multiple systems. This includes
managing auxiliary equipment and systems, performing system cleanings during cold startup, igniting
the boiler, and operating the unit’s AGC system and CCS.
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Figure 1: USC unit production process

The load output of a USC unit depends on two aspects. On one hand, it relies on the combined
output of the three principal components: boiler, turbine, and generator. On the other hand, it depends
on the load output of the supporting auxiliary equipment and systems. The unit’s actual load output
can adequately meet the AGC load command requirements only when there is a precise alignment
between the load output of auxiliary equipment and that of the main machines. Although the deviation
between the AGC load command and the unit output can be detected and minimized by control theory,
when a unit is underpowered, the equipment and systems associated with it are affected.
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When load deviation occurs in USC units, a chain reaction can be triggered. For example, a
decrease in the unit’s fuel consumption may implicate several components, such as coal mills and
primary air fans. Similarly, an excessively high concentration of sulfur dioxide at the outlet of the
desulfurization tower could indicate either an increased sulfur content in the coal or a reduced pressure
in the slurry circulation pump. The resulting composition of multi-label load bias cause data samples
degrade the classification performance of data-driven models.

2.2 Class Imbalance in USC Unit Load Deviation Data
The dataset of load deviation causes in USC units demonstrates a significant class imbalance issue.

Typically, USC thermal power units generally operate under normal conditions. Load deviation data
are generated exclusively when the units are in load-following mode or when faults occur. This results
in a disproportionate distribution of data between load deviations and normal operation.

Given the high cost of obtaining load deviation data and the insufficiency of existing causes to
cover all faults, some categories of load deviation causes exhibit class imbalance. This imbalance tends
to increase the classification accuracy for the majority class labels while reducing the performance for
minority class labels.

To address the class imbalance, this paper introduces the MLNaNBDOS method, which consists
of three steps. First, it improves the traditional binary oversampling strategy by constructing the
load deviation causes of thermal power units as binary multi-label relationships. The label power-
set method [19] is introduced to preserve complex correlations between data. Second, based on the
natural neighbor search strategy [14], the oversampling factor is adjusted to adaptively determine
the oversampling factor and sampling weight for each class, thereby enhancing the balance of the
imbalanced dataset. Finally, the method improves the generation of new instances by dynamically
evaluating the similarity between the new instance and its natural neighbors, using a stochastic element
to precisely control the process and prevent the generation of noisy samples.

3 Proposed Model

For ease of reference, Table A1 in Appendix A lists the main symbols used in the following text
along with their mathematical meanings. The MLNaNBDOS method will be introduced through
multi-label to multi-class conversion and natural neighbor search.

3.1 Multi-Label to Multi-Class Conversion
The label power-set (LP) method [19] is a direct approach to converting a multi-label learning

problem into a multi-class (single-label) classification problem. Let σy : 2y → N be an injective function
that maps the power set of y to natural numbers, with σ −1

y as its corresponding inverse function. During
the training phase, the LP method first converts the original multi-label training set D into a multi-
class (single-label) training set D∗

y. In this transformation, each distinct label set in D is considered as
a new class.

D∗
y = {(xi, σy(Yi)) | 1 ≤ i ≤ m} (1)

where, the set of all new classes in D∗
y corresponds to S

(
D∗

y

)
.

S
(
D∗

y

) = {σy(Yi) | 1 ≤ i ≤ m} (2)
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It is evident that
∣∣S (

D∗
y

)∣∣ ≤ min (m, 2|y|) holds true. Subsequently, a classifier is trained on S
(
D∗

y

)
.

Ultimately, any multi-label training instance xi will be reassigned to the newly mapped single class
σy(Yi). This instance then participates in the multi-class classifier training.

For a test instance xj, LP maps it back to the power set of y using σ −1
y based on the prediction result

of the multi-class classifier, thereby obtaining the corresponding label set Yj. Algorithm 1 outlines the
detailed process of the LP transformation from multi-label to multi-class.

Algorithm 1: LP_Transform
Input: A set of multi-label instances Y .

1: Initialize unique_combinations = ∅, reverse_combinations = ∅, last_
id = 0, multi_class = [];

2: For each multi-label set Yi, if Yi is not in unique_combinations, update
unique_combinations[Yi] = last_id, reverse_combinations[last_id] =Yi, last_id = last_id + 1,
multi_class.append(unique_combinations[Yi]);

3: σy (Y) = multi_class
Output: A set of multi-class instances σy (Y).

3.2 Natural Neighbor Search
Natural neighbors derived from the concept of neighborhood relationships observed in real-world

social networks [14]. The idea is analogous to true friendships: when each individual in a society has
at least one friend, a harmonious social relationship emerges [20]. This concept can be extended to the
data domain, where it helps in forming a stable structure of natural neighbors. To clarify the discussion,
the following definitions are provided.

Definition 1 (k-Nearest Neighbor): If xj ∈ X is a k-Nearest Neighbor (kNN) of xi ∈ X , then
it satisfies the condition dist

(
xi, xj

) ≤ dist (xi, xt). Here, xt is the kth nearest neighbor of xi, and
dist

(
xi, xj

)
represents the Euclidean distance

∥∥xi − xj

∥∥ between xi and xj.

The kNNs of xi can be determined as shown in Eq. (3).

kNNs(xi) = {xj|dist(xi, xj) ≤ dist(xi, xt)} (3)

Once the value of k is set, kNNs(xi) can be efficiently computed using simple methods or a K-
Dimensional tree (K-D tree) [17].

Definition 2 (Natural Neighbor): xj is considered a Natural Neighbor (NaN) of xi if and only if xj

is a λ-Nearest Neighbor (λNN) of xi and xi is a λNN of xj. In other words, xj ∈ NaNs (xi) ⇔ xj ∈
λNNs (xi) ∧ xi ∈ λNNs

(
xj

)
, where λ is referred to as the natural neighbor characteristic value.

In the kNN paradigm, the value of k is preset as a fixed number. However, natural neighborhood
approach treats λ as an adaptive k-value that is suited to different datasets and is determined through
natural neighbor search. The pseudocode for the search for natural neighbors (NaNs_Search) is
provided in Algorithm 2. Following several iterations, a stable structure of natural neighbors in the
instance space X is formed, as described in Eq. (4).

(∀xi)
(∃xj

)
(r ∈ λ) ∧ (

xi �= xj

) → (
xj ∈ rNNs (xi)

) ∧ (
xi ∈ rNNs

(
xj

))
(4)

In Algorithm 2 (NaNs_Search), the number of iterations r increases from 1 to λ. The variable
num counts the number of instances that are not considered as neighbors by any other instances.
The algorithm stops once num no longer changes, indicating that the stable structure of natural
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neighbors has been formed. Additionally, Algorithm 2 incorporates the concept of Reverse k-Nearest
Neighbors [21].

Algorithm 2: Search for natural neighbors (NaNs_Search) [16]
Input: An instance set X .
1: For i = 0, . . . , | X |, nbi = 0, kNNi =∅,RkNNi =∅;
2: Create a K-D tree T from X ;
3: r = 1;
4: For each instance xi ∈ X , find its r-th neighbor xj by using T . Update nbj = nbj + 1,

kNNi = kNNi ∪
{
xj

}
, and RkNNj = RkNNj ∪ {xi};

5: Compute the number num of xi with nbi = 0;
6: If num does not change, λ = r. For each instance xi ∈ X , NaNi = kNNi ∩ RkNNi;
7: Otherwise, r = r + 1, go to Step 4;

Output: λ, NaNs = {NaNi, i = 1, . . . , |X |}.

Definition 3 (Reverse k-Nearest Neighbor): If xj is a Reverse k-Nearest Neighbor (RkNN) of xi, this
means that xi is one of the kNNs of xj.

The RkNNs of xi can be determined as shown in Eq. (5).

RkNNs(xi) = {xj|xi ∈ kNNs(xj)} (5)

In summary, the NaNs of xi can be obtained through Eq. (6).

NaNs(xi) = kNNs(xi) ∩ RkNNs(xi) (6)

3.3 MLNaNBDOS
Based on the natural neighbor information obtained from Algorithm 2, noise and outliers in this

study are defined as follows:

Definition 4 (Noise): If an instance xi satisfies ∀xj ∈ NaNs (xi), where σy

(
Yj

) �= σy(Yi), then it is
considered noise in set X .

According to Definition 4, if xi is a minority class instance, but all its natural neighbors belong to
other classes, it will be treated as noise.

Definition 5 (Outlier): If an instance xi satisfies |NaNs (xi)| = 0, then it is considered an outlier in
set X . Here, |NaNs (xi)| denotes the cardinality of NaNs (xi).

According to Definition 5, if an instance xi has no natural neighbors, it will be classified as an
outlier.

Based on Definitions 4 and 5, data preprocessing is performed on the original dataset to eliminate
noise and outliers.

Boundary instances contain crucial classification information. During model training, boundary
instances directly influence the model’s classification decisions. Therefore, during the process of
oversampling minority class instances, this study selects minority class boundary instances as the base
instances for oversampling. The definition of minority class boundary instances is delineated below:

Definition 6 (Minority Class Boundary Instance): For xi ∈ Smin, if xi is neither noise nor an outlier,
and ∃xj ∈ NaNs (xi) such that σy

(
Yj

) �= σy(Yi), then xi is considered a minority class boundary
instance.
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According to Definition 6, minority class boundary instances are required to have natural
neighbors belonging to other classes. If a minority instance’s natural neighborhood consists entirely of
instances from other classes, it is no longer considered a boundary instance. Instead, it is reclassified
as noise (in accordance with Definition 5).

3.3.1 Intelligent Adjustment of the Oversampling Factor

Based on natural neighbor information, all minority class boundary instances in the training set
are identified and stored in a Temporary Set (TS). It should be noted that if TSσy(Yi) =∅, meaning that
no boundary instances are found for all minority class instances with class label σy(Yi), then these
minority class instances are stored in TS. Next, the sampling factor δ for each class is calculated using
Eq. (7), determining whether all or only some instances in each minority class within TS are subjected
to oversampling.

δσy(Yi) = |Smaj| − |Sminσy(Yi)|
|TSσy(Yi)|

(7)

If δσy(Yi) < 1, partial oversampling of minority class instances in TS with class label σy(Yi) is
performed to balance the dataset. Otherwise, all minority class instances in TS with class label σy(Yi)

are selected. The instances selected as the basis for oversampling in TS are stored in the Base Instance
Set (BIS), and the sampling coefficient γi for each base instance xi is calculated using Eq. (8).

γi = Δi

|NaNs (xi)| (8)

where, Δi represents the number of minority class instances in NaNs (xi). The γ values are normalized
using Eq. (9) to obtain the sampling weights γ̂i for each base instance xi.

γ̂i = γi∑
γi

(9)

A random selection of gi instances from NaNs (xi) is linearly interpolated with xi.

gi = round(γ̂i × (|Smaj| − |Sminσy(Yi)|)) (10)

where, round (·) denotes the rounding operation.

Assuming xt is selected, the generation process for the new instance xnew is as follows:

xnew = xi + random(0, 1) × (xt − xi) (11)

3.3.2 Precise Control of New Instance Categories

Adaptive Pairing of New Instance Categories. Most existing SMOTE oversampling techniques
primarily address the issue of imbalance in binary classification problems, typically inheriting the class
of the chosen base instance when generating new instances. In multi-class problems, generating new
instances using Eq. (11) may can lead to these instances inheriting the class of their base instance,
which may neglect the effects of new instance categories on model predictions. To counter this, the
proposed MLNaNBDOS algorithm employs to the randomness factor random(0, 1) in Eq. (11) when
pairing new instance categories. If random(0, 1) exceeds 0.5, it indicates that the new instance is closer
to xt compared to xi, making the new instance’s category more inclined towards xt. Conversely, the
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new instance’s category will inherit from xi.

σy (Ynew) =
{

σy(Yt), if random(0, 1) > 0.5
σy(Yi), otherwise

(12)

Algorithm 3 provides detailed information of MLNaNBDOS. In Step 1 of Algorithm 3, the
LP_Transform algorithm (Algorithm 1) is used to convert the original multi-label dataset into a
multi-class format. In Step 2, NaNs_Search (Algorithm 2) is employed to obtain natural neighbor
information. Steps 3–4 involve the elimination of noise and outliers. Steps 5–12 focus on determining
the base instance set. Steps 13–14 adaptively adjust the oversampling factor and sampling weights for
the minority class samples. Step 15 generates new instances and precisely controls their categories.
Finally, the dataset is balanced.

Algorithm 3: The proposed MLNaNBDOS
Input: An imbalanced multi-label dataset x, Y .
1: D∗

y = LP_Transform(x, Y );
2: NaNs = NaNs_Search(D∗

y);
3: D∗

y = D∗
y − {

xi|xi ∈ D∗
y and ∀xj ∈ NaNi, σy(Yj) �= σy(Yi)

}
;

4: D∗
y = D∗

y − {
xi|xi ∈ D∗

y and |NaNi| = 0
}
;

5: Split D∗
y into a majority instance set Smaj and a minority instance set Smin;

6: Initialize the base instance set BIS = ∅;
7: Find all candidate base instances and store them into a temporary set

TS = {
xi|xi ∈ Smin and ∃xj ∈ NaNi, σy(Yj) �= σy(Yi)

}
;

8: If TSσy(Yi) = ∅, TSσy(Yi) = Sminσy(Yi);
9: Gσy(Yi) = |Smaj| − |Sminσy(Yi)|;
10: Compute the sampling factor δσy(Yi) = Gσy(Yi)∣∣TSσy(Yi)

∣∣ ;

11: If δσy(Yi) < 1, randomly select Gσy(Yi) instances from TSσy(Yi) and store them into BIS;
12: Otherwise, BIS = TSσy(Yi);

13: ∀xi ∈ BIS, compute the sampling coefficient γi = Δi

|NaNs (xi)| ;
14: Normalize γi, γ̂i = γi∑

γi

, so that
∑

γ̂i = 1;

15: For each xi ∈ BIS, generate gi = γ̂i × Gσy(Yi) new instances by using Eqs. (11) and (12);
16: Store all the new generated instances into Smin.

Output: A balanced dataset D∗′
y = Smaj ∪ Smin.

As previously mentioned, the time complexity of NaNs_Search is O(λ ∗ |X | ∗ log|X |) [17], where
λ represents the natural neighbor eigenvalue, indicating the maximum number of natural neighbors
for each instance. For MLNaNBDOS, besides invoking NaNs_Search, the time complexity for each
step is either constant or linear. For example, linear traversal is performed in Steps 3 and 4 to identify
noise or outliers. Therefore, the time complexity of MLNaNBDOS can be roughly estimated as O(λ ∗
|X | ∗ log |X | + λ ∗ |X |).

Fig. 2 illustrates the workflow of the MLNaNBDOS method. During the data preprocessing stage,
noise and outliers are eliminated through the natural neighbor search strategy. In the oversampling
stage (NaN oversampling), three steps are executed: selecting the base minority class sample instances,
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calculating sampling weights, generating new instances. Finally, the corresponding instance labels are
generated to form the oversampled minority class samples, which are combined with the majority class
samples to form the balanced training set.

Figure 2: MLNaNBDOS flow chart

3.4 MLNaNBDOS-RF (Multi-Label Natural Neighbor Boundary Oversampling with Random Forest)
Generally, decision tree (DT) is suited for binary problems, while random forest (RF) and

support vector machine (SVM) perform well in multi-class scenarios [22]. Due to RF’s outstanding
performance with complex data and its ensemble approach, which provides strong anti-overfitting
capabilities and robustness, RF is chosen as the classifier for the USC thermal power plant load
deviation diagnosis model.

Reference [23] is an ensemble learning model that creates new training datasets by randomly
sampling a samples from the training sample set D, and forms a random forest by generating a DTs.
The classification result is obtained through a voting process among these DTs.

Algorithm 4 presents the pseudocode for integrating MLNaNBDOS with the RF classifier. Fig. 3
illustrates the workflow of the MLNaNBDOS-RF model.

Algorithm 4: The model of MLNaNBDOS-RF
Input: An imbalanced multi-label dataset x, Y .
1: X_tain, X_test, y_tain, y_test = train_test_split(x, Y );
2: D∗′

y = MLNaNBDOS(X_tain, y_tain);
3: MLNaNBDOS-RF = RandomForestClassifier( );
4: MLNaNBDOS-RF.fit(D∗′

y );
5: MLNaNBDOS-RF model evaluation;

Output: MLNaNBDOS-RF.
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Figure 3: MLNaNBDOS-RF flow chart

4 Experiment
4.1 Dataset Description

To evaluate the classification performance of MLNaNBDOS on a dataset with class imbalance
characteristics in USC unit load deviation, three sets of USC unit operational data under different
AGC load commands were utilized as experimental datasets. The imbalance degree for each dataset
is summarized in Table 1.

Table 1: Information related to the degree of imbalance of the 3 data sets

Datasets Key IR n n+ n− dim

400 MW D1 57.5 1375 8 460 1156
500 MW D2 10.08 366 12 121 1156
650 MW D3 17.25 476 8 138 1156

Where, n represents the total number of samples; n+ and n− denote the number of minority
class (deviation data) samples and majority class (normal data) samples, respectively; dim refers to
the number of features; and IR stands for imbalanced ratio, calculated as IR = n−/n+. For ease of
reference, distinct Key values are used to represent the three different datasets.
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Each experimental dataset comprises 1156 features and 46 causal labels, with data collected at
30- s intervals. The feature data includes operational monitoring metrics such as temperature, pressure,
current, voltage, vibration frequency, vibration displacement, emission concentration, and switch
signal outputs from various equipment within the unit, encompassing the boiler, turbine, generator,
and associated auxiliary equipment and systems. The label data pertains to the causal labels of the load
deviation, where each label is assigned a value of “0” or “1”. Specifically, “0” indicates that the label
is not a cause of load deviation, while “1” signifies that the label is a cause of load deviation. Table 2
presents a portion of the monitoring data from Dataset D2, with corresponding load deviation causal
labels illustrated in Table 3.

Table 2: Data set D2 operational data

Time AGC (MW) Main steam
temperature
(°C)

Main steam
pressure
(MPa)

Main steam
flow (t/h)

. . . Feedwater
temperature
(°C)

8:00:00 499.92 570.45 21.81 1467.80 . . . 79.91
8:00:30 499.87 569.95 21.73 1468.17 . . . 79.97
. . . . . . . . . . . . . . . . . . . . .

11:10:00 499.92 599.81 21.98 1453.56 . . . 82.21

Table 3: Labeling of causes of load deviation in dataset D2

Time Main steam
temperature
is low

Reheat steam
temperature
is high

#1 High plus
temperature
rise
abnormality

Fuel low heat
generation
decreases

. . . Generator
efficiency
decreases

8:00:00 1 1 1 0 . . . 1
8:00:30 1 1 1 0 . . . 1
. . . . . . . . . . . . . . . . . . . . .

11:10:00 0 0 1 0 . . . 1

As shown in Table 3, multiple factors can concurrently contribute to insufficient load output in
the unit. Moreover, there is a variation in the number of samples corresponding to each cause of
insufficient load output, as detailed in Table 4. This disparity results in an imbalance in the sample
count for different deviation causes, potentially impacting the classification performance of the load
deviation diagnostic model.

4.2 Benchmark Model and Evaluation Metrics
4.2.1 Benchmark Model

In this section, the classification performance of the MLNaNBDOS method is evaluated using
datasets: D1, D2, and D3. For comparison, eight well-known oversampling methods are utilized,
with specific parameter settings listed in Table 5. Safe level-SMOTE (SLSMOTE) [24], ADASYN [25],
and MWMOTE [26] are implemented using the Smote-variants Python package [27]. SMOTE [28],
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Borderline-SMOTE (BLSMOTE) [29], and Random Over Sampler (ROS) [30] are implemented using
the Imbalanced-learn Python package [31].

Table 4: Sample distribution of causes of load deviation for the 3 data sets

Datasets High-pressure
control valve
jamming

Cylinder
misalignment

Low reheat
steam
temperature

Low
temperature
before main
steam valve

. . . Low main
steam
flow rate

D1 170 80 885 38 . . . 45
D2 70 2 253 56 . . . 0
D3 10 147 347 1 . . . 4

Table 5: MLNaNBDOS and baseline methods

Method Key Parameters

SMOTE M1 k1 = 5
BLSMOTE M2 k1 = 5, k2 = 10
SLSMOTE M3 k1 = 5
ROS M4 –
ADASYN M5 k1 = 5
MWMOTE M6 k1 = 5, k2 = 5, k3 = 5,

M = 10, Cf (th) = 5, Cmax = 10
NanBDOS [17] M7 –
NLDAO [18] M8 –
MLNaNBDOS M9 –

4.2.2 Evaluation Metrics

The evaluation of the proposed method is conducted using seven metrics: Micro-F1, Macro-F1,
Micro-G-mean, Macro-G-mean, Micro-AUC, Macro-AUC, and Hamming Loss (HL) [32]. Both the F1
score and G-mean metrics are based on the confusion matrix presented in Table 6. A confusion matrix,
also known as a likelihood table, an error matrix, or an error matrix, is a type of table especially suited
for supervised learning to assess the performance of a classification model. In a confusion matrix,
each row represents an actual category, each column represents a predicted category, and the value of
each cell indicates the number of times a category was predicted to be another category. The confusion
matrix visualizes which categories the classification model predicts accurately and in which categories
there is confusion. The confusion matrix consists of four key elements, namely True Positive (TP),
False Negative (FN), False Positive (FP), and True Negative (TN). FP is the number of instances
of the negative category (majority) that are predicted as positive (minority) instances of the positive
category number, and the TP, FN, and TN metrics are interpreted similarly.
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The F1 score is the harmonic mean of Precision and Recall, focusing primarily on the minority
class. The formulas for Micro-F1 and Macro-F1 are given in Eqs. (15) and (19), respectively.

Precisionmicro =
∑

TPi∑
TPi + ∑

FPi

(13)

Recallmicro =
∑

TPi∑
TPi + ∑

FNi

(14)

Micro −F1 = 2 × Precisionmicro × Recallmicro

Precisionmicro + Recallmicro

(15)

Precisioni = TPi

TPi + FPi

(16)

Recalli = TPi

TPi + FNi

(17)

F1i = 2 × Precisioni × Recalli

Precisioni + Recalli

(18)

Macro − F1 = 1
N

N∑
i=1

F1i (19)

where N denotes the number of instance classes.

Table 6: Confusion matrix

Positive prediction Negative prediction

Positive class True Positive (TP) False Negative (FN)
Negative class False Positive (FP) True Negative (TN)

The G-mean is the geometric mean of Recall and Specificity, involving both minority and majority
classes. The formulas for Micro-G-mean and Macro-G-mean are provided in Eqs. (22) and (26),
respectively.

Recallmicro =
∑

TPi∑
TPi + ∑

FNi

(20)

Specificitymicro =
∑

TNi∑
TNi + ∑

FPi

(21)

Micro−G−mean = √
Recallmicro × Specificitymicro (22)

Recalli = TPi

TPi + FNi

(23)

Specificityi = TNi

TNi + FPi

(24)
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G−meani = √
Recalli × Specificityi (25)

Macro−G−mean = 1
N

∑N

i=1
G−meani (26)

Area Under Curve (AUC) refers to the area under the Receiver Operating Characteristic (ROC)
curve, representing the probability that the classifier ranks a randomly chosen minority class instance
higher than a randomly chosen majority class instance. Due to its insensitivity to class distribution,
the AUC is particularly well-suited for addressing class imbalance issues.

Micro-AUC aggregates all classes into a binary classification problem and calculates the area
under the ROC curve for true positive rate (TPR) vs. false positive rate (FPR) at various thresholds.

TPR = TP
TP + FN

(27)

FPR = FP
FP + TN

(28)

Macro-AUC is defined in Eq. (29).

Macro−AUC = 1
N

∑N

i=1
AUCi (29)

Hamming Loss (HL) measures the misclassification rate of instance-label pairs. HL is defined in
Eq. (30).

HL (h) = 1
p

∑p

i=1

1
q

|h (xi)ΔYi| (30)

where � denotes the symmetric difference between the predicted and actual labels of an instance.

All experiments were conducted on a personal computer with an R7-5800H CPU @ 3.20 GHz,
32 GB of memory, and running Windows 11.

4.3 Experimental Results and Analysis
4.3.1 Comparative Experiments of Different Oversampling Methods

To verify the distributional advantage of MLNaNBDOS in generating oversampled data,
MLNaNBDOS will compare 8 oversampling methods on datasets D1∼D3. The experimental results
of the evaluation metrics for the 3 sets of datasets are shown in Tables 7–9, respectively, and the
corresponding classification performance of the model is shown in Figs. 4–6, respectively. The
confusion matrices in Figs. 4–6 have been normalized in the row direction, so the values in the cells
indicate the probability that the model predicts the actual category or other categories.
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Table 7: Experimental results of assessment indicators for dataset D1

Method F1 G-mean AUC HL
Micro Macro Micro Macro Micro Macro

RF 0.7042 0.5927 0.8335 0.7505 0.9788 0.9596 0.2958
SMOTE-RF 0.6866 0.5796 0.8227 0.7539 0.9772 0.9528 0.3134
BLSMOTE-RF 0.6761 0.5979 0.8162 0.7628 0.9764 0.9513 0.3239
SLSMOTE-RF 0.6690 0.5562 0.8118 0.7246 0.9756 0.9509 0.3310
ROS-RF 0.6901 0.6265 0.8249 0.7811 0.9770 0.9545 0.3099
ADASYN-RF 0.7007 0.5786 0.8314 0.7459 0.9775 0.9537 0.2993
MWMOTE-RF 0.6937 0.5589 0.8270 0.7364 0.9788 0.9628 0.3063
NanBDOS-RF 0.6937 0.5650 0.8270 0.7327 0.9782 0.9612 0.3063
NLDAO-RF 0.6972 0.5657 0.8292 0.7359 0.9762 0.9454 0.3028
MLNaNBDOS-
RF

0.7113 0.6096 0.8378 0.7642 0.9788 0.9633 0.2887

Table 8: Experimental results of assessment indicators for dataset D2

Method F1 G-mean AUC HL

Micro Macro Micro Macro Micro Macro

RF 0.8816 0.9164 0.9309 0.9524 0.9918 0.9897 0.1184
SMOTE-RF 0.8947 0.9222 0.9388 0.9560 0.9913 0.9904 0.1053
BLSMOTE-RF 0.8684 0.8623 0.9231 0.9234 0.9919 0.9923 0.1316
SLSMOTE-RF 0.8816 0.8817 0.9309 0.9337 0.9920 0.9901 0.1184
ROS-RF 0.8816 0.8822 0.9309 0.9351 0.9908 0.9896 0.1184
ADASYN-RF 0.8947 0.8952 0.9388 0.9384 0.9922 0.9906 0.1053
MWMOTE-RF 0.8816 0.9091 0.9309 0.9527 0.9931 0.9917 0.1184
NanBDOS-RF 0.8684 0.8450 0.9231 0.9133 0.9902 0.9906 0.1316
NLDAO-RF 0.8816 0.8508 0.9309 0.9169 0.9897 0.9904 0.1184
MLNaNBDOS-
RF

0.9079 0.9014 0.9465 0.9435 0.9911 0.9906 0.0921

Table 9: Experimental results of assessment indicators for dataset D3

Method F1 G-mean AUC HL
Micro Macro Micro Macro Micro Macro

RF 0.9200 0.8783 0.9549 0.9374 0.9947 0.9942 0.0800
SMOTE-RF 0.9000 0.8358 0.9434 0.9194 0.9953 0.9953 0.1000
BLSMOTE-RF 0.9000 0.8538 0.9434 0.9293 0.9960 0.9959 0.1000

(Continued)
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Table 9 (continued)

Method F1 G-mean AUC HL
Micro Macro Micro Macro Micro Macro

SLSMOTE-RF 0.9000 0.8466 0.9434 0.9285 0.9879 0.9899 0.1000
ROS-RF 0.9100 0.8613 0.9492 0.9334 0.9960 0.9955 0.0900
ADASYN-RF 0.9200 0.8783 0.9549 0.9374 0.9944 0.9940 0.0800
MWMOTE-RF 0.9000 0.8358 0.9434 0.9194 0.9947 0.9941 0.1000
NanBDOS-RF 0.9100 0.8573 0.9492 0.9236 0.9938 0.9951 0.0900
NLDAO-RF 0.9000 0.8404 0.9434 0.9195 0.9938 0.9954 0.1000
MLNaNBDOS-RF 0.9300 0.8881 0.9606 0.9438 0.9955 0.9949 0.0700

Figure 4: (Continued)
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Figure 4: Confusion matrix for each oversampling method on dataset D1: (a) RF, (b) SMOTE-
RF, (c) BLSMOTE-RF, (d) SLSMOTE-RF, (e) ROS-RF, (f) ADASYN-RF, (g) MWMOTE-RF, (h)
NanBDOS-RF, (i) NLDAO-RF, (j) MLNaNBDOS-RF
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Figure 5: (Continued)
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Figure 5: Confusion matrix for each oversampling method on dataset D2: (a) RF, (b) SMOTE-
RF, (c) BLSMOTE-RF, (d) SLSMOTE-RF, (e) ROS-RF, (f) ADASYN-RF, (g) MWMOTE-RF, (h)
NanBDOS-RF, (i) NLDAO-RF, (j) MLNaNBDOS-RF

Tables 4 and 7 present the performance evaluations for dataset D1, characterized by issues such
as cylinder misalignment and low temperature before the main steam valve. The MLNaNBDOS
achieved the best performance in Micro-F1, Micro-G-mean, Macro-AUC, and HL metrics, with scores
of 0.7113, 0.8378, 0.9633, and 0.2887, respectively. The ROS exhibited the best performance in terms
of Macro-F1 and Macro-G-mean, with scores of 0.6265 and 0.7811, respectively.

Among the methods with the highest Micro-AUC scores, including the benchmark RF,
MWMOTE and MLNaNBDOS performed comparably to the original RF when classifying minority
class samples characterized by low main steam flow, achieving a score of 0.9788. In contrast,
other methods performed poorly. The highest Macro-AUC score was achieved by MLNaNBDOS,
surpasssing other methods in classifying minority class samples, particularly those affected by cylinder
misalignment and low temperature before the main steam valve.
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Figure 6: (Continued)
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Figure 6: Confusion matrix for each oversampling method on dataset D3: (a) RF, (b) SMOTE-
RF, (c) BLSMOTE-RF, (d) SLSMOTE-RF, (e) ROS-RF, (f) ADASYN-RF, (g) MWMOTE-RF, (h)
NanBDOS-RF, (i) NLDAO-RF, (j) MLNaNBDOS-RF

Dataset D1 was transformed by the LP method to form 23 load deviation cause classes. The
classification results of these load deviation cause classes by the basic classifier RF are shown in
Fig. 4a. The classification results of these load deviation cause classes after oversampling and RF
classification by nine oversampling methods are shown in Fig. 4b to j, respectively. From Fig. 4,
MLNaNBDOS accurately predicts category 4 on top of RF accurately classifying category 25
and category 38, and further improves the probability of RF predicting category 19. SMOTE and
BLSMOTE, although with outstanding global exploration capability, cause RF to accurately predict
category 17 as category 9, which affects the RF classification performance. ROS possesses an excellent
global exploration capability that improves RF categorization performance in category 6 and category
11, but like SLSMOTE and NanBDOS reduces RF’s probability of predicting category 25 by 25%.
MWMOTE and ADASYN misclassify category 17 and accurately categorize category 4 on the basis
of RF accurately predicting category 25 and category 38, respectively. NLDAO loses RF’s performance
in categorizing category 25 and improves the ability to categorize category 4.
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Based on Tables 4 and 8, for dataset D2, which is characterized by faults such as low reheating
steam temperature and high-pressure regulator valve sticking, MLNaNBDOS performs best in terms
of Micro-F1, Micro-G-mean, and HL, with values of 0.9079, 0.9465, and 0.0921, respectively. In
Macro-F1 and Macro-G-mean, SMOTE excels, achieving values of 0.9222 and 0.9560, respectively.
MWMOTE performs best in terms of Micro-AUC with a value of 0.9931, while BLSMOTE leads in
Macro-AUC with a value of 0.9923.

As noted in Table 1, dataset D2 exhibits the least imbalanced and possesses the smallest sample
size among the three datasets. With an equivalent number of features, fewer samples generally
hinder classification performance. Thus, different methods emphasize various aspects when applied
to dataset D2.

From a macro perspective, both SMOTE and BLSMOTE enhance global exploration capabilities
by increasing the distribution density of the majority class samples within the kNN of the minority
class samples. SMOTE focuses on macro-level precision and recall, whereas BLSMOTE emphasizes
the occurrence probability of minority class samples.

Conversely, at a micro level, MLNaNBDOS further explores local information by examining the
distribution density of minority class samples within the natural neighbors of minority class samples.
MLNaNBDOS emphasizes micro-level precision and recall, as well as the misclassification rate of
instance labels.

Dataset D2 was transformed by the LP method to form eight load deviation cause classes. The
classification results of these load deviation cause classes by the basic classifier RF are shown in
Fig. 5a. The classification results of these load deviation cause classes after oversampling and RF
classification by nine oversampling methods are shown in Fig. 5b to j, respectively. As can be seen in
Fig. 5, SMOTE, BLSMOTE, SLSMOTE, ADASYN, and MLNaNBDOS all improve the RF’s ability
to categorize category 11 by 4%. ROS and ADASYN, while like BLSMOTE and SLSMOTE, cause
the RF to lose 33.33% of its categorization performance in category 6, but improve its categorization
performance in category 10 by 5.88%. NanBDOS, while causing RF to accurately categorize category
10, gives RF a 66.67% probability of predicting category 6 as category 5. On top of NanBDOS,
NLDAO causes RF to improve its categorization performance in category 11 by 4%. On top of
NLDAO, MLNaNBDOS further improves RF’s categorization performance in category 6 by 33.34%.

Tables 4 and 9 detail the performance metrics for dataset D3, which involves faults such as
misaligned cylinders, low reheating steam temperature, and high-pressure regulator valve sticking,
MLNaNBDOS excels in Micro-F1, Macro-F1, Micro-G-mean, Macro-G-mean, and HL, with respec-
tive values of 0.9300, 0.8881, 0.9606, 0.9438, and 0.0700. Both BLSMOTE and ROS perform best
in terms of Micro-AUC, achieving 0.9960, while BLSMOTE leads in Macro-AUC with a value of
0.9959. Although MLNaNBDOS presents a slight 0.1% difference in AUC compared to BLSMOTE,
it surpasses other methods in the remaining evaluation metrics.

Dataset D3 was transformed by the LP method to form 10 load deviation cause classes. The
classification results of these load deviation cause classes by the basic classifier RF are shown in
Fig. 6a. The classification results of these load deviation cause classes after oversampling and RF
classification by nine oversampling methods are shown in Fig. 6b to j, respectively. As can be seen
in Fig. 6, MLNaNBDOS increases the probability that the model RF predicts category 6 by 11.11%,
allowing the model to further accurately categorize category 6 on top of its original categorization
ability. BLSMOTE, SLSMOTE, and ROS add noise to the distribution of the category 1 and category 3
data, which affects the model’s predictions. SMOTE and MWMOTE give the model a 50% probability
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of misclassifying category 17 classified as category 14. Both NanBDOS and NLDAO reduce the
probability of the model predicting category 16 by 25%.

Overall, across the three datasets, MLNaNBDOS consistently performs best in Micro-F1, Micro-
G-mean, and HL, particularly in classifying faults such as misaligned cylinders, low reheating steam
temperature, and high-pressure regulator valve sticking. The average values achieved are 0.8497,
0.9150, and 0.1503, respectively. MLNaNBDOS enhances the generation of new sample instances by
accurately pairing new instance categories, thus effectively mitigating the creation of noise samples, and
thereby improving both the robustness and accuracy of the classification model. Other methods, which
inherit base instance categories during oversampling, tend to generate noise, thereby diminishing their
classification performance and robustness across the three datasets. MLNaNBDOS demonstrates
superior performance in micro-precision, micro-recall, micro-specificity, and instance label misclas-
sification rate, proving to be the most effective in addressing class imbalance in the USC unit load
deviation datasets.

4.3.2 Denoising Ablation Experiments

In order to verify the rationality and effectiveness of MLNaNBDOS in dealing with the noise
problem, ablation experiments are conducted on this part. Model 1 denotes the use of NaN oversam-
pling; Model 2 denotes the use of NaN oversampling and noise removal; Model 3 denotes the use of
NaN oversampling and outlier removal; Model 4 denotes the use of NaN oversampling and control
of new instance categories; Model 5 denotes the use of NaN oversampling, noise and outlier removal;
Model 6 denotes the use of NaN oversampling, noise removal and control of new instance categories;
and Model 7 denotes the use of NaN oversampling, removal of outliers, and control of new instance
categories; MLNaNBDOS uses NaN oversampling, removal of noise and outliers, and control of new
instance categories. The experimental results of the evaluation metrics for the 3 sets of datasets are
shown in Tables 10–12, respectively, and the corresponding classification performance of the model is
shown in Figs. 7–9, respectively.

Table 10: Results of the metrics evaluated for the D1 ablation experiment in the dataset

Method F1 G-mean AUC HL

Micro Macro Micro Macro Micro Macro

Model 1-RF 0.6373 0.5049 0.7917 0.7101 0.9681 0.9419 0.3627
Model 2-RF 0.6901 0.5524 0.8249 0.7344 0.9754 0.9610 0.3099
Model 3-RF 0.6303 0.4989 0.7872 0.7010 0.9679 0.9422 0.3697
Model 4-RF 0.6761 0.5723 0.8162 0.7483 0.9779 0.9625 0.3239
Model 5-RF 0.6937 0.5650 0.8270 0.7327 0.9782 0.9612 0.3063
Model 6-RF 0.7077 0.6056 0.8357 0.7637 0.9807 0.9747 0.2923
Model 7-RF 0.6690 0.5659 0.8118 0.7455 0.9778 0.9626 0.3310
MLNaNBDOS-
RF

0.7113 0.6096 0.8378 0.7642 0.9788 0.9633 0.2887
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Table 11: Results of the metrics evaluated for the D2 ablation experiment in the dataset

Method F1 G-mean AUC HL

Micro Macro Micro Macro Micro Macro

Model 1-RF 0.7895 0.8314 0.8751 0.9217 0.9825 0.9878 0.2105
Model 2-RF 0.8421 0.8198 0.9073 0.8977 0.9905 0.9904 0.1579
Model 3-RF 0.8289 0.8374 0.8993 0.9142 0.9855 0.9876 0.1711
Model 4-RF 0.8816 0.8945 0.9309 0.9348 0.9895 0.9867 0.1184
Model 5-RF 0.8684 0.8450 0.9231 0.9133 0.9902 0.9906 0.1316
Model 6-RF 0.8816 0.8896 0.9309 0.9362 0.9910 0.9909 0.1184
Model 7-RF 0.8947 0.9128 0.9388 0.9450 0.9921 0.9909 0.1053
MLNaNBDOS-
RF

0.9079 0.9014 0.9465 0.9435 0.9911 0.9906 0.0921

Table 12: Results of the metrics evaluated for the D3 ablation experiment in the dataset

Method F1 G-mean AUC HL

Micro Macro Micro Macro Micro Macro

Model 1-RF 0.9100 0.8546 0.9492 0.9335 0.9933 0.9947 0.0900
Model 2-RF 0.9200 0.8775 0.9549 0.9374 0.9939 0.9949 0.0800
Model 3-RF 0.8900 0.8291 0.9376 0.9237 0.9874 0.9891 0.1100
Model 4-RF 0.9200 0.8690 0.9549 0.9383 0.9888 0.9906 0.0800
Model 5-RF 0.9100 0.8573 0.9492 0.9236 0.9938 0.9951 0.0900
Model 6-RF 0.9300 0.8782 0.9606 0.9438 0.9957 0.9951 0.0700
Model 7-RF 0.9100 0.8706 0.9492 0.9408 0.9888 0.9906 0.0900
MLNaNBDOS-
RF

0.9300 0.8881 0.9606 0.9438 0.9955 0.9949 0.0700

As can be seen from Table 10, MLNaNBDOS performs best in terms of F1, G-mean and HL,
indicating that the RF classification ability can be effectively improved by the data preprocessing
method that removes noise and outliers, as well as by controlling the new instance classes. As shown
by the results of each evaluation index of Model 1 and Model 3, outlier detection performs poorly
on dataset D1, indicating that the few classes of samples that are mistakenly detected as outliers
are not able to form a natural neighbor relationship with other samples in the spatial distribution,
which affects the RF classification performance. From the results of each evaluation index of Model
5 and Model 7, it can be seen that the use of removing noise or controlling new instance classes can
improve RF classification performance and reduce the impact of noise and outlier detection on RF
classification.
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Figure 7: (Continued)
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Figure 7: Confusion matrix for dataset D1 ablation experiments: (a) Model 1-RF, (b) Model 2-RF, (c)
Model 3-RF, (d) Model 4-RF, (e) Model 5-RF, (f) Model 6-RF, (g) Model 7-RF, (h) MLNaNBDOS-
RF

Figure 8: (Continued)
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Figure 8: Confusion matrix for dataset D2 ablation experiments: (a) Model 1-RF, (b) Model 2-RF, (c)
Model 3-RF, (d) Model 4-RF, (e) Model 5-RF, (f) Model 6-RF, (g) Model 7-RF, (h) MLNaNBDOS-
RF
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Figure 9: (Continued)
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Figure 9: Confusion matrix for dataset D3 ablation experiments: (a) Model 1-RF, (b) Model
2-RF, (c) Model 3-RF, (d) Model 4-RF, (e) Model 5-RF, (f) Model 6-RF, (g) Model 7-RF,
(h) MLNaNBDOS-RF

Dataset D1 was transformed by the LP method to form 23 load deviation cause classes. The
classification results of these load deviation cause classes after Model 1–Model 7, MLNaNBDOS
oversampling and RF classification, respectively, are shown in Fig. 7a–h. From Fig. 7a–d, removing
noise causes RF to accurately categorize category 38, removing outliers causes RF to lose the
performance of categorizing category 19, and controlling the new instance category causes RF to
accurately categorize category 38 and category 11. From Fig. 7f–g, controlling the new instance
category after removing noise or outliers causes RF to improve its categorization ability in category
23 by 33.33%. From Fig. 7h, the denoising effect of the combination of removing noise, removing
outliers, and controlling new instance categories makes RF accurately categorize category 4.

As can be seen in Table 11, controlling for new instance categories excels on dataset D2, and in
particular, the combination of removing outliers and controlling for new instance categories resulted in
the best representation of RF on Macro-F1, Macro-G-mean, and AUC. The combination of removing
noise, removing outliers, and controlling for new instance categories resulted in the lowest HL score
and the best overall categorization for RF.

Dataset D2 was transformed by the LP method to form 8 load deviation cause classes. The
classification results of these load deviation cause classes after Model 1–Model 7, MLNaNBDOS
oversampling and RF classification, respectively, are shown in Fig. 8a–h. As can be seen in Fig. 8,
while removing noise, removing outliers and controlling the new instance category all degrade the RF
in terms of classification performance for category 6, controlling the new instance category results in
the largest increase in the RF’s ability to classify in category 11 of up to 24% and to accurately classify
in category 7. This suggests that controlling the new instance category has the best results in terms of
the ability to denoise samples from both category 11 and category 7.

As can be seen from Table 12, outlier detection is ineffective on dataset D3, lowering MLNaNBDO
S’s score on AUC while improving RF’s Macro-F1 score by 1.13%. This suggests that on dataset D3,
outlier detection excludes some of the valuable minority class samples, making RF slightly less effective
in predicting minority class sample performance.
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Dataset D3 was transformed by the LP method to form 10 load deviation cause classes. The
classification results of these load deviation cause classes after Model 1∼Model 7, MLNaNBDOS
oversampling and RF classification, respectively, are shown in Fig. 9a–h. As can be seen from Fig. 9,
on dataset D3, the removal of outliers reduces the classification ability of RF in category 3 by 16.66%,
and improves the misclassification ability in category 0 and category 6 by 8.33%, respectively. This
indicates that the few class samples removed are similar to category 0 and category 6 in spatial
distribution and cannot form a natural neighbor relationship with category 3 samples, which affects the
outlier detection effect. In addition, removing noise improves RF’s categorization ability in category 1
by 6.66%, and controlling for new instance categories improves RF’s categorization ability in category
3 by 8.34%. The combination of removing noise, removing outliers, and controlling new instance
categories improves RF’s ability to classify category 1 by 6.66% and accurately classifies category 6.

Combining 3 sets of datasets, the combination of removing noise, removing outliers and control-
ling new instance categories effectively removes the original noise, while avoiding new noise samples
generation on new instance sample generation, thus improving RF classification ability.

5 Conclusion

This study addresses the issue of class imbalance prevalent in datasets concerning supercritical
coal-fired power plant unit load deviation. A diagnostic method for load deviation in supercritical
units is introduced, utilizing the multi-label natural neighbor boundary oversampling technique
(MLNaNBDOS). This method is crafted to optimize and enhance diagnostic performance. The
primary contributions of MLNaNBDOS are as follows:

1) Multidimensional Label Oversampling Strategy. MLNaNBDOS constructs the load deviation
causes of coal-fired power units as binary multi-label relationships. By introducing the label power set
method, it retains complex inter-data correlations, thereby enhancing the flexibility and applicability
of traditional binary classification oversampling strategies for multi-label classification problems.

2) Intelligent Adjustment of Oversampling Factors. Addressing the poor performance of tra-
ditional binary classification oversampling techniques in multi-class environments, MLNaNBDOS
utilizes a natural neighbor search strategy to adaptively adjust the oversampling factors and weights.
This improves the accuracy of oversampling for each class and enhances the generalization ability of
the oversampling algorithm in multi-class scenarios.

3) Precise Control of New Instance Categories. To overcome potential noise issues introduced
by traditional oversampling methods during new instance generation, MLNaNBDOS leverages
natural neighbor information to adaptively pair new instance categories. By dynamically evaluating
the similarity between new instances and natural neighbors using random factors, MLNaNBDOS
precisely controls the new instance generation process, effectively diminishing noise samples and
thereby improving the robustness and accuracy of the classification model.

The experimental results underscore the exceptional performance of MLNaNBDOS across
critical evaluation metrics. For three significantly imbalanced datasets concerning coal-fired power
unit load deviations, MLNaNBDOS achieved average values of 0.8497 in Micro-F1, 0.9150 in Micro-
G-mean, and 0.1503 in Hamming Loss. Specifically, in terms of micro-precision, recall, specificity,
and instance-label misclassification rates, MLNaNBDOS significantly outperforms other comparative
methods, validating its efficacy and superiority in practical applications.

Given the urgent demand for automation and intelligent maintenance within smart power plants,
the MLNaNBDOS diagnostic model for ultra-supercritical unit load deviations provides decision
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support for plant operators and maintenance teams. While this model has demonstrated robust
capabilities, it requires further refinement at a macro level, especially in enhancing the prediction accu-
racy for minority class occurrences. Future research will focus on deepening theoretical foundations
and exploring more efficient base instance selection strategies. Such advancements are expected to
significantly improve macro classification capability, thereby further solidifying and enhancing the
overall performance of the ultra-supercritical unit load fault diagnosis model.
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Appendix A

Table A1: Summary of the main mathematical symbols

Symbols Mathematical meaning

X d-dimensional instance space Rd

y Label space with q possible class labels{
y1, y2, · · · , yq

}
x d-dimensional eigenvectors

(x1, x2, · · · , xd)
�, (x ∈ X)

Y The set of labels associated with x,
(Y ⊆ y)

D Multilabel training set {(xi, Yi) |1 ≤ i ≤ m}
T Multilabel test set {(xi, Yi) |1 ≤ i ≤ p}
h (·) The multi-label classifier h : X → 2y,

where h (x) returns the set of predicted
labels for x

σy (·) The map from the power set of y to the
natural numbers is a one-shot function
σy : 2y → N (σ −1

y is the corresponding
inverse function)

(Continued)
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Table A1 (continued)

Symbols Mathematical meaning

D∗
y Multi-class (single-label) training set{(

xi, σy(Yi)
) |1 ≤ i ≤ m

}
derived from D

S
(
D∗

y

)
The set of all categories
{σy(Yi) | 1 ≤ i ≤ m} in D∗

y

Smaj The set of majority classes{(
xi, σy(Yi)

) |1 ≤ i ≤ l
}

in D∗
y

Smin The set of minority classes{(
xi, σy(Yi)

) |1 ≤ i ≤ m − l
}

in D∗
y

δ Sampling factor set
{
δi|1 ≤ i ≤ ∣∣S (

D∗
y

)∣∣}
γ Sampling coefficient set

{γi|1 ≤ i ≤ |Smin|}
γ̂ Sampling weight set {γ̂i|1 ≤ i ≤ |Smin|}
g Sampling size set {gi|1 ≤ i ≤ |Smin|}
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