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ABSTRACT

The experimental analysis takes too much time-consuming process and requires considerable effort, while, the
Artificial Neural Network (ANN) algorithms are simple, affordable, and fast, and they allow us to make a relevant
analysis in establishing an appropriate relationship between the input and output parameters. This paper deals with
the use of back-propagation ANN algorithms for the experimental data of heat transfer coefficient, Nusselt number,
and friction factor of water-based Fe;0,4-TiO, magnetic hybrid nanofluids in a mini heat sink under magnetic
fields. The data considered for the ANN network is at different Reynolds numbers (239 to 1874), different volume
concentrations (0% to 2.0%), and different magnetic fields (250 to 1000 G), respectively. Three types of ANN back-
propagation algorithms Levenberg-Marquardt (LM), Broyden-Fletcher-Goldfarb-Shanno Quasi Newton (BFGS),
and Variable Learning Rate Gradient Descent (VLGD) were used to train the heat transfer coefficient, Nusselt
number, and friction factor data, respectively. The ANOVA ¢-test analysis was also performed to determine the
relative accuracy of the three ANN algorithms. The Nusselt number of 2.0% vol. of Fe;04-TiO, hybrid nanofluid
is enhanced by 38.16% without a magnetic field, and it is further enhanced by 88.93% with the magnetic field of
1000 Gauss at a Reynolds number of 1874, with respect to the base fluid. A total of 126 datasets of heat transfer
coefficient, Nusselt number, and friction factor were used as input and output data. The three ANN algorithms of
LM, BFGS, and VLGD, have shown good acceptance with the experimental data with root-mean-square errors of
0.34883, 0.25341, and 1.0202 with correlation coefficients (R?) of 0.99954, 0.9967, and 0.94501, respectively, for the
Nusselt number data. Moreover, the three ANN algorithms predict root-mean-square errors of 0.001488, 0.005041,
and 0.006924 with correlation coefficients (R?) of 0.99982, 0.99976, and 0.99486, respectively, for the friction factor
data. Compared to BFGS and VLGD algorithms, the LM algorithm predicts high accuracy for Nusselt number, and
friction factor data. The proposed Nusselt number and friction factor correlations are also discussed.
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1 Introduction

A heat-sink is a passive device that dissipates heat produced by an electrical or mechanical device
away from the device and into a fluid medium, usually air or liquid coolant. The device allows for
temperature control and, for instance, computers employ heat sinks to cool their central processor
units. Mini- and micro-component development has increased, especially in electronic devices, due to
the constraints of conventional liquid or air-cooling techniques and the small physical dimensions
of the electronic devices. The development of mini-scale technology, including mini- and micro-
components, is one way to improve heat transfer. Researchers have looked closely at heat transfer
and fluid pressure drops through mini and microchannels.

The heat sink performance can be augmented by using high thermal conductivity fluids (nanoflu-
ids), which were formally introduced in the scientific literature by Choi [1]. By using these nanofluids,
the heat transfer coefficient (h,) may be augmented. Earlier relevant research work revels that,
by using different mono nanofluid, the /,, is augmented [2,3]. Even the researchers a have also
observed an enhanced £,, with the use of hybrid nanofluids [4-6]. Kumar et al. [7] used water-mixed
Al,0;-TiO, hybrid nanofluid in a mini-channel heat sink and found numerically and experimentally
h,, enhancement of 8.5% and 12.8%, respectively, with for AL,O; (10:0) hybrid nanofluid. The
h,, enhancement of 15.6% was observed by Kumar et al. [¢] by using Al,O;-multi-walled carbon
nanotube (MWCNT)/water nanofluids in a mini-channel heat-sink. The heat transfer, and pressure
drop increase of 63.13% and 20.35% was observed by Ahammed et al. [9] by using graphene—
alumina hybrid nanofluids in a mini-channel. Nimmagadda et al. [10] observed an enhanced /4, when
using aluminum oxide (Al,O,), silver (Ag), and hybrid (Al,O; + Ag) hybrid nanofluids in a micro-
channel. Nimmagadda et al. [1 1] noted augmented heat transfer using single-walled carbon nanotubes
(SWCNT), Au AlLO;, Ag, and Al,O;-Ag hybrid nanofluids in a micro-channel at low Reynolds
numbers. Nanda Kishore et al. [12] obtained Nusselt number enhancement for Al,O;-CuO hybrid
nanofluids in wavy mini-channels. Murali Krishna et al. [13] determined a 13.2% and 23.07% increase
in Nusselt number for Cu-Al,O,/water hybrid nanofluid compared to Cu/water and Al,O,/water mono
nanofluids, respectively, at 2.5% vol. in a microchannel heat-sink. Ongoing research indicates that
hybrid nanofluids can be superior to mono-nanofluids in terms of thermal performance.

The artificial neural network (ANN) is one of the soft computing tools that can be used for
modeling or predicting hybrid nanofluids data efficiently. Previous studies related to the use of
ANN for mono and hybrid nanofluids heat transfer are surveyed here. The natural convection heat
transfer data of Cu/water mono nanofluids in a cavity was predicted using ANN by Santra et al. [14].
Nucleate pool boiling heat transfer data related to TiO,/water nanofluids was predicted through
multilayer perceptron (MLP), generalized regression neural network (GRNN), and radial basis
networks (RBF) by Balcilar et al. [15]. The overall heat transfer coefficient and pressure drop data
applicable to Mn-Zn/water hybrid nanofluids in a double pipe heat exchanger were predicted using
ANN by Bahiraei et al. [16]. Water-diluted TiO,/water nanofluids in a mini-channel were predicted
by Naphon et al. [17] with the Levenberg-Marquardt Backward-propagation (LMB) training ANN
algorithm and found a 1.25% deviation between measured and predicted data. Tafarroj et al. [18] noted
a 0.3% and 0.2% average relative error with ANN for heat transfer coefficient and Nusselt number,
respectively, of TiO,/water nanofluid in a microchannel heat sink. Khosravi et al. [19], using ANN,
obtained heat transfer enhancement of 134% by using graphene-platinum/water hybrid nanofluid in a
microchannel heat sink. Esfe [20] used ANN to analyze the experimental data of Ag/water nanofluid in
a heat exchanger for the predictions and noted 99.76% and 99.54% accuracy for the Nusselt number
and pressure drop, respectively. Yasir et al. [21] investigated the heat conduction of homogeneous-
heterogeneous reactions in the axisymmetric flow of Oldroyd-B materials and obtained improved fluid
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velocity near the cylinder surface. Yasir et al. [22] investigated the thermal transport characteristics of
water-based Al,O;/Ag hybrid nanofluids over a vertical stretching/shrinking surface by a MATLAB
(MATrix LABoratory) based numerical model and they determined an increased friction drag and
decrease of thermal heat transfer with an increase of nanoparticle concentrations.

The heat transfer of mono and hybrid magnetic nanofluids can be tuned by with the effect of an
external magnetic field. The influence of the external magnetic field was studied by Ghofrani et al. [23]
for Fe;0,, and they noted the values of /,, can increase up to 27.6% for Fe,O,/water nanofluids by
increasing the external magnetic field. For a magnetic field of 1200 Gauss Ashjaee et al. [24] found
an increase for 4,, of 38%, but with no magnetic field, the increase was only 14% for Fe;O,/water
nanofluid flow in a heat-sink, as compared to the base fluid. Riaz Khan et al. [25] analyzed the skin
friction coefficient, frictional drag, and heat transfer of Cu-Al,O5/H,0-C,H,O, hybrid nanofluid over
a stretched surface based on the boundary conditions of aligned magnetic field and nonlinear radiation
and they found that hybrid nanofluids provide better rate of /,, with less frictional drag. Tekir et al. [26]
obtained a 14% increase of 4, for Fe,O,-Cu/water hybrid nanofluid under a fixed magnetic field.
Alsarraf et al. [27] found an increment of 109.31% and 25.02% for Nusselt number and pressure drop,
respectively, for a fixed magnetic field of 0.9% magnetite with 1.35% CNT hybrid nanofluid with a
Re of 500. Mehrali et al. [28] observed 4,, increase of 82% and entropy generation reduction of 41%
for graphene/Fe;0, ferro-nanofluid under a magnetic field. Sundar et al. [29] used water-dispersed
Fe,0,-TiO, in a mini-heat-sink and noticed at 2 vol%, the Nusselt number increase of 38.16% without
magnetic field and 88.93% under a magnetic field of 1000 Gauss.

A review of previous studies on the application of post-processing techniques to predict the heat
transfer coefficient, Nusselt number, and friction factor reveals that, in spite of a large number of
artificial neural networks (ANNSs), there is no particular study devoted to the determination of the
optimal ANN structure, including the optimal number of hidden layers, the optimal number of neurons
in each layer, the optimal weighting of the neurons, and the optimal transmission function. To present
the best structure among the evaluated structures, researchers have examined a limited number of
neural network structures. The current study investigated three ANN structures with varying numbers
of neurons in each hidden layer, combining various transfer functions in the first and second hidden
layers, and independently optimizing the transfer function, in addition to performing laboratory tests
to determine the heat transfer coefficient, Nusselt number, and friction factor of water dispersed Fe;O,-
TiO,/water hybrid nanofluids in a mini-heat-sink with the effect of magnetic fields. ANOVA ¢-test
analysis is used to determine the best ANN technique. Through the NN analysis, a regression equation
was also developed.

2 Artificial Neural Network

There has been a growing trend of nanofluid studies in the last few decades, and a large portion of
the research work has been dealing with nanofluid flow and heat transfer for enhanced performance of
thermal devices. In summary, most nanofluid studies related to the ANN were related to the properties.
Therefore, the ANNs were developed from previous experimental data on each nanofluid properties.
Now we are trying to extend the ANN for heat transfer data of nanofluids in a thermal device.
The procedure included the gathering of experimental data and performing the data fitting through
different ANN algorithms, and developing new polynomial correlations.
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2.1 Back Propagation Neural Network

The backpropagation neural network (BPNN) comprises an input layer hidden layers and an
output layer. BPNN is a specific type of feedforward ANN that utilizes the backpropagation algorithm
for training. Backpropagation enables error feedback and more effective weight updates, leading to
improved learning and performance in the network. Making a well-executed BPNN model is all
about finding the right training procedure and tweaking parameters like the transfer function, hidden
layer count, and hidden neuron count. The layout of back propagation neural network architecture is

presented in Fig. 1.
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Figure 1: Layout of back propagation neural network architecture

In this work, we examined three different backpropagation algorithms to train the ANN, and
they are Levenberg-Marquardt (LM), Broyden—Fletcher—Goldfarb—Shanno Quasi Newton (BFGS),
and Variable Learning Rate Gradient Descent (VLGD) methods.

(1) Levenberg-Marquardt trained ANN: Levenberg-Marquardt (LM) is an algorithm commonly
used for training neural networks, particularly in the context of solving nonlinear least squares
problems. The LM algorithm combines the features of Gauss-Newton and gradient descent
methods to achieve efficient and robust optimization. It aims to minimize the error between
the model’s predicted output and the actual output by adjusting the network’s weights.

Given a neural network with weights represented by the vector w, and a set of training data
(x;, v:), where, x; is the input and y; is the corresponding desired output, the goal is to find the optimal
weights w* that minimize the error between the network’s predicted output and the actual output.

Let f(y;, w) be the output of the neural network for input x; and weights w. The error between the
predicted output f(y;, w) and the desired output y; can be defined as:

E (w) =f (x;,w) — (1)

The overall error of the network can be computed as the sum of the squared errors over all training
examples:

E(w) = % x sum(E; (w)*) (2
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The LM algorithm aims to find the optimal weights w* that minimize this error. It does so by
iteratively updating the weights based on the gradients of the error function.

At each iteration, the LM algorithm calculates the Jacobian matrix J, which represents the partial
derivatives of the network’s output with respect to the weights. The Jacobian matrix is defined as:

9
J(Q,)) = Wf (x;, W) 3)

where, 7 is the index of the training example and j is the index of the weight.

The LM algorithm then solves the following linear system of equations:
U'T xJ+rxdiag(J"T xJ)) x Aw=J"T x E 4)
where, Aw is the weight update, A is the damping factor (a regularization parameter), J*T is the
transpose of the Jacobian matrix, and E is the vector of errors.

The weight update Aw is computed using various methods, such as direct inversion of the system
of equations or iterative methods like the conjugate gradient method.

Finally, the weights are updated as:
Wiew = Wola + AW (5)

The LM algorithm iteratively performs these steps until a stopping criterion is met, such as a
maximum number of iterations or reaching a desired level of error. By iteratively updating the weights
based on the gradients of the error function, the LM algorithm aims to find the optimal weights that
minimize the error and improve the network’s fit to the training data.

(1) BFGS Quasi-Newton trained ANN: The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algo-
rithm is a popular optimization method used in conjunction with backpropagation for training
neural networks. It belongs to the class of Quasi-Newton methods, which aim to approximate
the Hessian matrix (second derivative matrix) of the error function without explicitly com-
puting it. The key idea behind the BFGS algorithm is to construct an approximation of the
inverse Hessian matrix using information from the gradients of the error function at different
iterations. This approximation is updated iteratively to improve its accuracy.

At each iteration, the algorithm computes the gradient vector g, which represents the first
derivatives of the error function with respect to the weights. It then updates the weights by solving
the following equation:

H,. x Aw=—g (6)

where, H, is the estimate of the inverse Hessian matrix at iteration k, and Aw is the weight update.
The BFGS algorithm updates the inverse Hessian matrix estimate H, using the following formula:

Hyy = (I —rhoy x Sy x y[) x (1 = rhoy x y[ x S) + rho, x Sy x S (7)

where, rho, is a scalar that controls the curvature of the Hessian approximation, S, = Aw,, and
Vi = gis1 — & are the differences between consecutive weight updates and gradient vectors, respectively.

The weight update, Aw is then computed as:
Aw = —g/H, ®)
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The BFGS algorithm iteratively performs these steps until a stopping criterion is met, such as
reaching a desired level of error or a maximum number of iterations.

(ii) Variable Learning Rate Gradient Descent algorithms (VLGD) trained ANN: The variable

learning rate gradient descent algorithm adjusts the learning rate for each parameter in a
backpropagation neural network (BPNN) based on the historical gradients. It aims to give
more weight to parameters that have smaller updates and less weight to parameters with larger
updates. The key idea behind this is to scale the learning rate inversely proportional to the sum
of the squared gradients accumulated over all previous iterations. By doing so, it effectively
dampens the learning rate for frequently updated parameters and amplifies the learning rate
for parameters that have infrequent updates. It updates weight in three steps as follows:

(1) Initialization:

Initialize the weights and biases (9) of the BPNN with small random values, and Initial learning
rate n.

Initialize the sum of squared gradients for each parameter to zero.

(2) Training Iterations:

For each training example in the dataset.

Perform forward propagation to compute the network’s output y.

Calculate the error £ between the predicted output and the true output.

Perform backpropagation to compute the gradients of the weights and biases VE/V6.
For each parameter (weight or bias) in the network.

Accumulate the squared gradient by adding the square of the gradient with the sum of squared
gradients for that parameter G = G, + (VE/V6).

Compute the learning rate for the current parameter using the accumulated squared gradient:
learning rate = n/ (v/(G) +¢).
where the epsilon term is a small constant added to avoid division by zero.

Update the parameter using the learning rate and the corresponding gradient: 6 = 6 —
learning rate x (VE/V0).

(3) Repeat the training iterations until convergence or a maximum number of iterations is reached.

The flow chart of the ANN algorithm is given in Fig. 2. The input, output, and layers of the
proposed neural network architecture are mentioned in Fig. 3.
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3 Data for ANN Training

A vast number of processing units known as neurons make up the ANN. ANNSs are primarily
made up of neurons, which are linked to networks by a series of connections, each of which has a
distinct weight. The weight values of an ANN have a significant impact on its performance. The data
of Sundar et al. [29] related to the Fe;O,-TiO,/water hybrid nanofluids data were considered in this
study. The experimental setup and heat sink (test section) details of the work by Sundar et al. [29] are
reported in Fig. 4a and b, respectively.
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Figure 4: (a) Experimental setup, and (b) test section details (Sundar et al. [29])

In the ANN algorithms, Reynolds number, Prandtl number, volume concentrations, and magnetic
field were considered input parameters, whereas, heat transfer coefficient, Nusselt number, and friction
factor were taken as output parameters. The data of Sundar et al. [29] used for the ANN studies. As
already stated, the three ANN models (LM, BFGS, and VLGD) were used for training, testing, and
validation of the data. Over the entire data, 70% of data is used for training, 15% for testing, and the
remaining 15% of the data is used for validation.
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4 Results and Discussion

In this study, the three neural network algorithms—LM, BFGS, and VLGD were used to analyze
the output parameters. Through the algorithms, we determined the mean square error (MSE), root-
mean-square error (RMSE), and correlation coefficient (R?), which are defined as follows [19]:

1
Mean Square Error (MSE) = v Zi (P —u™ )2 )
N Exp o N Exp ANN
Correlation coefficient (R?) = 2 (v () - Z_)lz( ) (10)
w?l —u
S (ut — )2
Root-Mean Square Error (RMSE) = = ’ (11)
n

where, N is the number of experimental data, u,"” is the experimental data assigned to Nusselt number,

heat transfer, and friction factor, respectively, and u/*" is the Nusselt number, heat transfer, and friction
factor, respectively, analyzed by the algorithm. Moreover, u is the mean value of the output parameters,
n is the number of observations, and e is the mean value of error.

4.1 Heat Transfer Coefficient

Compared to traditional gradient-based methods, like gradient descent, the BFGS algorithm
can converges faster, and it can handle the problems more effectively. By approximating the inverse
Hessian matrix, it incorporates second-order information about the error surface, which improves
the optimization process. The choice between LM, BFGS, and VLGD methods depends on the
specific requirements of the neural network training task, such as the nature of the problem, memory
constraints, and computational resources available. The back-propagation network has four inputs
and one output layer for each analysis, those are connected by using hidden layers. The 10 hidden
layers were considered for all the output data. The weight and bias of each neuron in hidden layers
are optimized using three algorithms and their results are compared. To train the network, 70% of the
data is used for training and 30% is for validation and testing of the algorithm:s.

Fig. 5 shows the predicted heat transfer results using the LM method for Fe;O,-TiO, hybrid
nanofluids. The training state plot, best validation performance, and error histogram are reported
in Fig. 5a—c. From the figures, it can be observed that the gradient of the solution is 360.6037 at epoch
94. This indicates that the solution converged very smoothly without disturbing the data. Under the
same epoch of 94, the validation checks are 6, and the Mu value is 1 (Fig. 5a). The best validation
performance is 577.0856 as seen in Fig. 5b at epoch 88; also, it clearly shows the merging of training,
validation, testing, and the best performance meeting at epoch 88. The error histogram with 20 Bins
is shown in Fig. 5¢, and it indicates an error of —2.756.

The R? value of heat transfer predicted by the LM method is given in Fig. 6. The R? for the training
datais 0.9999 (Fig. 6a), the R* for the validation data is 0.99932 (Fig. 6b), the R? for test data is 0.99919
(Fig. 6¢), and R? for all the data is 0.99968 (Fig. 6d). The predicted data is almost approaching 1. The
MSE, RMSE, and R? values of heat transfer predicted by the LM method are listed in Table 1.
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Figure 6: LM results of R* for heat transfer coefficient: (a) training, (b) validation, and (c) testing, and
(d) all the data

Table 1: MSE, RMSE and R? of the predicted heat transfer by the LM algorithm

Data type Levenberg-Marquardt method

MSE RMSE R®
Trained data 1.91 x 107 13.8207 0.9999
Validation data 2.05 x 10° 45.2785 0.99932
Test data 2.68 x 10° 51.808 0.99919
All the data 8.47 x 10° 29.1083 0.99968

Fig. 7 shows the predicted heat transfer results through the BFGS method for Fe;O,-TiO, hybrid
nanofluids. The training state plot, best validation performance, and error histogram are reported in
Fig. 7a—c. From the figures, it can be observed that the gradient of the solution is 24604.1909 at epoch
891. This indicates that the solution converged very smoothly without disturbing the data. Under the
same epoch of 891, the validation checks are 6 (Fig. 7a). The best validation performanceis 12163.2425
as seen in Fig. 7b at epoch 885: also, it is clearly shown the merging of training, validation, testing,
and the best performance meeting at epoch 885. Error histogram with 20 Bins is given in Fig. 7¢, and
it indicates an error of —1.682.

The R* values of heat transfer predicted from the BFGS method are given in Fig. 8. The R* for
the training data is 0.99111 (Fig. 8a), R? for the validation data is 0.98667 (Fig. &b), R? for the testing
data is 0.98769 (Fig. 8c), and R? for all the data is 0.98898 (Fig. 8d). The predicted data is almost
approaching 1. The MSE, RMSE and R? values of heat transfer predicted by the BFGS method are
listed in Table 2.



142

FHMT, 2025, vol.23, no.1

gradient

Gradient = 24604.1909, at epoch 891 Best Validation Performance is 12163.2425 at epoch 885

(a) Train
——— Validation
——— Test

Best

s
o
)

Validation Checks =6, at epoch 891

Yy

val fail

- I

Resets = 0, at epoch 891

Mean Squared Error (mse)

£
=
e . , . . . - . = 10% . : - 2 A : A .
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
891 Epochs 891 Epochs
Error Histogram with 20 Bins ()

Instances

Errors = Targets - Outputs

(b)

[,

Figure 7: BFGS results of heat transfer coefficient: (a) training state plot, (b) best validation perfor-
mance, and (c) error histogram

@ 3500
+
= 3000
g
- 2500
& 2000
o
¥ 1500

-
£-1000
=

Training: R=0.99111 S Validation: R=0.98667
O Data @ £9 o
Fit N
+*
k]
O of
e
W
1
i
g L
1000 2000 3000 o 1000 2000 3000
Target Target

Figure 8: (Continued)



FHMT, 2025, vol.23, no.1 143

Test: R=0.98769 All: R=0.98898
~ o 3500
~ 3000 {[  © Data © /9 < o Data @ _4£¢
% Fit . + 3000 Fit :
L [}
o208 % 2500 |
g =
1 2000 2000 |
! 1500 7 i
- 4o = 1500
o o
S 1000 ¢ s 1000
o o A
1000 2000 3000 1000 2000 3000
Target Target

Figure 8: BFGS results of R? for heat transfer coefficient: (a) training, (b) validation, and (c) testing,
and (d) all the data

Table 2: MSE, RMSE and R? of the predicted heat transfer by the BFGS algorithm

Data type BFGS

MSE RMSE R?
Trained data 5.84 x 10° 76.4046 0.99111
Validation data 1.22 x 10* 110.2871 0.98667
Test data 1.15 x 10* 107.0409 0.98769
All data 7.64 x 10° 87.4013 0.98898

Fig. 9 indicates the predicted heat transfer results using the VLGD method for the Fe;0,-SiO,
hybrid nanofluids. The training state plot, best validation performance, and error histogram are
presented in Fig. 9a—c. From the figures, it can be observed that the gradient of the solution is
1548.8187 at epoch 102. This indicates that the solution converged very smoothly without disturbing
the data. Under the same epoch of 102, the validation checks are 6 (Fig. 9a), and the Mu value is 10.
The best validation performance is 7245.5869 as seen in Fig. 9b at epoch 126, and it clearly shows the
merging of training, validation, testing, and the best performance meeting at epoch 126. The error
histogram with 20 Bins is shown in Fig. 9¢, where the error is —7.639, and is defined as the difference
between targets and outputs.

The R? values of heat transfer predicted from the VLGD method are given in Fig. 10. The R?
for the training data is 0.98836 (Fig. 10a), R? for the validation data is 0.99076 (Fig. 10b), R? for test
data is 0.97794 (Fig. 10c), and R? for all the data is 0.98569 (Fig. 10d). The predicted data is almost
approaching 1. The MSE, RMSE and R? values of heat transfer predicted by the VLGD method are
listed in Table 3. Three neural network methods were used to predict the heat transfer data and it was
found that the LM method had superior predictability, when compared to the other two methods.
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Best Validation Performance is 7245.5869 at epoch 126
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Figure 10: VLGD results of R? for heat transfer coefficient: (a) training, (b) validation, and (c) testing,
and (d) all the data

Table 3: MSE, RMSE and R? of the predicted heat transfer by the VLGD algorithm

Data type VLGD

MSE RMSE R?
Trained data 7.63 x 10° 87.3684 0.98836
Validation data 7.25 x 10° 85.121 0.99076
Test data 2.28 x 10* 150.9391 0.97794
All the data 9859.21 99.2935 0.98569

4.2 Nusselt Number

The back-propagation network contains four input parameters and one output parameter (Nus-
selt number) and those are connected by using hidden layers. There were 10 hidden layers and the
weight and bias of each neuron in hidden layers are optimized using three algorithms and their results

are compared. The network was trained with 70% of the data and tested and validated with 30% of
the data.

Fig. 11 indicates the predicted Nusselt number data by the LM method for Fe;0,-TiO, hybrid
nanofluids. The training state plot, best validation performance, and error histogram are presented in
Fig. 11a—c. From the figures, it can be observed that the gradient of the solution is 0.028463 at epoch
46. This indicates that the solution converged very smoothly without disturbing the data. Under the
same epoch of 46, the validation checks are 6, and the Mu value is 0.0001 (Fig. 11a). The best validation
performance is 0.023671 as seen in Fig. 11b at epoch 40; also, it clearly shows the merging of training,
validation, testing, and the best performance meeting at epoch 40. The error histogram with 20 Bins
is shown in Fig. 11c, and it indicates an error of —0.001916.

The R? values of heat transfer predicted from the LM method are given in Fig. 12. The R? for the
training data is 0.99986 (Fig. 12a), the R? for the validation data is 0.9994 (Fig. 12b), the R? for the
testing data is 0.99883 (Fig. 12¢), and R? for all the data is 0.99954 (Fig. 12d). The predicted data is
almost approaching 1. The MSE, RMSE and R? values of the Nusselt number predicted by the LM
method are listed in Table 4.
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Gradient = 0.028463, at epoch 46
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Figure 11: LM results of Nusselt results: (a) training state plot, (b) best validation performance, and
(c) error histogram

Tfaini!\g: I'2=0.5'1998_6 Validation: R=0.9994

18 -

m r&

P = 1

S O Data @ < 18 O Data (b) 1

o 16| Fit b 4 Fit

+ 16

= 14 | ®

Q

o S 14

S 12| e

* o 12

- (=]

n 10 o

z u 10

§- 8 s 8

- o

O 6 5 i i i i i i
6 8 10 12 14 16 18 O 8 10 12 14 16 18

Target Target

Figure 12: (Continued)



FHMT, 2025, vol.23, no.1 147

o Test: R=0.99883 o © ' . AI!: R=.0.99954

o O Data (© S18i[ o Data

+ 167 Fit -

- S Fit

o = 16}

2 5

|§ ,;u 14

b4 o 12t

S S

" n 10¢

& 1

3 = 8

3 i

o 8 6 4 . . . . . .
8 10 12 14 16 6 8 10 12 14 16 18

Target Target

Figure 12: LM results of R? for Nusselt number: (a) training, (b) validation, and (c) testing, and (d) all
the data

Table 4: MSE, RMSE and R? of the predicted Nusselt number by the LM algorithm

Data type LM

MSE RMSE R?
Trained data 0.099242 0.31503 0.99986
Validation data 0.0537 0.23037 0.9994
Test data 0.29424 0.54244 0.99883
All the data 0.12168 0.34883 0.99954

Fig. 13 indicates the predicted Nusselt number data by the BFGS method for Fe,0,-TiO, hybrid
nanofluids. The training state plot, best validation performance, and error histogram are reported in
Fig. 13a—c. From the figures, it can be observed that the gradient of the solution is 0.26311 at epoch
41. This indicates that the solution converged very smoothly without disturbing the data. Under the
same epoch of 41, the validation checks are 6 (Fig. 13a). The best validation performance is 0.15048
as seen in Fig. 13b at epoch 35; it also shows the merging of training, validation, testing, and the best
performance meeting this epoch. The error histogram with 20 Bins is shown in Fig. 13c, and it indicates
an error of —0.02347.

The R? values of heat transfer predicted by the BFGS method are given in Fig. 14. The R* for
the training data is 0.99637 (Fig. 14a), R? for the validation data is 0.99666 (Fig. 14b), R? for the
testing data is 0.99739 (Fig. 14c), and R? for all the data is 0.9967 (Fig. 14d). The predicted data is
almost approaching 1. The MSE, RMSE and R? values of the Nusselt number predicted by the BEGS
method are listed in Table 5.
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Gradient = 0.26311, at epoch 41
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Figure 13: BFGS results of Nusselt number: (a) training state plot, (b) best validation performance,

and (c) error histogram
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Table 5: MSE, RMSE and R? of the predicted Nusselt number by the BFGS algorithm

Data type BFGS

MSE RMSE R?
Trained data 0.071516 0.26742 0.99637
Validation data 0.044892 0.21188 0.99666
Test data 0.049729 0.223 0.99739
All the data 0.64216 0.25341 0.9967

Fig. 15 indicates the predicted Nusselt number data by the VLGD method for Fe;0,-TiO, hybrid
nanofluids. The training state plot, best validation performance, and error histogram are presented in
Fig. 15a—c. From the figures, it can be observed that the gradient of the solution is 0.60196 at epoch
88. This indicates that the solution converged very smoothly without disturbing the data. Under the
same epoch of 88, the validation checks are 6 (Fig. 15a). The best validation performance is 0.98756
as seen in Fig. 15b at epoch 82; it clearly shows the merging of training, validation, testing, and the
best performance meeting at epoch 82. The error histogram with 20 Bins is shown in Fig. 15¢, and it
indicates an error of —0.0065.

The R? values of heat transfer predicted from the VLGD method are given in Fig. 16. The R* for
the training data is 0.9441 (Fig. 16a), R? for the validation data is 0.94829 (Fig. 16b), R? for the testing
data is 0.95395 (Fig. 16¢), and R? for all the data is 0.94501 (Fig. 16d). The predicted data is almost
approaching 1. The MSE, RMSE and R? values of the Nusselt number predicted by the BFGS method
are listed in Table 6.
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Figure 16: VLGD results of R? for Nusselt number: (a) training, (b) validation, and (c) testing, and (d)
all the data

Table 6: MSE, RMSE and R? of the predicted Nusselt number by the VLGD algorithm

Data type VLGD

MSE RMSE R?
Trained data 1.0041 1.002 0.9441
Validation data 0.95771 0.97862 0.94829
Test data 1.2944 1.1377 0.95359
All data 1.0408 1.0202 0.94501

From the predicted Nusselt number data, it can be noted that the LM and BFGS methods
have good accuracy in predicting the experimental data, when compared to the VLGD method. The
developed Nusselt number equation is given as follows.

Nu = 0.0056119 Re + 0.278653 Pr +2.193257 ¢ + 0.00168488B (12)
239 < Re < 1874;4.54 < Pr < 7.92%;0 < ¢ < 2%:250 < B < 1000G

The average deviation of Eq. (12) is 4.819%.

4.3 Friction Factor

The back-propagation network contains four input parameters and one output parameter (fric-
tion factor) and those are connected by using hidden layers. There were 10 hidden layers and the
weight and bias of each neuron in hidden layers are optimized using three algorithms and their results
are compared. The network was trained with 70% of the data and, tested and validated with 30% of
the data.

Fig. 17 indicates the predicted friction factor data by the LM method for Fe;O,-TiO, hybrid
nanofluids. The training state plot, best validation performance, and error histogram are presented
in Fig. 17a—c. From the figures, it can be observed that the gradient of the solution is 5.5142 x 10°
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at epoch 58. This indicates that the solution converged very smoothly without disturbing the data.
Under the same epoch of 88, the validation checks are 6 (Fig. 17a) and the Mu value is 1 x 10, The
best validation performance is 6.5761 x 10° as seen in Fig. 17b at epoch 52; also, it is clearly shown
the merging of training, validation, testing, and the best performance meeting at epoch 52. The error
histogram with 20 Bins is shown in Fig. 17¢, and it indicates an error of —0.000207.
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Figure 17: LM results of friction factor: (a) training state plot, (b) best validation performance, and
(c) error histogram

The R? values of heat transfer predicted from the LM method are given in Fig. 18. The R for the
training data is 0.99993 (FFig. 18a), the R? for the validation data is 0.99932 (Fig. 18b), the R? for the
testing data is 0.99987 (Fig. 18c), and R? for all the data is 0.99982 (Fig. 18d). The predicted data is
almost approaching 1. The MSE, RMSE and R? values of the Nusselt number predicted by the BFGS
method are listed in Table 7.



FHMT, 2025, vol.23

0.25

0.2

0.15

0.1

Output ~=1*Target + 0.00014

e
N
(4]

1*Target + 0.00011
=]
. =]
” [X)

=
-k

0.05

Output ~

,no.1

Training: R=0.99993

O Data
= Fit

(a)

005 01 015 0.2 0.25

Target

Test: R=0.99987

O Data
— Eit

(c)

005 01 015 0.2 0.25

Target

Output ~=1*Target + 0.00026

Output ~=1*Target + 0.00014

Validation: R=0.99932

025} ™5 pata (b)
—— Fit
0.2}
0.15¢
0.1¢}
0.05 . " _
005 01 045 02 0.25
Target
All: R=0.99982

025+| © Data

m— 1!

0.2t

0.15¢

017}

0.05

& \ " " A
005 01 015 0.2 0.25
Target

153

Figure 18: LM results of R? for friction factor: (a) training, (b) validation, and (c) testing, and (d) all

the data

Table 7: MSE, RMSE and R? of the predicted friction factor by the LM algorithm

Data type LM

MSE RMSE R?
Trained data 8.97E—-07 0.000947 0.99993
Validation data 5.13E-06 0.002265 0.99932
Test data 5.40E—-06 0.002325 0.99987
All the data 2.21E-06 0.001488 0.99982

Fig. 19 indicates the predicted friction factor data by the BFGS method for Fe;O,-TiO, hybrid
nanofluids. The training state plot, best validation performance, and error histogram are reported
in Fig. 19a—c. From the figures, it can be observed that the gradient of the solution is 0.00035905
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at epoch 47. This indicates that the solution converged very smoothly without disturbing the data.
Under the same epoch of 47, the validation checks are 6 (Fig. 19a). The best validation performance is
2.3442 x 107 was seen in Fig. 19b at epoch 41; also, it shows the merging of training, validation,
testing, and the best performance meeting at epoch 41. The error histogram with 20 Bins is shown in
Fig. 19¢, and it indicates an error of —0.00034.
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Figure 19: BFGS results of friction factor: (a) training state plot, (b) best validation performance, and

(c) error histogram

o

The R? values of heat transfer predicted from the BFGS method are given in Fig. 20. The R?
for the training data is 0.99991 (Fig. 20a), R? for the validation data is 0.99874 (FFig. 20b), R? for the
testing data is 0.99961 (Fig. 20c), and R? for all the data is 0.99976 (Fig. 20d). The predicted data is
almost approaching 1. Table 8 lists the MSE, RMSE, and R* values of the Nusselt number predicted
by the BFGS method.
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Figure 20: BFGS results of R? for friction factor: (a) training, (b) validation, and (c) testing, and (d)
all the data

Table 8: MSE, RMSE and R? of the predicted friction factor by the BFGS algorithm

Data type BFGS

MSE RMSE R’
Trained data 2.30E-05 0.004796 0.99991
Validation data 2.99E-05 0.005465 0.99874
Test data 3.21E-05 0.005666 0.99961
All data 2.54E—05 0.005041 0.99976

Fig. 21 indicates the predicted friction factor data by the VLGD method for Fe;0,-TiO, hybrid
nanofluids. The training state plot, best validation performance, and error histogram are presented
in Fig. 21a—c. From the figures, it can be observed that the gradient of the solution is 0.00017646
at epoch 237. It indicates that the solution converged very smoothly without disturbing the data.
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Under the same epoch of 237, the validation check is 6 (Fig. 21a). The best validation performance of
5.8924 x 107 is seen in Fig. 21b at epoch 230; also, it clearly shows the merging of training, validation,
and testing, and the best performance meeting at epoch 230. The error histogram with 20 Bins is shown
in Fig. 21c, and it indicates an error of —0.0002.

Gradient = 0.00017646, at epoch 237 7 Best Validation Performance is 5.8924e-05 at epoch 230

-2 10
g 10°F (a) ! Train (b)
% 3 ——— Validation
© 10° F 1 — Test
o - t
10 : : : : E 10?2 =
Validation Checks = 6, at epoch 237 e G
b : : - =
w
g 10°
m
=
@
Learning Rate =7.7193, atepoch 237 c
400 T T T T a 104
=
= 200
0 i L L 1 0-5 " " " "
0 50 100 180 200 0 50 100 150 200
237 Epochs 237 Epochs
Error Histogram with 20 Bins ()
I Training
25} [ validation
[ Test
~— Zero Error

(]
(=]

Instances
-
w

10r

S8382-3822383358EIRRTS

ebSocdceBoREIYERERTS

cocaocgoc06c6aaa6gaegesgagaoo

o Qo 2299 ce 22223 coco
Errors = Targets ~OGtputs

Figure 21: VLGD results of friction factor: (a) training state plot, (b) best validation performance, and
(c) error histogram

Table 2: values of heat transfer predicted by the VLGD method are given in Fig. 22. The R? for the
training data is 0.99531 (Fig. 22a), R? for the validation data is 0.99264 (Fig. 22b), R for the testing
data is 0.99751 (Fig. 22¢), and R? for all the data is 0.99486 (FFig. 22d). The predicted data is almost
approaching 1. The MSE, RMSE and R? values of the Nusselt number predicted by the BEFGS method
are listed in Table 9.

The developed friction factor equation is as follows:
£ =0.22—0.0001233 Re — 0.005452 ¢ + 0.00001719 B (13)
239 < Re < 1874:0 < ¢ < 2%;250 < B < 1000G
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Figure 22: VLGD results of R? for friction factor: (a) training, (b) validation, and (c) testing, and (d)

all the data

Table 9: MSE, RMSE and R? of the predicted friction factor by the VLGD algorithm

Data type VLGD

MSE RMSE R?
Trained data 4.54E—-05 0.006739 0.99531
Validation data 7.28E—05 0.008532 0.99264
Test data 3.49E—-05 0.005904 0.99751
All the data 4.79E—-05 0.006924 0.99486

The average deviation of Eq. (13) is 5.685%.
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4.4 ANOVA t-Test Analysis

In the present study, three algorithms were used to predict the heat transfer, Nusselt number, and
friction factor data. The best algorithm was analyzed using ANOVA and #-test. Initially ANOVA is
used to compare three models. If a significant difference is found using ANOVA, a r-test is evaluated
for LM vs. BFGS, LM vs. VLGD, and BFGS vs. VLGD to find the best algorithm. The ANOVA
analysis is performed using MSE and RMSE results for all training, testing, and validation datasets.
The ANOVA analysis suggested that the F-statistic is 64.7178526, with a corresponding p-value of
1.05E—09 for the Nusselt number. The p-value (1.05 x 10°°) is lower than the significance level of 0.05.
Since the p-value is lower than the significance level, we can reject the null hypothesis and conclude
that there is a statistically significant difference in the means of the dependent variable among the three
groups. Hence, the #-test analysis was conducted between LM vs. BEGS, LM vs. VLGD, and BFGS
vs. VLGD, and finally, draw the best algorithm based on the p-value.

Table 10 suggests that the one-tailed p-value (= 0.036238) is less than the significance level of 0.05
for LM vs., BFGS in comparison to LM vs. VLGD and BFGS vs. VLGD. There is a statistically
significant difference between the means of LM and BFGS, with the mean of LM being lower than
the mean of BFGS. Based on the #-test analyses, the best-performing method appears to be VLGD,
as it has the highest mean among the three methods and there is no statistically significant difference
between its mean and the means of the other two methods (LM and BFGS). The analysis suggests that
the VLGD method outperforms the LM method, as the mean of VLGD is significantly higher than
the mean of LM. However, the BFGS method also performs well, as its mean value is not significantly
different from that of VLGD.

Table 10: The ANOVA results of heat transfer coefficient

LM BFGS LM VLGD BFGS VLGD
Mean 739.0671 4684.846 739.0671 5992.919 4684.846 5992.919
Variance 1113960 28015950 1113960 62820384 28015950 62820384
Observations 8 8 8 8 8 8
Hypothesized 0 0 0
mean difference
df 8 7 12
t Stat —2.0678 —1.85847 —0.38819
P(T <=1) 0.036238 0.052724 0.352336
one-tail
t critical one-tail 1.859548 1.894579 1.782288
P(T <=1) 0.072477 0.105448 0.704672
two-tail
t critical two-tail 2.306004 2.364624 2.178813

Table 11 suggests that the one-tailed p-value for LM vs. VLGD and BFGS vs. VLGD is lower
than the significance level of 0.05. The LM and BFGS methods do not have a statistically significant
difference in their means, suggesting they perform similarly. The best-performing method appears to
be VLGD, as it has a significantly higher mean compared to both LM and BFGS, and the differences
are statistically significant.
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Table 11: The ANOVA results of Nusselt number

LM BFGS LM VLGD BFGS VLGD
Mean 0.267095 0.220501 0.267095 1.054441 0.220501 1.054441
Variance 0.031487 0.037623 0.031487 0.012323 0.037623 0.012323
Observations 8 8 8 8 8 8
Hypothesized 0 0 0 0
mean difference
df 14 12 11
t Stat 0.501313 —10.6395 —10.5543
P(T <=1) 0.31197 9.13E-08 2.15E—-07
one-tail
t critical one-tail 1.76131 1.782288 1.795885
P(T <=1) 0.623941 1.83E—07 43E-07
two-tail
t critical two-tail 2.144787 2.178813 2.200985

Table 12 shows that p-value is lower for LM vs. VLGD and BFGS vs. VLGD. There is a significant
difference between LM and VLGD as well as BFGS and VLGD. The best-performing method appears
to be VLGD, as it has a significantly higher mean compared to both LM and BFGS, and the differences
are statistically significant.

Table 12: The ANOVA results of friction factor

LM BFGS LM VLGD BFGS VLGD
Mean 0.00088 0.002635 0.00088 0.003537 0.002635 0.003537
Variance 1.06E—-06 7.84E—06 1.06E—06 144E—-05 7.84E—06 1.44E—05
Observations 8 8 8 8 8 8
Hypothesized 0 0 0
mean difference
df 9 8 13
t Stat —1.6638 1.9105 0.5412
P(T <=1) 0.065256 0.04622 0.298730
one-tail
t critical one-tail 1.833113 1.859548 1.770933
P(T <=1) 0.130512 0.092453 0.597456
two-tail

t critical two-tail 2.262157 2.306004 2.160368
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5 Conclusions

The backpropagation artificial neural network (ANN) methods of Levenberg-Marquardt (LM),
Broyden-Fletcher-Goldfarb-Shanno Quasi-Newton (BFGS), and Variable Learning Rate Gradient
Descent (VLGD) were used to predict the experimental data. The heat transfer, Nusselt number, and
friction factor data of water-based Fe;0,-TiO, magnetic hybrid nanofluids in a mini-heat sink were
considered for the analysis. The data selected as network input data is Reynolds number (range from
239 to 1874), volume concentration (range from 0% to 2%), and magnetic field (range from 250 to 1000
G). In this study, a total of 126 datasets were used. The ANOVA -test analysis was also performed to
understand the best ANN algorithm among the three networks. The main findings of the study are:

e The results given by the LM, BFGS, and VLGD algorithms for the heat transfer coefficient
indicate that: the MSE is 8.47 x 107, 7.34 x 10°, and 9859.21, respectively, the RMSE is 29.1083,
87.40, and 99.29, respectively, and the R? value is 0.99968, 0.98898, and 0.98569, respectively.

e The results given by the LM, BFGS, and VLGD algorithms for the Nusselt number indicate
that: the MSE is 0.12168, 0.64216, and 1.0408, respectively, the RMSE is 0.34883, 0.25341, and
1.0202, respectively, and the R? value is 0.99954, 0.9967, and 0.94501, respectively.

e The results given by the LM, BFGS, and VLGD algorithms for the friction factor indicate
that: the MSE is 2.21 x 10°, 2.54 x 107, and 4.79 x 107, respectively, the RMSE is 0.001488,
0.005041, and 0.006924, respectively, and the R? value is 0.99982, 0.99976, and 0.99486,
respectively.

e The LM algorithm predicts the data with high accuracy compared to the other two methods.

e The ANOVA t-test also shown, the LM method is the best method to predict the data, as
compared to the other two methods.

e By using the LM algorithm, polynomial regression equations were developed for the Nusselt
number and friction factor.

The study indicates that the ANN algorithms, in general, and particularly the LM algorithm, are
outstanding tools to provide for further understanding of the experimental data trend.
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