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ABSTRACT

This study employs the Buongiorno model to explore nanoparticle migration in a mixed convection second-grade
fluid over a slendering (variable thickness) stretching sheet. The convective boundary conditions are applied to
the surface. In addition, the analysis has been carried out in the presence of Joule heating, slips effects, thermal
radiation, heat generation and magnetohydrodynamic. This study aimed to understand the complex dynamics
of these nanofluids under various external influences. The governing model has been developed using the flow
assumptions such as boundary layer approximations in terms of partial differential equations. Governing partial
differential equations are first reduced into ordinary differential equations and then numerically solved using
the Runge-Kutta-Fehlberg method (RK4) in conjunction with a shooting scheme. Our results indicate significant
increases in Nusselt and Sherwood numbers by up to 14.6% and 23.2%, respectively, primarily due to increases
in the Brownian motion parameter and thermophoresis parameter. Additionally, increases in the magnetic field
parameter led to a decrease in skin friction coefficients by 37.5%. These results provide critical insights into
optimizing industrial processes such as chemical production, automotive cooling systems, and energy generation,
where efficient heat and mass transfer are crucial. Buongiorno model; velocity-slip effects; Joule heating; convective
boundary conditions; Runge-Kutta-Fehlberg method (RK4).
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Nomenclature

M Magnetic parameter
n Velocity power index parameter
β1 Second-grade fluid parameter
Ntp Thermophoresis parameter
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Nbm Brownian motion parameter
τ1 Velocity slip parameter
γ1 Thermal Biot number
γ2 Concentration Biot number
Pr Prandtl number
Sc Schmidt number
Πrd Radiation parameter
IH Internal heat generation parameter
Nu Heat transfer coefficient
Sh Mass transfer coefficient
CFx, CFy Frictional resistance coefficient
U0 Reference velocity
σ Stefan-Boltzmann constant
k1 Absorption coefficient
Ec Eckert number
J Geometric scaling factor
μf Dynamic viscosity of fluid
kf Thermal conductivity of fluid
cpf

Specific heat capacity at constant pressure
DB Brownian diffusion coefficient
DT Thermophoretic diffusion coefficient
ξ1 Slip coefficients
hf , hw Transport coefficients
T∞ External temperature
C∞ External concentration
Tw Boundary Temperature
Cw Boundary concentration
Q0 Heat generation parameter
B0 Magnetic field strength

χcp = (ρcp)p

(ρcp)f

Capacity ratio of particle to fluid

1 Introduction

Nanoparticles, such as particles or fibers dispersed in liquids such as water, oil, or ethylene glycol,
belong to an advanced group of solid-liquid substances that have brought significant advancements in
the field of thermal science. When mixed with nanoparticles that vary in size from 1 to 100 nanome-
ters, these fluids display altered characteristics. These changes affect thickness, mass, heat transfer
efficiency, and distribution patterns. As a result, they offer better rates of heat transfer compared
to base fluids. This makes them fascinating in engineering disciplines, including biomechanics, the
chemical and nuclear industries, and general engineering applications. However, despite the growing
interest and range of applications of nanofluids, their dynamics are still poorly understood. This
is especially true for the effects of magnetohydrodynamics (MHD) and surface irregularities on
nanofluids. The lack of knowledge in this area is particularly critical for applications that require
behavioral control. Our study focuses on bridging this gap in understanding by exploring the thermal
transfer processes and three-dimensional movement patterns in a nanofluid that consists of a second-
grade fluid. A nanofluid is a class of fluid consisting of a base liquid dispersed with nanoparticles
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exhibiting significant enhancement in heat transfer properties. Nanofluids were first postulated by
Choi et al. [1] as an unprecedented class of fluids. Since then, considerable advances have been made
to this basic notion, then in Eastman et al. [2] an exceptionally high effective thermal conductivity
for nanofluids containing ethylene glycol and copper nanoparticles, which he suggested offered
considerable potential for practical improvements in heat transfer applications. Ghalambaz et al. [3]
reported that non-uniform magnetic fields can increase the rates of heat and mass transfer in
MHD nanofluids inside a cavity. Rashid et al. [4] also found that nanoflow have the best behavior
for thermal conductivity followed by lamina-shaped nanoparticles MHD applications in micro-
nanotechnologies. Wahid et al. [5] studied hybrid nanofluids influenced by MHD and radiation case
which presented significant improvement in heat transfer, whereas Swain [6] analyzed ternary-hybrid
nanofluid problem considering viscous dissipation and Lorentz force for the convection flow of water
with copper-alumina-silver nanoparticles. Ramzan et al. [7] investigated ternary hybrid nanofluids in
kerosene oil and showed that their thermal conductivity can be significantly enhanced. Dash et al. [8]
reported that copper kerosene nanofluids are superior compared to their water-based counterpart in
terms of heat transfer enhancement. Bhandari et al. [9] optimized nanofluid flow over a shrinking
surface, highlighting the impact of Biot and Grashof numbers on heat transfer. Kotha et al. [10]
investigated bioconvection in MHD nanofluids with gyrotactic microorganisms, showing enhanced
heat and mass transfer. Hussain et al. [11] compared heat transfer in water-based MHD nanofluids,
finding Zn-water nanofluids superior to TiO2-water nanofluids.

Studies of non-Newtonian fluids are critical in fluid mechanics due to their unique rheolog-
ical characteristics, different from the predictable viscosities observed in Newtonian fluids [12].
Davis et al. [13] reported that these fluids exhibit intricate responses to external forces. Therefore,
they are essential in numerous industrial and scientific fields, such as biomedical engineering and
manufacturing. Second-grade fluids constitute an intriguing subclass of non-Newtonian fluids with
a wide variability ([14]). Khan et al. [15] studied the time fractional second-grade MHD dusty fluid
flow, highlighting the impact of heat and mass transfer rates on fluid dynamics. Entropy generation in
Williamson fluid flow was investigated by Qayyum et al. [16], considering that thermal radiation and
magnetic effects have a remarkable impact on entropy generation. Ahmed et al. [17] conducted a study
on heat and mass dynamics within the MHD boundary layer flow of a second-grade fluid, discovering
that chemical reactions and fluid oscillations reduced concentration levels. Anwar et al. [18] explored
the transient MHD behavior of Oldroyd-B fluids, factoring in slip conditions and Newtonian heating
effects to assess their influence on shear stress and heat distribution. Concurrently, Hayat et al. [19]
conducted a study on the dual transport phenomena and entropy effects in MHD-driven second-
grade nanofluid flows along a Riga plate, examining their contributions to thermal efficiency and
entropy-related heat transformation. Khan et al. [20] studied how activation energy and complex
heating and cooling processes impact the flow of Carreau nanofluids in environments influenced
by radiation, focusing on how these factors affect speed and temperature changes. Das et al. [21]
looked into how fluid flows with complex fluid properties, influenced by magnetic fields, chemical
reactions, and heat transfer, contribute to irreversible energy loss. Chu et al. [22] examined how energy
transfers in magnetically influenced nanofluids showing second-grade characteristics impact speed
and temperature, highlighting significant effects from intense radiation. Tanveer et al. [23] studied
electroosmosis in the peristaltic activity of MHD non-Newtonian fluid and illustrated the applications
in micro-fabrication and chemical industries. Heat and mass transport in MHD flow of a non-
Newtonian viscoelastic over a stretched magnetized surface were investigated by Aloliga et al. [24]
and observed how induced magnetization was affecting heat transfer and flow behavior.
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Boundary layer flows over-stretching sheets of various thicknesses are a topic of significant
interest owing to their numerous applications in material processing and industrial manufacturing. The
requirements for a fundamental understanding of fluid dynamics in flows of the boundary layer over
continuously extending surfaces were laid down in the pioneering work of Sakiadis [25]. This represents
a theoretical guideline for what has been experimentally demonstrated Tsou et al. [26]. Recent research
has significantly progressed the description of boundary layer flows over stretching sheets including
fluid dynamics, heat and mass transfer mechanisms as well as the influence of non-uniform sheet
thickness. Hussain et al. [27] analyzed the entropy generation in MHD convection flow of hybrid
nanofluids within a wavy enclosure, focusing on the impacts of heat generation and thermal radiation
on thermal efficiency. Lin et al. [28] examined the behavior of fractional nanofluids in a porous
medium, assessing the impact of magnetohydrodynamics and heat modifications on convective flow
and heat transfer efficiency. Sharma et al. [29] conducted a numerical study of fractional boundary
layer flow over a stretching sheet with variable thickness using a finite difference approach. Flow of
a nanoliquid with gyrotactic microorganisms through the boundary layer over a stretching sheet was
examined computationally by Hosseini et al. [30]. The nanofluid flow of variable thickness sheet with
non-uniform stretching and porous velocities was examined by Alam et al. [31]. Rehman et al. [32]
considered the influence of flow distribution on heat and mass transfer in MHD thin liquid film flow
over an unsteady stretching sheet with mixed convection. Fatunmbi et al. [33] analyzed convective
heat transfer in hydromagnetic micropolar fluid flow past an inclined nonlinear stretching sheet with
variable thermo-physical properties.

This study extends the application of the Buongiorno model to explore the dynamic interactions of
nanoparticle migration in a mixed convection second-grade fluid over a variable thickness stretching
sheet. A comprehensive range of external influences including Joule heating, slip effects, thermal
radiation, heat generation, and magnetohydrodynamic forces considered in the current assessment.
To the authors’ knowledge, applying the Buongiorno model to study nanoparticle migration in
second-grade fluids over variable-thickness sheets with Joule heating and convective boundaries is
unprecedented. The model was constructed based on flow assumptions, utilizing boundary layer
approximations represented by partial differential equations. These equations were transformed into
dimensionless form through appropriate scaling. Subsequently, the dimensionless equations were
numerically solved using MATLAB software. The results of physical factors are deliberated through
graphs as well as tables. This research not only broadens the theoretical framework but also enhances
practical applications in industries where precise control of thermal and fluid dynamics is critical.

2 Methodology

This study investigates the steady incompressible flow of a mixed convection second-grade fluid
over a variable thickness stretching sheet, modeled by z = J(x+y+c)0.5(1−n). Here, J acts as a geometric
scaling factor that modulates the sheet’s thickness. The parameter n influences surface configurations,
as illustrated in Fig. 1. Analyzing the effects of Joule heating, slip conditions, thermal radiation, heat
generation, and MHD forces, the study uses the Buongiorno model to examine nanoparticle behavior
and the impact on heat and mass transfer efficiency. The governing equations derived from boundary
layer approximations are dimensionless for numerical solution (see [34]):

∂xu + ∂yv + ∂zw = 0 (1)

u∂xu + v∂yu+w∂zu

= ν∂zzu
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+ αsg (u∂xzzu + w∂zzzu −∂xu∂zzu − ∂zu∂zzw − 2∂zu∂xzu − 2∂zw∂zzu)

− σcondB2
mag

ρ
u + g ((T − T∞)βT + (C − C∞)βC) (2)

u∂xv + v∂yv+w∂zv

= ν∂zzv

+ αsg (v∂xzzv + w∂zzzv − ∂xv∂zzv − ∂zv∂zzw − 2∂zv∂xzv − 2∂zw∂zzv)

− σcondB2
mag

ρ
v (3)

u∂xT + v∂yT + w∂zT = kf

ρcpf

∂zzT + χcp

(
DB∂zC∂zT + DT

T∞
(∂zT)

2

)

− 1
ρcpf

∂zqrad + Qga

ρcpf

(T − T∞) + σcondB2
mag

ρcpf

(
u2 + v2

)
(4)

u∂xC + v∂yC + w∂zC = DB∂zz C + DT

T∞
∂zzT (5)

Figure 1: Schematic of flow geometry

The velocity conditions at the surface, where the thickness is variable

u − uw − εv∂zu = 0, v − vw − εv∂zv = 0, w = 0 (6)

whereas boundary conditions for concentration and temperature are detailed as follows:

− kf ∂zT = hw(Tw − T), −DB∂zC = hf (Cw − C) (7)

at z → ∞, the following asymptotic conditions hold:

u → 0, v → 0, T → T∞, C → C∞, as z → ∞ (8)

The coefficients in the boundary conditions are defined as

εv =
(

2 − Rm

RM

)
ξ1 (x + y + c)

1−n
2 , ξ2 = ξ1

Pr
, ξ3 = ξ2

Pr
,

uw = U0 (x + y + c)
1−n

2 , vw = U0 (x + y + c)
1−n

2 ,
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Tw = T∞ + T0 (x + y + c)
1−n

2 , Cw = C∞ + C0 (x + y + c)
1−n

2

Qga = Q0 (x + y + c)
1−n

2 , Bmag = B0 (x + y + c)
n−1

2 , Ec = Ec∗ (x + y + c)
1−n

2

The equation for energy as (4) describes how the radiative heat flow qrad is determined by applying
the radiative transport equation [34,35].

qrad = −4σ 4

3k1

∂T 4

∂z4
(9)

Simply relying on the T 4 expansion around the temperature T∞ is insufficient to explain radiative
heat transfer fully. This overlooks some of these aspects. Therefore, we adjusted the energy equation
to account for radiative heat flux accurately (see [34,35]).

u∂xT + v∂yT + w∂zT = kf

ρcpf

∂zzT + χcp

(
DB∂zC∂zT + DT

T∞
(∂zT)

2

)

u∂xT + v∂yT + w∂zT = kf

ρcpf

∂zzT + χcp

(
DB∂zC∂zT + DT

T∞
(∂zT)

2

)

+ 1
ρcpf

∂z

(
4σ 4

3k4
1

4T 3∂zT
)

+ Qga

ρcpf

(T − T∞) + σcondB2
mag

ρcpf

(u2 + v2) (10)

We have implemented transformations to simplify the mathematical formulation [34,35].

ζ =
[
(n + 1) U 2

0

2νf

]1/2

(x + y + c)(n−1)/2 z, Ψ =
[

2νf U0

(n + 1)
1/2

]1/2

(x + y + c)(n+1)/2 F (ζ ),

Θ (ζ ) = T − T∞
Tw − T∞

, Φ (ζ ) = C − C∞
Cw − C∞

, u = U0 (x + y + c)n F ′ (ζ ), v = U0 (x + y + c)n G′ (ζ ),

w = −
[

2νf U0

(n + 1)
1
2

] 1
2

(x + y + c)
n−1

2

[
n + 1

2
(F (ζ ) + G (ζ )) + n − 1

2
ζ (F ′ (ζ ) + G′ (ζ ))

]
(11)

Here, ζ represents the similarity variable, and Ψ refers to the stream function. By applying the
transformation described in Eq. (11) to our set of equations and the specified boundary conditions,
we establish the corresponding nonlinear ordinary differential equations (ODEs).

(
n + 1

2

)
F (4) + β1 [2n (n + 1) G′ + (n + 1) (3n − 1) F ′] F ′′′ − 1

2

⎡
⎣(G + F)

n + 1
2 + (

n2 − 1
)
ηG′

⎤
⎦

−MF ′ + (λ1θ + λ2) −
[

nF ′G′ + nF ′′′2 − n + 1
2

(F + G) F ′′′
]

= 0

(12)

(
n + 1

2

)
G(4) + β1 [2n(n + 1)F ′ + (n + 1)(3n − 1)G′] G′′′

− 1
2

[
(F + G)

n+1
2 + (

n2 − 1
)
ηF ′′′

]
G(4) − MG′
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−
[

nG′F ′ + nG′′2 − n + 1
2

(G + F)G′′′
]

= 0 (13)

Pr
(

1 − n
n + 1

)
(F ′ + G′) � − (F + G) �′ + 2

n + 1
IH� + Nbm�′ + Ntp�

′2 + 2
n + 1

Ec
(
F ′2 + G′2)

+
(

1 + 4
3
�rad

)
�′′ = 0

(14)

Φ′′ + Sc
(

(F + G) Φ′ − 1 − n
n + 1

(F ′ + G′)Φ

)
+ Ntp

Nbm

Θ′′ = 0 (15)

The corresponding boundary conditions are

F (ζ ) = λ

(
1 − n
1 + n

)
(1 + τ1F ′′ (ζ )), F ′ (ζ ) = 1 + τ1F ′′ (ζ ),

Θ′ (ζ ) = −γ1 (1 − Θ (ζ )), G (ζ ) = λ

(
1 − n
1 + n

)
(1 + τ1G′′ (ζ )),

G′ (ζ ) = 1 + τ1G′′ (ζ ), Φ′ (ζ ) = −γ2 (1 − Φ (ζ )), at ζ = λ,

F ′ (∞) = 0, G′ (∞) = 0, Θ (∞) = 0, Φ (∞) = 0 (16)

To make it easier to analyze the intricate differential Eqs. (12)–(15), and related boundary
conditions (16) that were originally established across the range [λ, ∞) are now redefined in a different
domain [0, ∞). This change simplifies the procedure by moving the variable making it simpler and
more organized to solve these equations.

The transformed differential equations are given by(
n + 1

2

)
f (4) + β1 [2n(n + 1)g′ + (n + 1)(3n − 1)f ′] f ′′′

− 1
2

[
(g + f )

n+1
2 + (

n2 − 1
)
ηg′′′′

]
f (4) − Mf ′ + (λ1θ + λ2)

−
[

nf ′g′ + nf ′′2 − n + 1
2

(f + g) f ′′′
]

= 0 (17)

(
n + 1

2

)
g(4)+ β1 [2n(n + 1)f ′ + (n + 1)(3n − 1)g′] g′′′

− 1
2

[
(f + g)

n+1
2 + (

n2 − 1
)
ηf ′′′′

]
g(4) − Mg′

−
[

ng′f ′ + ng′′2 − n + 1
2

(g + f ) g′′′
]

= 0 (18)

Pr
(

1 − n
n + 1

)
(f ′ + g′) θ − (f + g) θ ′ + 2

n + 1
IHθ + Nbmθ ′ + Ntpθ

′2 + 2
n + 1

Ec(f ′2

+ g′2)

(
1 + 4

3
Πrad

)
θ ′′ = 0 (19)
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φ ′′ + Sc
(

(f + g) φ ′ − 1 − n
n + 1

(f ′ + g′) φ

)
+ Ntp

Nbm

θ ′′ = 0 (20)

The corresponding boundary conditions at the transformed domain are:

f (0) = λ

(
1 − n
1 + n

)
+ τ1f ′′ (0), f ′ (∞) = 0, f ′ (0) = 1 + τ1f ′′ (0), θ (∞) = 0,

θ ′ (0) = −γ1 (1 − θ (0)), g′ (∞) = 0, g (0) = λ

(
1 − n
1 + n

)
+ τ1g′′ (0), φ (∞) = 0,

g′ (0) = 1 + τ1g′′ (0), φ (0) = −γ2 (1 − φ (0))

(21)

The following parameters are introduced to thoroughly analyzed the behavior of flow and heat
and mass transfer effects in the systems:

M = σcondB2
0

ρf U0

, β1 = uwαsec

ν
, Pr = μf cpf

kf

, Πrad = 4σ 4T 3
∞

kf k∗
1

, Nbm = χcpDB (Cw − C∞)

νf

,

Ntp = χcpDT (Tw − T∞)

νf T∞
, Sc = νf

DB

, τ1 = 2 − Rm

Rm

ξ1 (x + y + c)0.5(1−n) ,

γ1 = hw

kf

(
2νf

(n + 1) u2
w

)0.5

, λ = J
(

(n + 1) U 2
0

2νf

)0.5

(x + y + c)0.5(n−1) , γ2 = hf

DB

(
2νf

(n + 1) u2
w

)0.5

(22)

Frictional resistance coefficient, mass transfer coefficient, and heat transfer coefficient are dis-
cussed below to determine the numerical solutions

Re
1
2
x CFx = 2

((
n + 1

2

) 1
2

(f ′′′ (0)

+ 2β1

[
g′ (0)

2 f ′′ (0) + (f ′ (0) + g′ (0))
2 + 2nf ′ (0) f ′′ (0)

+ nf ′ (0)
2 f ′′ (0) − n + 1

2
(f (0) + g (0)) f ′′′ (0)

]))
,

Re
1
2
y CFy = 2

((
n + 1

2

) 1
2

(g′′′ (0)

+ 2β1

[
f ′ (0)

2 g′′ (0) + (g′ (0) + f ′ (0))
2 + 2ng′ (0) g′′ (0)

+ ng′ (0)
2 g′′ (0) − n + 1

2
(g (0) + f (0)) g′′′ (0)

]))
,

NuxRe
− 1

2
x = −

(
1 + 4

3
Πrad

)(
1 + n

2

) 1
2

θ ′ (0), ShxRe
− 1

2
x = −

(
1 + n

2

) 1
2

φ ′ (0),

Rex = uw (x) (x + y + c)
νf
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3 Numerical Solution Approach

The dimensionless system, represented by ordinary differential equations (ODEs), is elucidated
using numerical techniques. This method transforms higher-order nonlinear differential equations into
first-order ones. The process is outlined below (refer to Fig. 2).

Figure 2: Schematic representation of the computational algorithm

Let’s introduce these variables: - u1 = f , u2 = f ′, u3 = f ′′, u4 = f ′′′ - v1 = g, v2 = g′, v3 = g′′, v4 = g′′′

- w1 = θ , w2 = θ ′ - z1 = φ, z2 = φ ′

u1′ = u2,

u2′ = u3,

u3′ = u4,

u4′ =
(

2
n + 1

)
⎛
⎜⎜⎜⎜⎝

−β1 [2n (n + 1) v2 + (n + 1) (3n − 1) u2] u4 + 1
2

⎡
⎣(v1 + u1)

n + 1
2 + (n2 − 1)ηv2

⎤
⎦ u4

+Mu2 − (λ1w1 + λ2) +
[

nu2v2 + nu2
3 − n + 1

2
(u1 + v1)u4

])
⎞
⎟⎟⎟⎟⎠,

(23)
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v1′ = v2,

v2′ = v3,

v3′ = v4,

v4′ =
(

2
n + 1

)((
− β1 [2n(n + 1)u2 + (n + 1)(3n − 1)v2] v4

+1
2

[
(u1 + v1)

n+1
2 + (n2 − 1)ηu2

]
v4 + Mv2

− (λ1w1 + λ2) +
[

nv2u2 + nv2
3 − n + 1

2
(v1 + u1) v4

]))
(24)

w1′ = w2,

w2′ = − 1
1 + 4

3
Πrad

(
Pr

1 − n
n + 1

(u2 + v2) w1 − (u1 + v1) w2 − 2
n + 1

IHw1 − Nbmw2

−Ntpw2
2 − 2

n + 1
Ec(u2

2 + v2
2)

)
(25)

z1′ = z2,

z2′ = − 1
Sc

(
(u1 + v1) z2 − 1 − n

n + 1
(u2 + v2) z1 − Ntp

Nbm

w2′

)
(26)

With boundary conditions

u1 (0) = λ

(
1 − n
1 + n

)
+ τ1u3 (0), u2 (∞) = 0, u2 (0) = 1 + τ1u3 (0), w1 (∞) = 0,

w2 (0) = −γ1 (1 − w1 (0)), v2 (∞) = 0, v1 (0) = λ

(
1 − n
1 + n

)
+ τ1v3 (0), z1 (∞) = 0,

v2 (0) = 1 + τ1v3 (0), z2 (0) = −γ2 (1 − z1 (0))

(27)

4 Results and Discussion

This investigation explores the complex behavior of nanofluid flow over a surface that is stretched
in a manner affected by different factors. It examines the interaction between the nanofluid and
irregular surface and the influence of external forces, such as magnetohydrodynamics (MHD) and
thermophoresis. This section analyzes the impact of different critical parameters on the velocity,
temperature, and concentration profiles. These parameters include the parameter M velocity power
index parameter n second-grade fluid parameter β1 and several thermal- and concentration-related
parameters. Understanding these variables is crucial for comprehending the complexities of nanofluid
behavior and its potential applications in engineering and technology. Fig. 3 illustrates how changes
in parameter M affect both the stretch-induced velocity profile f ′ and the cross-stretch velocity profile
g′. As the strength of the field increases, it causes a Lorentz force to act against the flow, resulting in
a decrease in f ′. Similarly, in the perpendicular direction (along g′, the cross-flow is also inhibited by
the magnetic forces, leading to a decrease in the velocity gradient perpendicular to the primary flow.
Fig. 4 shows how the velocity slip parameter τ1 affects both f ′ and g′. As τ1 increased, these velocity
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profiles decreased, indicating a slip at the boundary. A higher value of τ1 signifies an increased slip
at the boundary, enabling fluid flow with reduced resistance and consequently resulting in velocity
gradients for both f ′ and g′.

Figure 3: Effects of the magnetic parameter M on f ′ and g′

Figure 4: Effects of the velocity slip parameter τ 1 on f ′ and g′

The impact of the velocity index parameter, denoted by n on the velocity profiles caused by
stretching, represented by f ′ and g′ is depicted in Fig. 5. This parameter demonstrates that the behavior
of the velocity profile follows a power-law pattern. As the value of n increases, both f ′ and g′ exhibit a
trend indicating a significant variation in the velocity near the surface. With an increasing power index
parameter, the velocity gradients in both profiles became more pronounced, accelerating the flow from
the surface. Fig. 6 illustrates how the second-grade fluid parameter, β1, affects both f ′ and g′. As β1

increases, we consistently observe an increase in these velocity profiles. This trend can be physically
justified by the fluid’s enhanced elasticity which allows it to respond more dynamically to changes in



1410 FHMT, 2024, vol.22, no.5

flow and boundary interactions. The increase in β1 amplifies the fluid’s ability to store and release
elastic energy, leading to higher velocity gradients f ′ and g′.

Figure 5: Effects of the velocity power index parameter n on f ′ and g′

Figure 6: Effects of the second grade fluid parameter β1 on f ′ and g′

Fig. 7 shows the effects of increasing the thermal Grashof number λ1 on the velocity gradients
f ′ and g′. As λ1 increases, there is a clear increase in f ′, indicating that the buoyancy-driven flow
becomes more pronounced. This enhancement in f ′ suggests that the upward buoyant force, which aids
in driving the fluid flow against gravitational pull, is strengthened with higher λ1, thereby accelerating
the fluid more significantly in the primary flow direction. Conversely, while there is also an increase
in g′, its change is minimal, particularly in the curved regions of the flow, suggesting that the cross-
flow is less affected by buoyancy. The impact of the Eckert number Ec on the temperature profile
θ is exhibited in Fig. 8. An increase in Ec leads to a noticeable increase in the temperature profile θ .
This trend highlights the conversion of kinetic energy into thermal energy through viscous dissipation,
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underscoring a direct relationship between mechanical energy dissipation and temperature increase in
the fluid.

Figure 7: Effects of the thermal Grashof number λ1 on f ′ and g′

Figure 8: Effects of the Eckert number Ec on θ

The Fig. 9 demonstrates how the thermophoresis parameter Ntp and the Brownian motion
parameter Nbm impact the thermal boundary profile θ . As the value of Ntp increases, the value of θ .
This is because the stronger thermophoretic force pushes the nanoparticles away from the surface,
resulting in a wider thermal boundary layer. Similarly, when Nbm is higher, the energy transfer between
the particles and fluid increases, resulting in a boundary layer. Fig. 10 shows how an increase in
the thermal Biot number, γ1, affects the temperature profile θ . Higher γ1 indicates increased internal
resistance to heat conduction compared to external convective transfer, resulting in a pronounced
temperature gradient. This leads to a thicker thermal boundary layer as the surface quickly equilibrates
with the environment, while the interior heats up more slowly. The effect is a more distinct temperature
variation across the fluid, highlighting the importance of γ1 in thermal management.
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Figure 9: Effects of the thermophoresis parameter Ntp and the Brownian motion parameter Nbm on θ

Figure 10: Effects of the thermal Biot number γ 1 on θ

In Fig. 11, we observe the impact of the radiation parameter �rad on the layer. The thermal
boundary layer became more noticeable as the value of �rad increased. This is because of the increased
radiative heat transfer, which allows energy dissipation away from the boundary layer and creates a
wider temperature difference. As shown in Fig. 12, we can see how the heat-generation parameter IH

affects the profile θ of the boundary layer. The growth of this layer was caused by the thermal energy
generated within the fluid owing to the increase in IH . The internal heat generation within the enhanced
heat distribution resulted in a more extensive thermal boundary layer. This behavior highlights the
effect of internal heat sources on the flow properties.
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Figure 11: Effects of the radiation parameter �rad on θ

Figure 12: Effects of the internal heat generation parameter IH on θ

Fig. 13 shows how changes in Ntp and Nbm affect the behavior of the concentration boundary
profile φ. When the thermophoresis parameter Ntp increases, it also leads to an increase in φ, indicating
that the particles move intensely from the areas to colder ones. This occurs because, as Ntp increases,
the thermophoretic force becomes more significant, causing the nanoparticles to be displaced from the
surface, resulting in a concentration within the boundary layer. On the contrary, when we increased the
motion parameter Nbm we observed a reduction in the value of φ. This suggests that increased motion,
which refers to particle movement, leads to a more even distribution of the NPs and decreases the
concentration gradient near the surface. Fig. 14 demonstrates how an increase in the concentration
Biot number, γ2, influences the concentration profile. A higher γ2 suggests greater internal resistance
to diffusion compared to the surface mass transfer, resulting in a steeper concentration gradient at the
boundary. This differential leads to a more defined concentration boundary layer, as the surface adjusts
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to environmental changes more rapidly than the interior. Consequently, there is a more pronounced
variation in concentration throughout the fluid, underscoring the significance of γ2 in managing
diffusion processes.

Figure 13: Effects of the thermophoresis parameter Ntp and Brownian motion parameter Nbm on φ

Figure 14: Effect of the concentration Biot number γ 2 on φ

Our study examines the influence of various physical parameters on skin friction and heat and
mass transfer in fluid flow, as detailed in Tables 1 and 2. Table 1 highlights the effects of parameters
such as τ1, M, γ1, and λ on the skin friction coefficients CFx. It is evident that even minor adjustments
in the velocity slip parameter τ1 can cause significant changes in skin friction. For example, increasing
M from 0.22 to 0.88 results in a CFx decrease of 37.5%, indicating a strong influence of magnetic fields
on friction. Moreover, changes in the wall thickness parameter λ from 0.33 to 0.99 lead to a decrease
in CFx by 1.1%.
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Table 1: Numerical results of physical parameters for skin friction

τ1 M γ1 λ CFx

0.1 0.42 0.62 0.72 −2.2950
0.2 −2.0250
0.3 −1.8150
0.4 −1.6450

0.22 −1.7600
0.44 −2.0300
0.66 −2.2400
0.88 −2.4200

0.22 −2.0305
0.44 −1.7350
0.66 −1.5400
0.88 −1.4050

0.33 −1.6400
0.55 −1.6505
0.77 −1.6575
0.99 −1.6585

Table 2: Effects of parameter variations on nusselt and sherwood numbers

Nt Nb τ2 / Sc n Nu Sh

1 1 0.1/0.5 0.39 0.72163 0.44131
1.5 0.61465 0.53352
2 0.53404 0.59985
2.5 1 0.47286 0.64677

1.5 0.54185 0.54774
2 0.61799 0.48794
2.5 0.1/0.5 0.70025 0.44442

0.2/0.7 0.6762 0.54770
0.3/0.9 0.65176 0.62999
0.4/1.1 0.39 0.62475 0.68888

0.41 0.63374 0.69879
0.43 0.64273 0.70870
0.45 0.65172 0.71861

Table 2 analyzes the correlation between parameters Ntp, Nbm, γ1, Sc, and n with the heat and mass
transfer characteristics measured by Nusselt (Nu) and Sherwood (Sh) numbers. The Brownian motion
parameter Nbm and the thermophoresis parameter Ntp notably increase both Nu and Sh, with Nu seeing
increases up to 14.6% and Sh up to 23.2%. Increases in the Biot number (γ1) for heat transfer, reflecting
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improved heat transfer efficiency at the surface relative to the interior. Similarly, a rise in the thermal
Biot number (γ2) for mass transfer, enhances the Sherwood number (Sh), indicating more effective
convective mass transfer compared to diffusion. Similarly, an increase in the Schmidt number (Sc)
enhances the mass transfer rate as indicated by a rise in Sh, with percentage increases reflecting the
direct correlation with Sc. The velocity power index (n) also significantly affects these transfer rates,
with increases in n resulting in corresponding rises in both Nu and Sh by approximately 1.4%.

In Tables 3 and 4, we present a comparison of our study findings with the results from previous
research by Nadeem et al. [34], Kebede et al. [36], and Pop et al. [37]. These comparisons specifically
focus on the behaviors of f ′′(0), θ ′(0), and φ ′(0) for different values of n and Pr. Our results are
closely aligned with those reported in the literature, reinforcing the validity and precision of our
computational approach.

Table 3: Comparison of f ′′(0), −θ ′(0), and −φ ′(0) for varying n

n Kebede et al. [36] Pop et al. [37] Present study

0 0.4688 0.4228 0.2326 0.4649 0.8769 0.4690 0.4638 0.4630 0.2339
0.1 0.8023 0.5402 0.2669 0.8021 0.8027 0.5510 0.8077 0.5536 0.2656
0.5 1.0389 0.6369 0.2822 1.0389 1.0391 0.6371 1.0397 0.6375 0.2894
1 1.2326 0.7202 0.3063 1.2326 1.1279 1.2330 1.2368 0.7250 0.3011
5 1.5503 0.8648 0.3517 1.5568 0.8798 0.3531

Table 4: Comparison of heat transfer coefficient for various values of Pr

Pr Nadeem et al. [34] Present analysis

0.50 0.3258130 0.327898
1.00 0.5267410 0.528773
1.50 0.6918720 0.694984
2.00 0.8362780 0.838559

5 Conclusion

This research applies the Buongiorno model to investigate the behavior of nanoparticles in a mixed
convection second-grade fluid flowing over a variable thickness stretching sheet. Key features such as
Joule heating, slip effects, thermal radiation, heat generation, and magnetohydrodynamic forces are
considered. The main findings of this study are as follows:

• Increasing �rad enhances the temperature profile, expanding the thermal boundary layer.

• Increasing the thermal Biot number enhances the temperature gradient at the boundary, while
a rise in the concentration Biot number sharpens the concentration gradient at the boundary.

• Higher second-grade fluid parameters increase velocity profiles due to enhanced fluid elasticity.

• An increase in the velocity slip parameter reduces velocity gradients by lowering boundary
resistance.
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• Nusselt and Sherwood numbers increase by up to 14.6% and 23.2%, respectively, due to higher
Brownian motion and thermophoresis parameters.

• Skin friction coefficients decrease by 37.5% with increasing magnetic field strength.

Investigating different fluid models such as Oldroyd-B and Sisko fluids on complex surfaces could
provide further insights into non-Newtonian behaviors under stretching and magnetic influences. This
research could enhance applications in industries that demand precise fluid dynamics control.
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