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ABSTRACT

The present investigation centers on the impact of viscous dissipation and ohmic heating on the plume generated
by a line heat source under the impact of an aligned magnetic field. In this study, the flow model is adapted to
incorporate ohmic heating and viscous dissipation by including the respective terms in the energy equation. A
mathematical model is formulated as a system of coupled partial differential equations to analyze the flow problem.
Subsequently, a numerical solution is derived with stream function formulation for the system of coupled partial
differential equations, which transmutes it into ordinary differential equations. To achieve this, the numerical
properties of the problem are established through the utilization of the Shooting method in tandem with the
MATLAB tool bvp4c. The graphical representations of both missing and specified boundary conditions depict
the effects of the magnetic parameter, viscous dissipation variable, magnetic force parameter, Prandtl number, and
magnetic Prandtl number. These are accompanied by a discussion of their respective physical implications. The
observed results claimed that the velocity, current density, and temperature distribution decrease for enhancing
magnetic parameters. Meanwhile, the skin friction and magnetic flux drop while the heat transfer rate increases
with an increment in magnetic parameters. These fluid flow and heat transfer characteristics were observed to
decrease for increasing viscous dissipation. The current work is novel in incorporating ohmic heating viscous
dissipation in energy equations coupled with Max-well and magnetic induction equations.
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Plume; natural convection; viscous dissipation; aligned magnetic field; ohmic heating; and horizontal line heat
source

Nomenclature

k Fluid’s thermal conductivity
f Dimensionless stream function
g Gravitational acceleration (ms−2)
Grx Grashof number as defined in Eq. (10)
x Vertical height above the line source (m)
y Horizontal distance from the plume’s mid-plane (m)
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N Variable as defined by Eq. (12)
n Exponent defined by Eq. (20)
u Velocity component in x direction
v Velocity component in y direction

S Magnetic force parameter;
μmB0

2

ρx2

Pr Prandtl number
Bx, By Dimensional horizontal and vertical component of magnetic field,
B0 Strength of magnetic field (Tesla = kgs−2A−1)
T Temperature of fluid (K)
Q Heat generated by the line heat source (J)
T0 Temperature at the mid-plane of plume surface (K)
T∞ Temperature at the undisturbed fluid far away from the surface (K)
Cp Specific heat at constant pressure (Jkg−1K−1)

E Parameter of viscous dissipation;
4gβx

Cp

M Magnetic parameter;
σB0

2x2

μ

(
Grx

4

)−( 1
2 )

Greek Symbols

ρ Density of the fluid (kgm−3)
μm Magnetic-permeability
νm Magnetic-viscosity (m2s−1)
σ Electrical conductivity
β Coefficient of volumetric thermal expansion (K−1)
ν Kinematic viscosity of fluid (m2s−1);

μ

ρ
μ Fluid’s dynamic viscosity (kgm−1s−1)
η Similarity variable defined by Eq. (9)
α Thermal diffusivity (m2s−1)
γ Magnetic Prandtl number;

ν

νm

ψ Stream function as defined by Eq. (9)
ϕ Transformed stream function for magnetic field as defined by Eq. (9)
φ Dimensionless stream function for magnetic field
θ Dimensionless temperature function defined by Eq. (11)

Subscripts

0 In the mid-plane
x Parameter dependent on distance x
∞ Far away from the surface, in the uninterrupted fluid

Superscripts
′ Derivative w.r.t η
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1 Introduction

In environmental monitoring and remediation, we encounter plumes from industrial stacks and
wild fires. Thermal plumes generated by energy sources can help track oil spills in water bodies, aiding
in the deployment of containment and cleanup measures. Plume behavior is incorporated into climate
models to predict the impact of various energy sources on global climate patterns. Plume dynamics
are crucial in designing effective ventilation systems for buildings, ensuring proper airflow, and
maintaining indoor air quality. Plumes from volcanic eruptions are monitored to predict the dispersion
of ash and gases, aiding in disaster response and evacuation planning. These are a few of the important
real-life applications of the plumes in different fields. Incorporating Ohmic heating into a system
allows for considering electrical resistance effects and the consequent transformation of electrical
energy into heat. By incorporating Ohmic heating, we aim to gain a thorough understanding of energy
transfer and heat generation within the system. Ohmic heating has applications in various fields such as
food processing, chemical synthesis, biomedical applications, environmental remediation, and material
fabrication. Viscous dissipation, alternatively termed viscous heating or the effects of viscous heating,
describes the process whereby mechanical energy transforms into heat owing to internal friction
within a flowing fluid. Viscous dissipation is pivotal across a broad spectrum of engineering and
scientific domains, impacting fluid flow dynamics, temperature dispersion, and heat transfer rates in
various applications.

Zeldovich [1] is credited as the earliest known researcher to describe the natural convective plume
generated by a horizontal line energy source. Sparrow et al. [2] conducted a comprehensive study
on heat transfer values, analyzing surfaces under both isothermal and non-isothermal conditions.
In contrast, Glauret [3] investigated boundary layer separation under varying electrical conductivity
conditions, ranging from small to large values, when subjecting a flat plate to a uniform magnetic
field. Notably, one of the significant findings suggested the potential convergence towards zero of the
missing conditions in the flow problem. Gebhart et al. [4] provided numerical results across a diverse
range of Prandtl numbers and viscous dissipation. They also discussed several similar aspects of flow
characteristics for convective plumes and flow over surfaces.

The researchers Gebhart et al. [5] scrutinized the limitations and refined numerous redundancies
linked with the boundary conditions of a horizontal line energy source, resulting in the generation
of a laminar buoyancy-driven convective plume. Welling et al. [6] delved into an experimental
examination of the natural convective plume originating from a vertical cylinder serving as a heat
source. Additionally, they analyzed temperature data and velocity fluctuations to gain deeper insights
into the dynamics of the turbulent convective plume. Lithgow-Bertelloni et al. [7] focused their study
on investigating the thermal plume across a range of Rayleigh numbers, spanning from the shallowest
boundary layer to the convective plumes deep beneath the Earth’s mantle. Ashraf et al. [8] investigated
the influence of radiation on a magnetized porous plate subjected to a fluctuating magnetic field
adjacent to the surface, along with a steady mixed convective flow. Sharma et al. [9] analyzed the
consequences of viscous dissipation, along with Ohmic heating and variable thermal conductivity, on
buoyancy-induced convective flow under the influence of a magnetic field. Hunt et al. [10] provided
solutions to the conservative equations of plumes under distinct scenarios, elucidating the advantages
derived from these solutions. The outcome of radiation on irregular hydro-magnetic buoyancy induced
convective flow utilizing a magnetized plate was carried out by Ashraf et al. [11]. Their study examines
the variations in intensity of surface temperature along with magnetic field about a mean.

Hernandez [12] employed the SIMPLER approach to address the comprehensive numerical
modeling of thermal plumes within a cavity of an elongated configuration. Jackson et al. [13]
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underscored the importance of the structure of a subglacial outlet in governing plume movements.
Wang et al. [14] investigated the scaling relations of thickness and velocity for the mountain’s initial
plume and its thermal boundary layer. Focusing on the Brownian motion and thermophoresis as
governing factors, the dynamics of the boundary layer of nanofluids at various places, like the sphere
and the plume surrounding it, were examined by Ashraf et al. [15]. Ahmad et al. [16] concentrated on
observing the influence of viscous dissipation and catalyst-induced chemical reactions (which release
energy) on buoyancy-driven convective energy transfer.

Khan et al. [17] disclosed the findings from their numerical analysis of the time-dependent, laminar
flow of nanofluid around a sphere, both within the plume area and in its vicinity. Fan et al. [18]
studied the transitions of plumes over a heated horizontal surface. Their findings indicated that plume
flow occurred when the Froude number exceeded the critical Froude number, with the opposite trend
observed for dome flow. Ullah et al. [19] conducted an analysis of oscillating forced and free convective
flow around a horizontal cylinder. Their study comprehensively addressed aspects such as energy
transmission, current density, and oscillating skin friction. The recent advancements in understanding
the composition and morphology of plumes, as well as their role in convective processes within the
global mantle, were investigated by Koppers et al. [20]. They also explored the potential influences of
mantle plumes on climate and other related fields.

Ahmad et al. [21] and Ashraf et al. [22] conducted research on catalyst-assisted exothermic
chemical reactions occurring on curved surfaces. Ashraf et al. incorporated these interactions with
magnetic fields in their subsequent investigations. Abbas et al. [23] examined the Peristaltic mecha-
nism of micropolar Casson fluid focusing on thermal transportation involving viscous dissipation.
Ashraf et al. [24] investigated the influence of viscous dissipation and magnetohydrodynamics on the
periodic energy transfer along a cone positioned within porous media. Moreover, Ashraf et al. [25,26]
analyzed the influence of the nanofluids in the plume zones. Further, he examined the influence of
thermal radiation, along with Brownian motion and thermophoresis, on the behavior of dense gray
nanofluid around the surface of a sphere and within its plume area. Li et al. [27] investigated the effects
of viscous dissipation, chemical reactions, and Ohmic heating on unsteady radiative flow. Kumar et
al. [28] explored the influences of Ohmic heating and an aligned magnetic field on the dynamics of
nanofluid’s flow among two coaxial cylinders, considering the rotational effect. Rehman et al. [29]
performed a stability analysis prioritizing the shape factor of radiation on a hybrid nanofluid.
Thabet et al. [30] examined the thermophoretic diffusion and thermal enhancement, with Brownian
motion effects on micropolar nanofluid under the influence of magnetic field over an inclined surface.
Where in the most recent studies, Taghavi et al. [31] studied the free convective influences in the
insulated layers within cryogenic vessels for storage. Ajibade et al. [32] analyzed the free convective
flow under the impacts of viscous dissipation and Darcy in a partially occupied vertical tube. The
impacts of viscous dissipation along with Ohmic heating were examined by Ajithkumar et al. [33] on
peristaltic convective flow for non-Newtonian fluids in porous media. Anwar et al. [34] investigated
the behavior of a magnetized plume considering a non-Newtonian Casson fluid with variable thermal
conductivity and solar radiation.

We have considered the natural convective plume by following Gebhart et al. [5]. To address
the research gap, we got inspiration from the widespread industrial utilization of magnetic fields
and applied the aligned magnetic field to a plume. Inspired by plume dynamics and the widespread
industrial utilization of magnetic fields, our research is structured to mitigate the excessive heating
within the plume’s system. Our aim is to observe the fluid and heat transfer characteristics of the
plume generated by the horizontal line energy source. This plume system is under the impact of an
aligned magnetic field. We have incorporated Ohmic heating along with viscous dissipation to observe
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the heat generation and transfer in the plume system. The preceding work in the literature was on
plume generation due to line heat sources. This novel work combines the use of an aligned magnetic
field, which helps mitigate excessive heating within the plume’s system. The novelty also includes the
presence of Ohmic heating and viscous dissipation. The objective of this study is to comprehensively
describe and analyze the results obtained from an in-depth investigation into the complex interactions
between thermal phenomena and fluid flow within such intricate structures.

2 The Geometric Scheme and Governing Mathematical Model

The analysis concerns a steady, incompressible, viscous, two-dimensional flow driven by natural
convection with laminar characteristics occurring above an infinitely extended horizontal line heat
source. This configuration is analyzed with the inclusion of an aligned magnetic field, alongside
considerations for viscous dissipation and Ohmic heating. Ohmic heating occurs when electric currents
encounter resistance in a conductive medium, leading to the conversion of electrical energy into heat
energy. In this context, it contributes to the overall thermal behavior of the system, particularly when
combined with the presence of an aligned magnetic field. Meanwhile, viscous dissipation refers to
the conversion of mechanical energy into thermal energy due to internal friction or the viscosity of
the fluid. As the fluid moves, heat is generated as a result of the friction between its layers. The
geometric arrangement and the coordinate system of the flow model are depicted in Fig. 1. The
schematic diagram shows that the x-axis corresponds to the plume’s surface, while the y-axis is oriented
perpendicular to it. Concerning [5,9,11], the plume system is considered with the inclusion of the
magnetic field along with Ohmic heating and viscous dissipation. The magnetic field’s component
Bx is taken along the surface of the plume and By is perpendicular to the surface. The continuity
Eq. (1), momentum Eq. (2), and energy Eq. (5) are utilized to model the generated plume, as described
in Reference [5]. Eq. (2) is adjusted by incorporating a term for the aligned magnetic field following
[11]. Additionally, Maxwell Eq. (3) and magnetic diffusion Eq. (4) of the flow model facilitate the
magnetic convection within the plume’s system, as indicated by Reference [11]. The viscous dissipation
and Ohmic heating terms are added to the energy equation following [9]. Taking into account
the assumptions mentioned above, the mathematical model is articulated in terms of conservative
equations as follows:

The boundary layer equations are:

∂u
∂x

+ ∂v
∂y

= 0, (1)

ρ

(
u
∂u
∂x

+ v
∂u
∂y

)
= μ

∂2u
∂y2

+ μm

(
Bx

∂Bx

∂x
+ By

∂Bx

∂y

)
± gβρ (T − T∞) , (2)

∂Bx

∂x
+ ∂By

∂y
= 0, (3)

u
∂Bx

∂x
+ v

∂Bx

∂y
− Bx

∂u
∂x

− By

∂u
∂y

= νm

∂2Bx

∂y2
, (4)

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2

+ μ

ρCp

(
∂u
∂y

)2

+ σB0
2u2

ρCp

. (5)
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Figure 1: Schematic geometry

The pivotal boundary conditions dictating the boundary-layer fluid flow of the plume consist of:

∂u(x, 0)

∂y
= v (x, 0) = 0, Bx (x, 0) = Bx (x), By (x, 0) = 0,

∂T(x, 0)

∂y
= 0, at y = 0, (6)

∂u(x, ∞)

∂y
→ 0, Bx (x, ∞) → 0, T (x, ∞) → T∞, as y → ∞.

Eqs. (1) to (5) combined with boundary conditions (6), involve the velocity components u and v,
dynamic viscosity μ of fluid, magnetic permeability μm, coefficient of volumetric thermal expansion β,
fluid density ρ, thermal diffusivity α, magnetic field strength B0 and magnetic viscosity νm. In boundary
conditions (6), B0(x) is denoted as B0(x) = 4B0ν

x2

(
Grx

4

)1/2
that designates magnetization of the surface.

Since the plume is generated in the x-direction and an aligned magnetic field is applied in the same
direction, B0(x) signifies the magnetization of the plume’s surface along the x-axis. Eq. (6) stipulates
that the skin friction ∂u

∂y
at both the plume’s surface and far from the surface in the undisturbed fluid

is zero. Additionally, according to Eq. (6), the heat transfer rate ∂T
∂y

at the plume’s surface is also zero.
These assumptions imply that natural convection occurs on a surface that is adiabatic. Such surfaces,
being thermally insulated, inhibit heat exchange between their opposing sides.

3 Stream Function Formulation

To solve the aforementioned flow model, I have chosen the method of transformation using
similarity variables. This method entails converting the system of Partial Differential Equations
(PDEs) into Ordinary Differential Equations (ODEs). The velocity components u and v are governed
by the continuity Eq. (1), which is expressed in terms of the stream function ψ(x, y) as follows:

u = ∂ψ

∂y
, v = −∂ψ

∂x
. (7)

The function ϕ(x, y) fulfills the equation governing the divergence-free conduction of the
magnetic field (3), as follows:
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Bx = ∂ϕ

∂y
, By = −∂ϕ

∂x
. (8)

The Eqs. (2), (4), and (5) along with the boundary conditions (6) are transformed into a set of three
ordinary differential equations, accompanied by specified boundary conditions. This transformation
is facilitated by introducing the similarity variable η(x, y), the stream function ψ(x, y), and the
transformed magnetic field stream function ϕ(x, y), as elucidated in Reference [5] is given as follows:

η = y
x

(
Grx

4

) 1
4

, ψ = 4ν

(
Grx

4

) 1
4

f (η) , ϕ = 4B0ν

x

(
Grx

4

) 1
4

φ (η) (9)

where

Grx = gβx3(T0 − T∞)

ν2
. (10)

The dimensionless temperature ratio, denoted as θ(η), is expressed as follows:

θ(η) = T − T∞
T0 − T∞

. (11)

Primarily, a power-law relationship of the form Nxn is assumed to describe the variation of plume
midline temperature with respect to x, such that:

T0 − T∞ = Nxn. (12)

The subsequent temperature distribution in the region is determined by:

T − T∞ = Nxnθ(η). (13)

By substituting the similarity variables defined in Eqs. (9) through (11) and (13) into Eqs. (1)
through (6), Eqs. (2), (4), and (5) are transmuted as follows:

f ′′′ − (2n + 2) f ′2 + (n + 3) ff ′′ + S (n − 1)
[
2φ ′2 − φφ ′′] ± θ = 0 (14)

φ ′′′ + γ [(n + 3) f φ ′′ + 4f ′φ ′ − (n − 1) φf ′′] = 0, (15)

θ ′′ + Pr
[
(n + 3) f θ ′ − 4nf ′θ + E (f ′′)

2 + EM (f ′)
2] = 0 (16)

In the Eqs. (14)–(16), S = μmB0
2

ρx2 is magnetic force parameter which is the ratio of magnetic forces
to inertial forces, γ = ν

νm
is magnetic Prandtl number, and Pr = ν

α
is Prandtl number, respectively.

While in Eq. (16) E = 4gβx

Cp
is parameter of viscous dissipation, where M = σB0

2x2

μ

(
Grx

4

)−( 1
2 )

is Magnetic
parameter and Grx defined in Eq. (10). Where, “ ′ “ prime denotes derivative with respect to η.

The boundary conditions undergo transformation as below:

At η = 0; f ′′ (0) = f (0) = 0, φ ′ (0) = 1, φ (0) = 0, θ ′ (0) = 0, (17)

As η → ∞; f ′′(∞) → 0, φ ′(∞) → 0, θ(∞) → 0.

The energy transported by convection across a horizontal plane (at x) within a plume is denoted
as (refer to [5]):
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Q = ρCp

[∫ ∞

−∞
(T − T∞) udy

]
. (18)

The Eq. (18) sums up the heat transfer effects over the entire y-direction perpendicular to the
plume surface. Here, the velocity component u responsible for how heat is carried away from the heat
source Q.

The derivative of the similarity variable from Eq. (9) with respect to y is computed as:

dη

dy
= 1

x

(
Grx

4

)1/4

,

�⇒ x
(

Grx

4

)− 1
4

dη = dy.

Upon substituting the above derived expression and similarity variables into Eq. (18), we obtain:

Q = ρCp

[∫ ∞

−∞
Nxnθ (η)

{
4ν

x
f ′(η)

(
Grx

4

) 1
2
}

x
(

Grx

4

)− 1
4

dη

]
,

Q = 4ρνNxnCp

(
gβNxn+3

4ν2

)1/4 ∫ ∞

−∞
f ′ (η) θ (η) dη,

Q = 4NρνCpx
5n+3

4

(
gβN
4ν2

)1/4 ∫ ∞

−∞
f ′ (η) θ (η) dη. (19)

This Eq. (19) is the transformed expression of the heat source Eq. (18) by utilizing the similarity
variable defined in Eq. (9), and using Eq. (13). This transformation is carried out to find the value
for exponent n. The exponent n is taken as zero and 1

5
, for an isothermal surface (where temperature

remains unchanged) and uniform heat flux state (where temperature changes uniformly), respectively,
where Q ought to be proportioned to x. Since Q (representing heat generated solely by the line source)
is independent of x, in this case, the value of n is determined by referencing [2,5] and following Eq. (19)
as below:

x
5n+3

4 = 1 = x0.

Using the reverse engineering mechanism, as mentioned earlier, the value of n is given as below:

n = −3
5

. (20)

Substituting this value of n mentioned in Eqs. (20), (14)–(16) become as:

f ′′′ − 4
5

f ′2 + 12
5

ff ′′ − 8
5

S
[
2φ

′2 − φφ ′′] ± θ = 0, (21)

φ ′′′ + γ

[
12
5

f φ ′′ + 4f ′φ ′ + 8
5
φf ′′

]
= 0, (22)

θ ′′ + Pr
[

12
5

(f θ ′ + f ′θ) + E (f ′′)
2 + EM (f ′)

2

]
= 0. (23)
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Accompanied by the specified boundary conditions (17) as follows:

At η = 0; f ′′ (0) = f (0) = 0, φ ′ (0) = 1, φ (0) = 0, θ ′ (0) = 0,

As η → ∞; f ′′(∞) → 0, φ ′(∞) → 0, θ(∞) → 0.

4 Methodology of Computation

For computational assessment, I chose to employ the well-established Shooting technique along-
side MATLAB’s bvp4c method. This allowed us to address the system of third-order differential
equations detailed in Eqs. (21) to (23) while ensuring adherence to the boundary conditions specified
in (17). The bvp4c function within MATLAB stands out as a reliable tool for tackling boundary value
problems (BVPs) linked with ODEs. Its application combines numerical techniques, with particular
emphasis placed on leveraging the finite difference method (FDM) as the underlying solver. In the
domain of the FDM, the shooting technique stands out as a crucial method employed by bvp4c
to handle BVPs effectively. Fundamentally, the shooting technique converts a given BVP into an
initial value problem (IVP), enabling the use of conventional ODE solvers. This conversion requires
establishing an initial estimate for the boundary conditions and initiating an iterative process to
iteratively enhance the solution until it matches the specified boundary conditions. Essentially, the
shooting technique initiates trajectories from the initial condition towards the boundary conditions,
making adjustments in the initial guess needed to ensure convergence. The optimal step sizes and
the values of η at infinity are carefully chosen based on appropriate selections. The convergence
criterion in the bvp4c tool within MATLAB hinges significantly on the initial guess quality furnished
by the user. Forecasting a precise initial guess for the boundary conditions can pose challenges,
especially in scenarios involving complex problems characterized by nonlinearities or discontinuities.
To overcome this obstacle, substitutions are frequently utilized to convert the given boundary value
problem (BVP) into a set of first-order ordinary differential equations (ODEs). Accordingly, the
subsequent replacements are utilized to convert the mentioned equations into first-order differential
equations, as below:

F = f ′, G = f ′′, H = φ ′, I = φ ′′, J = θ ′ (24)

Following this, the ensuing first-order equations are formulated as:

G′ =
[

4
5

F 2 − 12
5

fG
]

+ 8
5

S
[
2H2 − φI

] ∓ θ , (25)

I ′ = −γ

[
12
5

fI + 4FH + 8
5
φG

]
, (26)

J ′ = − Pr
[

12
5

(fJ + Fθ) + EG2 + EMF 2

]
, (27)

At η = 0, G (0) = f (0) = 0, H (0) = 1, φ (0) = 0, J (0) = 0, (28)

as η → ∞, G (∞) → 0, H (∞) → 0, θ (∞) → 0. (29)

The bvp4c algorithm in MATLAB is utilized to solve Eqs. (25) through (29), following a
methodology consistent with established practices in numerical analysis. For details of coding on
MATLAB kindly check the Appendix A.
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5 Computational Results and Physical Significances

In this section, we analyze the evolving heat transfer configurations across various scenarios,
considering factors such as the magnetic parameter (M), parameter of viscous dissipation (E),
magnetic force parameter (S), magnetic Prandtl number (γ ), and Prandtl number (Pr) within the
context under consideration. The thorough examination provided here reveals the complex interaction
among the mentioned parameters and their influence on fluid flow and heat transfer characteristics.
The velocity, current density, and temperature distributions are the missing initial conditions. These
graphical results of the velocity, current density, and temperature distributions are explicitly mentioned
at the end of their captions as missing conditions. As well as a detailed discussion is provided along
with these representations. The results of these missing conditions are calculated by utilizing the
specified boundary conditions. As it is clear that specified conditions are satisfied, the results of missing
conditions are also accurate and strengthened by it. Additionally, it sheds light on skin friction f ′′,
magnetic flux φ ′ and heat transfer rate θ ′ as specified boundary conditions. Current density refers to
the amount of electrical current traveling per unit area. It results from the interaction between the
fluid’s motion and the magnetic field, leading to induced currents and Lorentz forces that modify the
flow patterns and thermal behavior. Current density directly contributes to Ohmic heating. The higher
current densities yield greater electrical resistance and, consequently, higher heat generation within the
fluid. While current density does not directly influence viscous dissipation, it can be influenced by the
magnetic field’s effects including current density.

The influences of magnetic parameter M are highlighted on temperature distribution, current
density, and velocity profiles in Fig. 2a–c as missing conditions. For this objective, the other involved
parameters remain fixed while adjusting parameter M across four appropriate different options.
These graphical representations depict that the velocity, current density, and temperature profiles are
maximum and minimum at the plume’s surface for M = 0.4 and M = 0.1, respectively. The fluid’s
velocity and temperature distribution at the surface of the plume decreases gradually for an enhancing
parameter M, as evident from Fig. 2a,c. The Lorentz forces induced by a magnetic field become more
significant relative to viscous forces with an enhancing parameter M. This leads to the suppression
of fluid motion and turbulences resulting in more smoother and ordered velocity distributions within
the plume. This also caused the drop in velocity and temperature distribution. Fig. 2b demonstrates
that the current density drops with a slighter difference at the surface for a shorter distance along the
x-direction but then the trend reverses and it starts increasing gradually with enhancing parameter
M. Due to intense magnetic forces, the close confinement experienced by induced current yields
an immediate drop in current density at the surface. As we move slightly away from the surface
the confinement effects diminish and current density increases. Fig. 3a–c signifies the skin friction,
magnetic flux, and heat transfer rate as specified conditions for distinct values of M. The skin friction
and magnetic flux drops with increment in parameter M as claimed by Fig. 3a,b. Due to smoother
fluid motion and thinning of the boundary layer by strong magnetic effects, the shear stress exerted by
fluid reduces near the surface which leads to a drop the skin friction. Stronger magnetic forces result in
tighter confinement of the magnetic flux, reducing its outward expansion within the system. Therefore,
the magnetic flux depicted in Fig. 3b descends with a minute difference and depicts a closely packed
pattern. The heat transfer rate as depicted in Fig. 3c increases with ascending parameter M. The heat
transfer rate is minimum for M = 0.3 near the surface. The induced Lorentz forces by magnetic field
causes the thinning of the thermal boundary layer which reduces the thermal resistance and enhances
the heat transfer rate despite a decline in temperature distribution.
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Figure 2: Graphs of velocity f ′(η) (a), current density φ ′′(η) (b) and temperature distribution θ(η)

(c) against η for distinct four values of magnetic parameter M with other fixed parameters (Missing
conditions)

Figure 3: Graphs of skin friction f ′′(η) (a), magnetic flux φ ′(η) (b) and heat transfer rate θ ′(η) (c) against
η for distinct four values of magnetic parameter M with other fixed parameters (Specified conditions)

The consequences of the parameter of viscous dissipation E on f ′, φ ′′, and θ are represented
being missing initial conditions in Fig. 4a–c. The velocity f ′, and temperature profiles θ drops while
current density φ ′′ initial drops then it exhibits increasing behavior for enhancing parameter E. The
velocity drops because enhanced dissipation leads to higher energy losses within the fluid and causes a
reduction in the kinetic energy. The increased dissipation tends to overpower the fluid’s motion, which
yields a reduction in current density at the surface. Fig. 5a–c illustrates the influences of parameter E
with appropriate values on specified conditions noted as f ′′, φ ′ and θ ′. The skin friction f ′′ and magnetic
flux φ ′ drops, whereas, the heat transfer rate θ ′ also decreases with enhancing values of parameter E.
With reduced turbulence caused by an incremented dissipation, the skin friction declines. Further, the
magnetic flux drops due to the fact that enhanced dissipation reduces the inductions of current. Higher
viscous dissipation leads to lower heat transfer rates θ ′ because the enhanced dissipation reduces the
efficiency of the fluid’s heat transfer process. This also causes a drop in the temperature distribution
of the system.
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Figure 4: Graphs of velocity f ′(η) (a), current density φ ′′(η) (b) and temperature distribution θ(η) (c)
against η for distinct four values of parameter of viscous dissipation E with other fixed parameters
(Missing condition)

Figure 5: Graphs of skin friction f ′′(η) (a), magnetic flux φ ′(η) (b) and heat transfer rate θ ′(η) (c) against
η for distinct values of parameter of viscous dissipation E with other fixed parameters (Specified
conditions)

For four appropriate choices of magnetic force parameter S the velocity f ′, current density φ ′′,
and temperature θ profiles are depicted as missing conditions of the flow problem in Fig. 6a–c. The
parameter S is the ratio of magnetic to inertial forces. So, increment in parameter S causes the magnetic
forces to dominate over inertial forces. The f ′ profiles increased for a shorter distance initially, and
then it started decreasing. It maintained the later trend in undisturbed fluid as well, as evident in
Fig. 6a. The velocity of the fluid decreases as the magnetic force increases with increasing parameter
S. The φ ′′profiles by Fig. 6b exhibit a descending trend near the surface, and afterwards it reveres that
behavior. The negative values indicate a reversal in the direction of the current density, which could
be due to a stronger magnetic field altering the original direction of current flow. The temperature
profile enhanced gradually, as visible in Fig. 6c. The temperature distribution is minimum for S = 0.1
at the plume’s surface. This behavior of temperature is justified by the presence of significant Ohmic
heating and viscous dissipation. Fig. 7a–c highlights impact of parameter S on the specified conditions
mentioned as skin friction f ′′, magnetic flux φ ′ and heat transfer rate θ ′. The f ′′ and φ ′ drop while θ ′

increment for enhancing values of parameter S claimed by these figures. Increasing magnetic forces
cause a more stabilized laminar flow near the surface, reducing the shear stress. This leads to lower skin
friction. The higher magnetic forces induce currents or fields that counteract the primary magnetic
field and lead to an overall reduction in the observed magnetic flux. The increased temperature
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gradient due to enhanced Ohmic heating and viscous dissipation contributes to a higher heat transfer
rate with increasing parameter S.

Figure 6: Graphs of velocity f ′(η) (a), current density φ ′′(η) (b) and temperature distribution θ(η) (c)
against η for distinct four values of magnetic force parameter S with other fixed parameters (Missing
condition)

Figure 7: Graphs of skin friction f ′′(η) (a), magnetic flux φ ′(η) (b) and heat transfer rate θ ′(η) (c) against
η for distinct values of magnetic force parameter S with other fixed parameters (Specified conditions)

The velocity, current density, and temperature distribution profiles are emphasized as missing
initial conditions in Fig. 8a–c for four distinct values of magnetic Prandtl number γ. The parameter γ is
the ratio of viscous diffusivity to the magnetic diffusivity. Due to the increment in γ, the viscous impacts
dominate over magnetic effects. The influences of dominant viscosity due to increased γ are listed here.
The temperature and velocity profiles as described in Fig. 8a,c are maximum and minimum for γ = 0.5
and γ = 3.0, respectively. It is depicted that the velocity primarily drops for a shorter distance and then
it reverses its trend. The increased viscous diffusivity causes a stronger damping effect on the velocity
due to the viscous forces’ domination. The temperature distribution declines for the escalating values
of γ . The lower magnetic diffusivity reduces the heating effect from Ohmic dissipation and causes drop
in temperature. Fig. 8b elucidates the current density drop for the ascending values of γ . The physical
profiles for specified boundary conditions skin friction, magnetic flux, and rate of heat transfer are
illustrated in Fig. 9a–c for appropriate choices of γ. The skin friction is maximum for γ = 6.0 near
the plume’s surface and gradually enhances with increment in γ as claimed by Fig. 9a. The magnetic
flux and rate of heat transfer rise slowly for increments in γ as represented in Fig. 9b,c. The magnetic
flux exhibits reverse behavior after some distance. Near the surface, the reduced magnetic diffusivity
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leads to a lower interaction between the magnetic field and the fluid which reduces skin friction.
For increasing magnetic Prandtl number, the resulting slower magnetic field diffusion and reduced
penetration into the fluid reduces the overall magnetic flux. Whereas, heat transfer rate increases due
to enhanced temperature gradients, and improved thermal conductivity due to reduced Ohmic heating.

Figure 8: Graphs of velocity f ′(η) (a), current density φ ′′(η) (b) and temperature distribution θ(η) (c)
against η for distinct four values of magnetic Prandtl number γ with other fixed parameters (Missing
conditions)

Figure 9: Graphs of skin friction f ′′(η) (a), magnetic flux φ ′(η) (b) and heat transfer rate θ ′(η) (c) against
η for distinct values of magnetic Prandtl number γ with other fixed parameters (Specified conditions)

The physical conduct for missing initial conditions f ′, φ ′′ and θ are shown in Fig. 10a–c for
varying Prandtl number. Fig. 10a,c represents that the velocity and temperature profiles are highest
for Pr = 0.7 while minimum for Pr = 4.0. The θ and f ′ profile exhibit a gradual drop for an
enhancing Pr. In Fig. 10b, a decreasing trend is observed at the surface, while a similar pattern is noted
near the plume’s surface with increasing Pr for current density φ ′′. The physical elucidation for skin
friction f ′′, magnetic flux φ ′ and rate of heat transfer θ for appropriate values of Pr are highlighted in
Fig. 11a–c. The results for specified boundary conditions skin friction f ′′ and magnetic flux φ ′ claimed
by Fig. 11a,b are lower for Pr = 1.0 and Pr = 4.0 near the surface, respectively. The skin friction
shows enhancing behavior for enhancing Pr. Whereas, the magnetic flux φ ′ drops gradually with an
ascending Pr. Fig. 11c depicts that the θ ′ decreases for enhancing Pr whereas abrupt behavior is noted
for Pr = 2.0. The underlying principle governing the observed behavior of flow and heat transfer
characteristics concerning the Prandtl number is that as the Prandtl number increases, the viscosity of
the fluid increases while the thermal conductivity of the fluid decreases. Due to increased viscosity, the
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velocity drops and skin friction enhanced because of the higher shear stress. Higher Prandtl number
leads to thicker thermal boundary layer which implies less effective heat transfer from the heat source
to the fluid. This causes drop in the temperature distribution as well as heat transfer rate. The drop
in magnetic flux is indirectly due to the reduced temperature and current density. However, current
density reduces at the surface due to reduced thermal diffusivity with rising Prandtl number.

Figure 10: Graphs of velocity f ′(η) (a), current density φ ′′(η) (b) and temperature distribution θ(η)

(c) against η for distinct four values of Prandtl number Pr with other fixed parameters (Missing
conditions)

Figure 11: Graphs of skin friction f ′′(η) (a), magnetic flux φ ′(η) (b) and heat transfer rate θ ′(η) (c)
against η for distinct values of Prandtl number Pr with other fixed parameters (Specified conditions)

6 Validation Analysis

The validation analysis, performed for the velocity f ′(0), is presented in Table 1. This examination
not only reinforces the credibility of our current research efforts but also demonstrates the close
correspondence of our findings with those reported in prior literature, as observed in Gebhart et al. [5]
and Anwar et al. [34]. This consistent correspondence further emphasizes the reliability and robustness
of the conclusions drawn from our study.
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Table 1: Comparison of numeric data of velocity f ′(0) obtained in the present study with
Gebhart et al. [5] and Anwar et al. [34] for different values of Prandtl number Pr when S = γ =
E = M = 0

Pr Gebhart et al. [5] f ′(0) Anwar et al. [34] f ′(0) Present study f ′(0)

1.0 0.6618 0.6499 0.6499
2.0 0.5590 0.5564 0.5564
6.7 0.4480 0.4388 0.4388
10.0 0.4139 0.4129 0.4129

7 Conclusion

In light of the above-detailed discussion on fluid flow and heat transfer properties regarding the
parameters involved, the observed outcomes are encapsulated as follows:

For the missing initial conditions:

• The fluid velocity dropped with increasing magnetic parameter M, viscous dissipation variable,
and Prandtl number. But it increases initially for increasing magnetic force parameter S and
then declines. It shows a reverse trend for the magnetic Prandtl number compared to the
magnetic force parameter.

• The current density decreased for enhancing the magnetic parameter, viscous dissipation
variable, magnetic force parameter, and Prandtl number. However, it increased with increasing
magnetic Prandtl number.

• The temperature distribution dropped for rising values of the magnetic parameter, viscous
dissipation variable, magnetic Prandtl number, and Prandtl number. But the temperature of
the plume’s system is the lowest for S = 0.1.

For specified boundary conditions:

• The skin friction declined for higher values of the magnetic parameter, viscous dissipation
variable, magnetic force parameter, and magnetic Prandtl number. While increasing for a higher
Prandtl number.

• For enhancing values of enhancing the magnetic parameter, viscous dissipation variable,
magnetic force parameter, magnetic Prandtl number, and Prandtl number the magnetic flux
dropped.

• The heat transfer rate escalates for rising values of magnetic parameter, magnetic force parame-
ter, and magnetic Prandtl number. However, it dropped for the viscous dissipation variable and
the Prandtl number.
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Appendix A. Algorithm

The major lines of the algorithm are stated from Eqs. (A1) to (A4). The differential equations are
enlisted as:

dFdeta = @(eta, F)[F(2); F(3); ((4/5) ∗ F(2) ∗ F(2) − (12/5) ∗ F(1) ∗ F(3))

+ ((8/5) ∗ S ∗ (2 ∗ F(5) ∗ F(5) − F(4) ∗ F(6))) + F(7); F(5); F(6);

− (γ ) ∗ ((12/5) ∗ F(1) ∗ F(6) + 4 ∗ F(2) ∗ F(5) + (8/5) ∗ F(4) ∗ F(3)); F(8);

− (Pr) ∗ (((12/5) ∗ (F(1) ∗ F(8) + F(2) ∗ F(7))) + E ∗ (F(3) ∗ F(3))

+ M ∗ E ∗ (F(2) ∗ F(2)))] (A1)

Boundary conditions are enlisted as:

res = @(fa, fb)[fa(1); fa(3); fa(4); fa(5) − 1; fa(8); fb(3); fb(5); fb(7)]; (A2)

The initial guess and step size adjuster

SolYinit = bvpinit([0 : 1 : 5], [0; 0; 0; 0; 0; 0; 0; 0]); (A3)

Fsol = bvp4c(dFdeta, res, SolYinit) (A4)
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