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ABSTRACT

The present paper examines the temperature-dependent viscosity and thermal conductivity of a micropolar
silver (Ag)−Magnesium oxide (MgO) hybrid nanofluid made of silver and magnesium oxide over a rotating
vertical cone, with the influence of transverse magnetic field and thermal radiation. The physical flow problem
has been modeled with coupled partial differential equations. We apply similarity transformations to the non-
dimensionalized equations, and the resulting nonlinear differential equations are solved using overlapping grid
multidomain spectral quasilinearization method. The flow behavior for the fluid is scrutinized under the impact
of diverse physical constraints, which are illustrated graphically. The results of the skin friction coefficient and
Nusselt number varying different flow parameters are presented in the form of a table. It is observed that the main
flow of the hybrid nanofluid, nano particle fraction of silver and Magnesium/water, enhances compared to the
mono-nano fluid MgO as the coupling number increases. The application of studies like this can be found in the
atomization process of liquids such as centrifugal pumps, viscometers, rotors, fans.

KEYWORDS
Micropolar fluid; hybrid nanofluid; radiation magnetohydrodynamic; rotating cone; overlapping grid; spectral
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1 Introduction

Thermal properties of most base fluids used in industry are low and do not address the needs of
recent technology. Nowadays, effective active heat transfer methods like ultrasonic vibration have been
explored by Delouei et al. [1]. Another mechanism involves adding nanoparticles to the base fluid to
improve heat transfer; this approach, discussed by Siavashi et al. [2], utilizes nanoparticles, known as
nanofluids, to overcome this deficiency. At present, a widely explored research area for enhancing
the thermal conductivity of base fluids is nanotechnology, as investigated by Izadi et al. [3]. The
nanofluids have widespread applications in various engineering and industrial processes. Applications
of this nature encompass cooling systems, heat exchangers, geothermal and solar energy systems, and
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biomedicine, particularly in the realm of targeted drug delivery, as highlighted by Siavashi et al. [2].
A considerable number of researchers have discussed the flows of nanofluid and its applications [2–
7]. Akmal et al. [8] observed that the heat transfer rate increases as the values of the thermophoresis
parameter increase. Zeeshan et al. [9] analyzed a convective MHD nanofluid water/ethylene glycol
based flow towards a vertical cone. Hady et al. [10] reported a rapid reduction in heat transfer rates
due to an increase in the nanofluid’s temperature and the solid volume fraction. Liu et al. [11] proposed
a Pt/TiO2 nanocomposite for cancer-cell treatment because noble metal nanoparticles are supposed
to enhance the photocatalytic activity of TiO2 nanoparticles. Some other significant studies for the
reader’s interest can be found in [12–17].

Nanoparticles such as Cu, Ag, and Au are not readily available and are expensive. Addition-
ally, unmodified particles of Cu, Ag, and Au may pose potential toxicity risks, as highlighted
by Parveen et al. [18]. The availability, cost, and potential toxicity of the particles, especially for
unmodified mono nanofluid particles, will impact the manufacturing cost of production and pose
health risks. Researchers have established a novel generation of heat transfer fluid as an extension
towards nanofluid technology. This involves two or more dilute suspensions of composite nanopar-
ticles in a base fluid, giving rise to a new class of fluid called hybrid nanofluids, as discussed by
Chahregh et al. [19]. These hybrid nanofluids overcome limitations and simultaneously enhance the
physical and chemical properties of the materials involved. The investigation into the temperature-
dependent viscosity and thermal conductivity of hybrid nanofluid over a rotating vertical cone is
vital for advancing our understanding of nanofluid dynamics, optimizing industrial processes, and
exploring the potential of nanotechnology in heat transfer applications.

The behaviour of a hybrid nanofluid composed of TiO2 and Ag in pure blood was studied by
Chahregh et al. [19]. They reported the asymmetry of the channel, caused by different permeability at
walls, significantly affects the nature of flow. A numerical investigation of the impact of magnetic field
localization on the vortex generation in hybrid nanofluid flow studied by Ali et al. [20]. Many other
investigations related to hybrid nanofluid have been published [21–23] to mention just a few.

It is known that many of the industrially and technologically important fluids are non-Newtonian
fluids. In this article, a non-Newtonian micropolar fluid is considered. The most common type of
non-Newtonian micropolar fluid is a fluid with a micro-structure that may consist of rigid, randomly
oriented particles suspended in a viscous medium. MHD flow and heat transfer of carbon nanotube
(CNTs/H2O) nanoparticles suspended in micropolar dusty fluid, considering thermal radiation, was
studied by Ghadikolaei et al. [24]. In this study, they reported that the thermal boundary layer
thickness increases with increasing volume fraction of nanoparticles. Sandeep et al. [25] reported
that hybrid ferroliquid and thermal radiation play a significant role in stream and energy transport
in their study of radiative MHD dusty-hybrid ferrofluids, taking Fe3O4 and CoFe2O4 as nanoparticles
in kerosene/water-based liquids. Several research studies on the flow of micropolar hybrid nanoliquids
have been analyzed in the relevant literature [26–28].

Motivated by the aforementioned works, the present study extends the work of Malik et al. [29].
This extension is not a simple one as the authors aim to address a hybrid nanofluid with spin
gradient viscosity for a non-Newtonian micropolar fluid, an aspect that was not covered in their
study. Furthermore, this extension addresses a gap not explored in classical fluid dynamics, as far as
our knowledge extends. We examine the effects of volumetric nanofractions, micropolar, and viscous
fluids and compare their impacts.
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2 Mathematical Formulation of the Problem

Consider an inverted isothermal rotating cone with a semi-vertical angle of �∗ and time-dependent
angular velocity of �. In this cone, a two-dimensional, incompressible, and unsteady magneto-
micropolar hybrid nanofluid flow consisting of Ag−MgO with a variable viscosity of μhnf and thermal
conductivity of khnf with a reference length of L is surrounded by a porous medium. Additionally, heat
transfer is incorporated at the surface of the inverted cone in the presence of thermal radiation effects.
Buoyancy forces are present due to temperature variations, with the assumption that the surface of
the permeable cone is held at a variable temperature of T(x), where the temperature far away from the
surface of the cone is denoted as T∞. The graphical representation of the flow model is illustrated in
Fig. 1. Under these assumptions, the governing equations [29,30] for the boundary layer flow takes
the form:

Figure 1: Geometry of the flow
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where qr = 16T 3
∞σ ∗

3k∗

(
∂T
∂z

)
[31], r = x cos �∗ and, μhnf and khnf depend on temperature as defined [29]:

μhnf = μ0(1 − Aθ(η)), khnf = k0(1 + ζθ(η)). (6)

A < 0 for gas and A > 0 for liquid, A = χ(Tw − T∞) and ζ = −c(Tw − T∞), where χ and c are
arbitrary constants. The initial and boundary conditions are given by:

t ≤ 0, u = 0, v = 0, w = 0, N = 0, T = T0 ∀(x, y, z), (7a)

t > 0, u = 0, v = 1
1 − At∗ �x sin �∗, N = 0, T = Tw, at z = 0, (7b)

u → 0, v → 0, N → 0, T → 0, as z → ∞, (7c)

where t∗ = �t sin �∗. All the values for the parameters Cp, K, ρ, β, σ , α are taken from Table 1.
(Hiba et al. [32]).

Table 1: Experimental values of basis fluid and nanoparticles

Property Cp (J/kg K) k (W/mk) ρ (kg/m3) β × 10−5 σ (s/m) α (m2/s)

H2O 4179 0.613 997.1 21 5.5 × 10−6 1.47 × 10−7

Ag 235 429 10,500 5.4 8.1 × 10−4 147 × 10−3

MgO 879 30 3970 3.36 8 × 10−4 95.3 × 10−7

According to Khan et al. [33], volume fraction, thermal conductivity, density, heat capacitance,
thermal expansion coefficient, thermal conductivity and viscosity of the hybrid nanofluid, are defined
by Eqs. (8)–(14), respectively:

φ = φAg + φMgO, (8)

αhnf = khnf

(ρ)hnf

, (9)

ρhnf = (1 − φ)ρf + (φAg × ρAg + φMgO × ρMgO), (10)

(ρCp)hnf = (1 − φ)(ρCp)f + (φAg × (ρCp)Ag + φMgO × (ρCp)MgO), (11)

(ρβ)hnf = (1 − φ)(ρβ)f + (φAg × (ρβ)Ag + φMgO × (ρβ)MgO), (12)

khnf

kbf

= kMgO + 2kbf + 2φMgO(kMgO − kbf )

kMgO + 2kbf − φMgO(kMgO − kbf )
,

kbf

kf

= kAg + 2kf + 2φAg(kAg − kf )

kAg + 2kf − φAg(kAg − kf )
(13)
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μhnf = μf
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. (14)

Using Eqs. (6), (8)–(14) and the transformations specified by [29]:
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the system of partial differential Eqs. (1)–(5) is transformed into ordinary differential Eqs. (15)–(18):
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The nondimensional boundary conditions take the form:

f (0) = 0, f ′(0) = 0, g(0) = 1, ω(0) = 0, θ(0) = 1, (19a)
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f ′ → 0, g → 0, ω → 0, θ → 0 as η → ∞. (19b)

The skin friction coefficient and local Nusselt number are defined as:
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The corresponding non-dimensional form for Eqs. (20) and (21) are as follows:
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where Rex = x2� sin �∗
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is the Reynolds number.

3 Numerical Method

Numerical solutions to the non-dimensionalized system of Eqs. (15)–(18) are obtained using the
OGMDSQLM, proposed by Mkhatshwa [34]. The numerical solutions were generated through codes
developed in MATLAB. The solution algorithm of this numerical method is based on numerical tech-
niques namely QLM, spectral collocation, multidomain overlapping grid and Lagrange interpolation
polynomials with Gauss-Lobatto-Chebyshev grid points. To implement the method, the integration
domain, [0, η∞], is divided into finite overlapping subintervals of equal length, illustrated in Fig. 2. As
shown in Fig. 2, the domain of integration is divided into p ∈ N|p > 1 subintervals. Each subinterval
is then discretized into a predefined number of collocation points, say Nη + 1, where η denotes a space
variable. The SQLM is then applied in each subinterval, with the approximate solution(s) of a previous
subinterval set as starting values for SQLM iterations in the next interval. The incorporation of the
overlapping phenomenon is achieved by permitting an iterative process within the current subinterval,
wherein each iteration induces a displacement, denoted as a fixed step (η2

0 − η1
0, as seen in Fig. 2). To

obtain the solution of the nonlinear system of differential Eqs. (15)–(18) employing the overlapping
grid multidomain spectral quasilinearization method, the algorithm is as follows: firstly, the division
of the integration interval into overlapping subintervals, as illustrated in Fig. 2; subsequently, the
application of QLM as proposed by Motsa et al. [35] to Eqs. (24)–(27) where l signifies a subinterval,
and (r+1) denotes the current iteration level; further, the computation of derivatives at each subinterval
collocation point through the utilization of the Chebyshev numerical differentiation matrix; and the
employment of the pseudospectral collocation method at the boundaries (Eq. (34)). Ultimately, an
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iterative solution is obtained through the resolution of a matrix equation, as given by Eqs. (33) and
(34), yielding the approximate solution.
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Figure 2: Overlapping grid, Mkhasthwa [34]

Using the SQLM method proposed by Motsa et al. [35], the coefficients of the unknowns are
evaluated at the previous iteration level r (see Eqs. (28) and (29)).

a1,l
1,1 = φ1φ2f ′

l,r − φ1φ2s − φ2Kp + φ2φ3M, a(2,l)
1,1 = −Aθ ′

l,r − K − φ1φ2fl,r − φ1φ2s
η

2

a3,l
1,1 = 1 − Aθl,r + φ1K, a(0,l)

1,1 = −φ1φ2f ′′
l,r, a(1,l)

1,4 = −Af ′′
l,r, a0,l

1,4 = −Af ′′′
l,r − 2φ1φ2φ4K

a(0,l)
2,2 = φ1φ2f ′

l,r − φ1φ2s − φ2kp − φ2φ3M, a(1,l)
2,2 = −Aθ ′

l,r − K − φ1φ2fl,r − φ1�2s η

2

a2,l
2,2 = 1 − Aθ l, r + φ1K, a(0,l)

2,2 = φ1φ2f ′
l,r − φ1φ2s − φ2Kp − φ2φ3M, a1,l

2,4 = −Ag′
l,r,

a(0,l)
2,4 = −Ag′′

l,r, a(1,l)
2,1 = φ1φ2gl,r, a0,l

2,1 = −φ1φ2g′
l,r, a(1,l)

3,3 = −Aθ ′
l,r − 0.5K − φ1φ2fl,r − φ1φ2

η

2
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(28)

a2,l
3,3 = 1 − Aθl,r + 0.5φ1K, a(0,l)

3,3 = φ1φ2f ′
l,r − φ1φ2s − 2KBφ2, a1,l

3,4 = −Aω′
l,r,

a0,l
3,4 = −Aω′′

l,r, a(1,l)
3,1 = φ1φ2ωl,r, a0,l

3,4 = −Aω′′
l,r,

a2,l
3,1 = φ2KB, a(0,l)

3,1 = −φ1φ2ω
′
l,r, a(1,l)

4,4 = 2εθ ′
l,r

Khnf

Kf Pr
− φ5fl,r − φ5s

η

2
,

a2,l
4,4 = Khnf

Kf Pr
(1 + ηθl,r + Rd), a0,l

4,4 = Khnf

Kf Pr
ηθ ′′

l,r + 0.5φ5f ′
l,r − 2φ5s,

a1,l
4,1 = 0.5φ5θl,r, a(0,l)

4,1 = −φ5θ
′
l,r.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(29)



1160 FHMT, 2024, vol.22, no.4

As mentioned earlier, the essence of the overlapping grid multidomain spectral quasilinearization
is the slicing of the physical domain into a finite number of overlapping subintervals, the non-
dimensional boundary conditions then become as written in Eq. (30).

f (0)l,(r+1) = 0, f ′(0)l,(r+1) = 0, g(0)l,(r+1) = 1, ω(0)l,(r+1) = 0, θ(0)l,(r+1) = 1, (30a)

f ′
l,(r+1)

→ 0, gl,(r+1) → 0, ωl,(r+1) → 0, θl,(r+1) → 0 as η → ∞. (30b)

The linearized system of Eqs. (24)–(27) can be written compactly as shown in system (31), where
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The system of Eq. (31) can be represented in matrix from as system (32). The column vectors of
unknowns at a subinterval and current iteration level are: Fl
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]

,

A21 = [
a(1,l)

2,1 D + a(0,l)
2,1 I

]
, A22 = [

a(1,l)
2,2 D2 + a(2,l)

2,2 D + a(0,l)
2,2 I

]
, A23 = 0, A24 = [

a(1,l)
2,4 D + a(0,l)

2,4 I
]

,

A31 = a(1,l)
3,1 D2 + a(1,l)

3,1 D + a(0,l)
3,l l, A32 = 0, A33 = [

a(1,l)
3,3 D + a(2,l)

3,3 D2 + a(0,l)
3,3 I

]
, A34 = [

a(1,l)
3,4 D + a(0,l)

3,4 I
]

,

A41 = [
α(1)

4,1D + α(0)

4,1I
]

, A42 = 0, A43 = 0, A44 = [
α(1,l)

4,4 D + α(2,l)
4,4 D2 + α(0,l)

4,1 I
]

. (33)

and 0 is a square matrix of zeros, also of dimension consistent with the number of collocation points
in the computation.
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Applying the pseudospectral method at the boundaries gives:

fr+1(zNη ) = 0,
Nη∑
j=0

DN,j fj,(r+1) = 0, gr+1(zNη ) = 1,

ωr+1(zNη ) = 0, θr+1(zNη ) = 1 at η = 0.
Nη∑
j=0

D0,jfj,(r+1)(z0) → 0, gj,(r+1)(z0) → 0,

ωj,(r+1)(z0) → 0, θj,(r+1)(z0) → 0, as η → ∞.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(34)

The OGMDSQLM leads to a sparse form of the coefficient matrix in system (32), which is
expressed in its expanded form below, with the boundary conditions incorporated accordingly on the
diagonal submatrices.
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D0,0 D0,1 D0,2 . . . . . . D0,N 0 0 . . . . . . 0 0 0 . . . . . . 0 0 0 . . . . . . 0

A11 A12 A13 A14

DN,0 DN,1 DN,2 . . . . . . DN,N 0 0 . . . . . . 0 0 0 . . . . . . 0 0 0 . . . . . . 0
0 0 0 . . . . . . 1 0 0 . . . . . . 0 0 0 . . . . . . 0 0 0 . . . . . . 0
0 0 0 . . . . . . 0 1 0 . . . . . . 0 0 0 . . . . . . 0 0 0 . . . . . . 0

A21 A22 A23 A24

0 0 0 . . . . . . 0 0 0 . . . . . . 1 0 0 . . . . . . 0 0 0 . . . . . . 0
0 0 0 . . . . . . 0 0 0 . . . . . . 0 1 0 . . . . . . 0 0 0 . . . . . . 0

A31 A32 A33 A34

0 0 0 . . . . . . 0 0 0 . . . . . . 0 0 0 . . . . . . 1 0 0 . . . . . . 0
0 0 0 . . . . . . 0 0 0 . . . . . . 0 1 0 . . . . . . 0 1 0 . . . . . . 0

A41 A42 A43 A44

0 0 0 . . . . . . 0 0 0 . . . . . . 0 0 0 . . . . . . 0 0 0 . . . . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(35)

To begin the iterative search for approximate solutions, the following functions:

f0(η) = η2 exp(−η), g0(η) = exp(−η), ω0(η) = η exp(−η) and θ0(η) = exp(−η), (36)

that satisfy the boundary conditions are taken as approximate solutions.

4 Results and Discussion

To check the validity of the current numerical scheme, a comparison of the present values
of skin friction and Nusselt number with those published in the literature by Malik et al. [29],
Chamkha et al. [36] is presented in Table 2. Using the nanoparticle volume fractions of hybrid
nanofluid consisting of portions of nano particles φAg = 0.018 and φMgo = 0.002, we examined the
components of velocities, microrotation and temperature profile for selected parameters from the
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following respective ranges 0 ≤ ε ≤ 0.5, 0 ≤ s ≤ 0.5, 0 ≤ B ≤ 3, 0 ≤ A ≤ 2.5, 0 ≤ M ≤ 1, 0 ≤ Rd ≤ 1,
0 ≤ K ≤ 1, 0 ≤ λ ≤ 5 which lead to convergence and stable results. The following parametric values are
used for the numerical computations: Pr = 6.8, ε = 0.2, s = 0.2, B = 2, A = 0.02, M = 0.5, K = 0.6,
λ = 3. As the value of the nondimentional form K, of the coupling number κ approaches one the fluid
is more micropolar whereas as it approaches zero the fluid becomes more viscous. Fig. 3a shows that
with an increase in the value of the coupling number, the fluid becomes more micropolar, resulting
in a primary velocity slowdown in the vicinity of the boundary at its peak. Conversely, a decrease in
velocity for the secondary flow is observed, as depicted in Fig. 3b. Physically this is due the rotational
effect of the flow, the main flow is retarded and the secondary flow increases. Also, it can be observed
from Fig. 3b, that the hybrid nanofluid, φAg + φMgO, enhances the primary velocity than the mono-
nanofluid φMgO. From Fig. 3b the reverse trend from the primary flow is observed throughout the flow
medium. From Fig. 3c, it is observed that the hybrid nanoflid reduces the temperature compared to
the mono-nanoflluid. This is because hybridizing appropriately chosen nanoparticles, the heat transfer
of the particles in the medium increases. From the same figure it is seen micropolar fluids enhances
the temperature. From Fig. 3d, the rotational effect in the fluid particles is observed by enhancing the
micropolar parameter. When K = 0, there is no rotation, and consequently, no flow for ω, indicating
that the fluid behaves as a viscous fluid. Moreover, from the same graph, it is observed the rotational
effect for hybrid nanofluid near the boundary is greater than that of the mono-nanofluid. This may
be due to the higher viscosity for hybrid nanofluid than the mono nanofluid which warrants further
investigation.

Table 2: Numerical values for the skin friction for radiation and magnetic parameter for ε = s = Kp =
B = A = K = 0

Malik et al. [29] Chamkha et al. [36] Present

Pr λ Re1/2
x f ′′(0)

0.7 0 1.0253 1.0255 1.0254
0.7 1 2.2007 2012 2.2009
0.7 10 8.5041 8.5041 8.5042

Re−1/2
x θ ′(0)

0.7 0 0.4295 0.4299 0.4297
0.7 1 0.6121 0.6120 0.6121
0.7 10 1.0097 1.0097 1.0098

Fig. 4a shows that the smaller the variable viscosity parameter, the more the primary velocity
diminishes. Physically, this implies that in the higher viscous region (near the boundary), the dominant
force is buoyancy, and an increase in nanofluid concentration leads to an increase in velocity. The
more hybrid nanofluid, the higher the thermal conductivity, which allows an increase in Brownian
motion and, consequently, particle energy transfer. It is also interesting to note that away from the
vicinity of the boundary, in the free stream region, the reverse effect is observed. However, it is evident
from Fig. 4b that an increase in the variable viscosity parameter results in a decreasing effect on
the secondary flow. This is because as the coupling number K increases, the fluid becomes more
micropolar, and consequently, the particle sniping effect significantly retards the secondary flow. For
the fractional volume of the hybrid nanofluid, φAg + φMgO, velocity is greater than the mon-nanofluid,
φMgO, in both velocities. The influence of the variable viscosity parameter on temperature, presented



FHMT, 2024, vol.22, no.4 1163

in Fig. 4c, indicates that the higher the variable viscosity parameter, the lower the temperature. It is
also noted that fractional volume hybrid nanofluid, φAg + φMgO, reduces the temperature than mon-
nanofluid, φMgO. It is seen from the Fig. 4c that the temperature decreases with an increase in the
variable viscosity parameter. It is also noted for fractional volume hybrid nanofluid, φAg + φMgO,
temperature decreases compared to the mon-nanofluid, φMgO. This is because more nanoparticles
are involved the thermal properties of the resulting mixture are improved and Brownian motions of
nanoparticles increases leading to increase the viscosity in the medium. Fig. 4d describes the effect of
variable viscosity on microrotation, the hybrid nanofluid fraction is higher than the mon-nanofluid
in the region closer to the vicinity of the boundary.

Figure 3: Coupling number effect

Fig. 5a,b shows the impact of porosity parameter on both primary and secondary flows. It is
clear from the figures that primary velocity decreases with an increase in the porosity parameter. The
velocities of the hybrid nanofluid, φAg + φMgO, are enhanced as compared to the mono-nanofluid,
φMgO. Physically increasing the value of k0, that is less pour in the flow medium, in Eq. (2), and hence
decreasing the value of Kp in Eq. (15) causes the porous zone’s transparency to decrease and hence
the velocity decreases. We can observe from these results hybrid nanofluid increase the flow velocities
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than the mono-nanofluid. The effect of Kp on temperature and microrotation as shown in Fig. 5c,d is
similar to the effect of K in Fig. 3c,d.

Figure 4: Variable viscosity parameter effect

In Tables 3 and 4, the flow behaviour for different values of radiation and magnetic parameter
on local sikin friction effect and Nusselt number are presented. The cases for mono-nanofluids
Ag/water, MgO/water and hybrid nanofluid Ag−MgO/water are studied. It is observed that both the
local skin friction and the Nusselt number increases with an increase in the radiation and magnetic
parameters.
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Figure 5: Porosity parameter effect

Table 3: Numerical values for the skin friction for radiation and magnetic parameter when
Pr = 6.8, ε = 0.2, s = 0.2, Kp = 3, B = 2, A = 0.02, K = 0.6, λ = 2

CfxRe1/2
x

Rd M Ag/water MgO/water Ag-MgO/water
φAg = 0.018 φMgO = 0.02 φAg = 0.018, φMgO = 0.02

0 0.5 1.50654604 1.39400943 1.51055932
0.5 1.58714921 1.46925102 1.59134563
1 1.64957488 1.52745004 1.65391613
2 1.74335788 1.61476788 1.74792167
0.7 0 1.58532802 1.45480453 1.58940010

0.5 1.62023049 1.48181063 1.61808768

(Continued)
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Table 3 (continued)

CfxRe1/2
x

Rd M Ag/water MgO/water Ag-MgO/water
φAg = 0.018 φMgO = 0.02 φAg = 0.018, φMgO = 0.02

0.7 1.62688155 1.49413268 1.63123346
1 1.64843646 1.51443667 1.65295380

Table 4: Numerical values for local Nusselt number for radiation and magnetic parameter when
Pr = 6.8, ε = 0.2, s = 0.2, Kp = 3, B = 2, A = 0.02, K = 0.6, λ = 2

NuxRe−1/2
x

Rd M Ag/water MgO/water Ag-MgO/water
φAg = 0.018 φMgO = 0.02 φAg = 0.018, φMgO = 0.02

0 0.5 1.59553867 1.59859185 1.59842638
0.5 2.17847585 2.16923979 2.18031405
1 2.68706423 2.66710340 2.68806367
2 3.56651381 3.52816566 3.56619957
0.7 0 2.37393855 2.35357564 2.37532767

0.5 2.39255625 2.36863805 2.39063920
0.7 2.39608230 2.37547258 2.39761170
1 2.40746545 2.38668655 2.40907652

5 Conclusion

A numerical investigation for unsteady magneto micropolar Ag−MgO hybrid nanofluid flow on
an inverted rotating cone is considered. The analysis is conducted in the presence of thermal radiation
and uniform magnetic field in a porous media. Using appropriate transformations, the system of
partial differential equations that models the problem is converted to a system of ordinary differential
equations. These equations are then solved numerically using the overlapping grid multidomain spec-
tral quasilinearization method. The velocities, microrotation and temperature profiles are examined
graphically for prominent parameters. The main results are presented below:

• Micropolar fluid assists the secondary flow and diminishes the main flow. The water hybrid
nanofluid, φAg+φMgO, enhances the main flow whereas it decreases the secondary flow compared
to the mono-nanofluid φMgO water.

• The rotational effect for the hybrid nanofluid near the boundary is greater than that of the
mono-nanofluid.

• For the water hybrid nanofluid, φAg +φMgO, the variable viscosity parameter has a greater effect
on velocity compared to the corresponding case of mono-nanofluid φMgO water.

• The variable viscosity parameter reduces the temperature for the hybrid nanofluid, φAg + φMgO,
compared to the mono-nanofluid φMgO water.
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• The porosity parameter decreases the main flow; however, the inclusion of the hybrid nanofluid
φAg + φMgO can enhance velocity.
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