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ABSTRACT

This study investigates the influence of periodic heat flux and viscous dissipation on magnetohydrodynamic
(MHD) flow through a vertical channel with heat generation. A theoretical approach is employed. The channel
is exposed to a perpendicular magnetic field, while one side experiences a periodic heat flow, and the other side
undergoes a periodic temperature variation. Numerical solutions for the governing partial differential equations are
obtained using a finite difference approach, complemented by an eigenfunction expansion method for analytical
solutions. Visualizations and discussions illustrate how different variables affect the flow velocity and temperature
fields. This offers comprehensive insights into MHD flow behavior and its interactions with the magnetic field,
heat flux, viscous dissipation, and heat generation. The findings hold significance for engineering applications
concerning fluid dynamics and heat transfer, offering valuable knowledge in this field. The study concludes that
the transient velocity and temperature profiles exhibit periodic patterns under periodic heat flow conditions. A
temperature reduction is observed with an increase in the wall temperature phase angle. In contrast, an increase in
the heat flux phase angle values raises the temperature values.
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Nomenclature

δ1,2, ψ1,2 Separation variables
λ1,2 Separation constants
υ Kinematic viscosity
ρ Density
σ Electrical conductivity
ω∗

h Frequency of heat flux oscillation
ω∗

T Frequency of wall temperature oscillation
ωh Frequency of nondimensional heat flux oscillation
ωT Frequency of nondimensional temperature oscillation
B0 Magnetic flux density
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Cp Specific heat
g Gravitational acceleration
Gr Grashof number
K Thermal conductivity
M Dimensionless magnetic parameter
Pr Prandtl number
q Heat flux at the wall
Q0 Heat generation coefficient
S Dimensionless heat generating parameter
T∗ Temperature
T Dimensionless temperature
Tw Wall temperature
T∞ Free stream temperature
t∗ Time
t Dimensionless time
u∗ Velocity
u Dimensionless velocity
x∗, y∗ Cartesian coordinates
x, y Dimensionless coordinates

1 Introduction

Over the past few decades, numerous researchers have presented studies on magnetohydrody-
namics (MHD) fluid flow and heat transfer, owing to its significance. The field of MHD offers a
diverse range of engineering applications, including MHD pumps, power generators, cooling systems,
petroleum industries, reactors, accelerators, and various other domains. The impact of factors such
as viscous dissipation, heat generation, and nonuniform heat flux on flow and thermal behavior has
been extensively explored in separate studies across various MHD systems and scenarios.

Among the investigations conducted, particular attention has been given to understanding
the effects of viscous dissipation on magnetohydrodynamic fluid flow systems. In a study by
Barletta et al. [1], forced and natural flow was investigated in a vertical channel The flow was assumed
to be laminar, parallel, and fully developed with adiabatic and isothermal walls. Jha et al. [2] studied the
effect of viscous dissipation on the free convective fully developed flow of an incompressible viscous
fluid between two infinite vertical parallel plates, considering periodic temperature on the boundaries.
Meanwhile, Dessie et al. [3] examined the influence of variable viscosity on magnetohydrodynamic
flow and heat transfer past a stretching sheet. the effects of viscous dissipation and porous medium
were considered. Raju et al. [4] studied the effects of viscous dissipation and joule heating on an MHD
convective flow in a porous medium down a horizontal channel. A uniform transverse magnetic field
was applied in a rotational system. The effects of viscous dissipation and Joule heating on MHD
free-convective flow near a stretching isothermal vertical sheet are studied by Jaber [5]. A uniform
transverse magnetic field with variable properties was considered to control the flow. Additionally,
Kishan et al. [6] examined the combined effect of viscous and ohmic dissipations on transient, laminar
and fully developed flow in a vertical rectangular duct, taking into account the heat source/sink
effects. The viscous dissipation effect of a porous medium fluid flow over an isothermal vertical
flat plate is examined numerically by Duwairi [7]. In his study, the coefficient of thermal diffusivity
was considered as the sum of molecular diffusivity and the dispersion thermal diffusivity due to
mechanical dispersion. Furthermore, Swain et al. [8] illustrated MHD flow and heat transfer of a
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Newtonian fluid past a stretching sheet embedded in a porous matrix. More recent studies such
as that of Ajibade et al. [9] explored the effects of magnetic field, and viscous dissipation on an
electrically conducting incompressible fluid passing through a vertical porous channel. Moreover,
Munira et al. [10] studied the MHD free convection fluid flow with heat generation and viscous
dissipation effects.

Previous research papers have already shed light on the behavior of MHD flow with respect
to heat generation. For instance, Mamun et al. [11] investigated the effects of viscous dissipation,
and heat generation on free MHD flow past a vertical flat plate in the presence of conduction.
Muthtamilselvan et al. [12] numerically explored the impact of variable heat generation/absorption
on transient boundary layer flow past a vertical stretching porous surface, with an applied uniform
magnetic field. Meanwhile, Ajibade et al. [13] studied the effect of radiation absorption on transient
MHD flow in a vertical channel filled with porous materials. The influence of radiation absorption,
heat source, and chemical reaction is considered. The unsteady MHD natural convection flow of
a viscous fluid past an infinite vertical plate was studied by Shah et al. [14] considering ramped
temperature and heat source. Venkateswarlu et al. [15] studied the hydromagnetic free convection flow
in a vertical micro-channel, taking into account the presence of heat generation, viscous dissipation,
and velocity slip effects. The effect of thermal radiation and heat generation on steady hydromagnetic
fully developed free convection flow in a vertical micro channel with porous medium was studied by
Ponna et al. [16]. Additionally, Ali et al. [17] studied the dusty fluid flow between two parallel plates,
considering heat generation and Newtonian heating. Upreti et al. [18] studied the effect of the shape
factor on magnetized Casson nanofluid flow through an elongated sheet with a non-uniform heat
source/sink.

Engineering applications involving fluid and heat transfer with periodic wall heat flux have
attracted significant interest, particularly in the analysis of heat exchangers and cooling tubes.
Zniber et al. [19] conducted an analytical study on MHD flow through a channel considering
periodic heat flux. The research demonstrated that increasing the heat flux frequency will increase
the heat transfer between the wall and the fluid for all values of parameters. Another investigation by
Das et al. [20] studied the effect of radiation and alternating heat flux on MHD free convective flow
of a fluid over a vertical permeable plate with a uniform magnetic field. Abdullah et al. [21] used a
numerical finite difference method to study the influence of periodic magnetic field and periodic heat
flux on MHD flow through a porous medium between two parallel plates.

By reviewing previous studies, there has been no work that studied MHD flow and thermal
behavior through a channel considering viscous dissipation and periodic heat flow. This study
examines the convective MHD flow between vertical parallel plates, considering viscous dissipation
and heat generation. A uniform transverse magnetic field is applied perpendicular to the channel. A
periodic temperature and periodic wall heat flux are considered to control the fluid behavior. The
governing equations are solved numerically and analytically, and the results are compared with each
other.

2 Mathematical Formulation

In this study, the impact of periodic wall heat flux on a transient laminar fully developed flow that
passes through a vertical channel consisting of parallel plates is investigated. The channel is represented
in Fig. 1 and the fluid is assumed to be viscous and incompressible.
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Figure 1: Physical model description

Initially, it is assumed that the fluid and channel walls are both stationary and have the same
temperature of T∞. After time zero, one plate is kept stationary and periodically heated, while the
other moves at a constant velocity and has a periodic heat flux.

A free convective laminar flow with a uniform transverse magnetic field B0 is considered.
The governing equations for transient momentum and energy include viscous dissipation and heat
generation effects, using the Boussinesq approximation [22] are:

∂u∗

∂t∗ = gβ (T ∗ − T∞) + ν
∂2u∗
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By utilizing the aforementioned dimensionless quantities, the governing equations can be
expressed in a dimensionless form.
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+ ST . (6)
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And the corresponding initial and boundary conditions are:

t ≤ 0: u = 0 T = 0 for 0 ≤ y ≤ 1.

t > 0: u = 0 T = 1+ ∈ cos (ωTt) at y = 0,

u = 1
∂T
∂y

= − cos (ωht) at y = 1. (7)

3 Numerical Analysis

In this work, the governing momentum and energy equations are coupled and non-linear and
their boundary conditions are nonhomogeneous. Hence a numerical Finite difference method is used
to solve the problem by using the Crank Nicolson technique with Thomas algorithm. The technique
is fully implicit that is both stable and convergent.

The forward difference method for time discretization and the central difference method for
spatial discretization are used to convert the partial derivatives into finite difference equations. The
derivatives in the momentum equations can be performed as:

∂u
∂t

= un+1
i − un

i

�t
. (8)

∂2u
∂y2

= (ui+1 − 2ui + ui−1)

(�y)
2 .

Similarly, for the energy equation:
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. (9)
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(�y)
2 .

Here, “i” and “n” are used as index variables for special and time indexing, respectively, and �t
represents the time step size while �y represents the space step size.

By applying the above forms of the derivatives, the resulting dimensionless governing equations
Eqs. (5) and (6) are:
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The implicit form of the equations can be written as:
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Using the previous equations, a tri-diagonal matrix representing the algebraic equations for all
values of y can be formed. The equations are evaluated at each point in the y domain with a step size
of �y = 0.001. The Thomas algorithm is then used to solve the resulting system of algebraic equations
at each time with �t = 0.01.

4 Analytical Analysis

The numerical solution has been validated by comparing it with the analytical solution for specific
scenarios. The eigenfunction expansion method is used to solve both the momentum and energy
equations.

4.1 Temperature Solution
A constant heat flux with constant wall temperature and negligible Ec and S parameters are used

to solve the energy equation analytically.

∂T
∂t

= 1
Pr

∂2T
∂y2

. (12)

The corresponding boundary conditions are:

When
t ≤ 0: T = 0 for all y.

t > 0: T = 1 at y = 0, (13)
∂T
∂y

= −1 at y = 1.

The eigenfunction expansion method requires transforming the boundary conditions into linear
and homogeneous equations. Therefore, the following variable is introduced:

H (y, t) = T (y, t) + (y − 1) . (14)

Therefore, the energy equation will be:

∂H
∂t

= 1
Pr

∂2H
∂y2

. (15)

Below are the corresponding boundary conditions:

When
t ≤ 0: H = y − 1 for all values of y.

t > 0: H = 0 at y = 0, (16)
∂H
∂y

= 0 at y = 1.
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Let
H (y, t) = ψ1 (y) δ1 (t)

By substituting the function H(y, t) and its derivatives into Eqs. (11) and (12), the eigenvalue
problem can be obtained.

d2ψ1

dy2
+ λψ1 = 0, ψ1 (0) = ∂ψ1

∂y
(1) = 0. (17)

The solution of the eigenvalue problem is:

ψ1n (y) = sin
(√

λ1ny
)

. (18)

And the eigenvalues are:

λ1n =
(

2n − 1
2

π

)2

. (19)

where n = 1, 2, 3,......, ∞.

The solution of the time dependent function δ(t) is:

δ1n (t) = e
−

(
λ1nt

pr

)
.

Hence the solution of H(y, t) is as follows:
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∞∑
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λ1ny
)

e
( −λ1n

pr t
)
. (20)

By utilizing the condition
H (y, 0) = (y − 1) .

the coefficient Bn is determined

Bn = 2
λ1n

(
sin

√
λ1n − √

λ1n

)
.

Finally, the dimensionless temperature has been solved using the following solution:

T (y, t) =
( ∞∑

n=1

2
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(
sin

√
λ1n − √

λ1n

)
sin

(√
λ1ny

)
e

−λ1n
pr t

)
+ (1 − y) . (21)

4.2 Velocity Solution
To solve the momentum equation analytically, the Grashof number is neglected (Gr = 0).

∂u
∂t

= ∂2u
∂y2

− M. (22)

The boundary conditions are:

t ≤ 0: u = 0 for 0 ≤ y ≤ 1.

t > 0: u = 0 at y = 0, (23)
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u = 1 at y = 1.

A new variable is introduced to transform non-homogeneous boundary conditions into homoge-
neous.

G (y, t) = u (y, t) − y. (24)

The momentum equation can be expressed as follows:

∂G
∂t

= ∂2G
∂y2

− MG − (M + 1) y + 1. (25)

And the boundary conditions become:

t ≤ 0: G = −y for all y.

t > 0: G = 0 at y = 0,

G = 0 at y = 1. (26)

Initially, we will solve the homogeneous part of Eq. (21).

∂G
∂t

= ∂2G
∂Y2 − MG. (27)

The problem can be solved using separation of variables method.

G (Y, t) = ψ 2 (y) δ2 (t) .

The problem of finding eigenvalues will be:

d2
ψ 2

dY2 + ηnψ 2 = 0, ψ 2 (0) = ψ 2 (1) = 0. (28)

The solution of ψ 2 (y) is:
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(√
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)

. (29)

And the corresponding eigenvalues are:

λ2n = (nπ)
2 (30)

The solution to the nonhomogeneous Eq. (21) that satisfies the time-dependent variable is:

δ2n (t) = 2 (−1)
n

nπ
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(M + λ2n)

(
2 (−1)

n

nπ
M

) (
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.

Then the solution of Eq. (21) is:

G (y, t) =
∞∑

n=1

δ2n (t) sin
(√

λ2ny
)

. (31)
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Then, the final solution is reached:

u (y, t) =
∞∑

n=1

δ2n (t) sin
(√

λ2ny
)

+ y. (32)

5 Results and Discussion

This study analyzes flow and thermal behavior of a viscous, incompressible fluid through a vertical
channel, accounting for the impact of viscous dissipation and periodic heat flux. The momentum
and energy equations are solved using the numerical Crank-Nicolson method. The results are verified
through analytical solutions, assuming uniform wall temperature and heat flux, and negligible Grashof
and Eckert numbers.

Graphs are presented to illustrate the impact of various variables on velocities and temperatures.
In this study, the following values of parameters are considered for numerical calculations: Gr = 2,
M = 2, Pr = 0.71, S = 0.2, Ec = 1. Fig. 2 demonstrates the influence of the Grashof number on
velocity, indicating that the velocity increases with a higher Grashof number. This is because the
Grashof number represents the ratio of thermal buoyancy force to viscous force, and so as the Grashof
number increases, buoyancy dominates and the thermal buoyancy force tends to induce much flow in
the boundary layer, while viscosity dominates when the buoyant force decreases. In Fig. 3, the effect
of the magnetic field parameter (M) is shown. As M increases, the flow slows down. The reason for
this is that when a transverse magnetic field is applied, a force called Lorentz force will arise, which
resists the flow and thus reduces its speed. This means that increasing M leads to an increase in the
thickness of the momentum boundary layer.

Figure 2: Effect of Grashof number Gr on the velocity

Figs. 4 and 5 display the effect of the Prandtl number on velocity and temperature fields,
respectively. An increase in the Prandtl number results in an enhanced velocity profile due to increased
viscous diffusivity or decreased thermal diffusivity. Additionally, Fig. 5 shows that a higher Prandtl
number reduces the diffusion of heat generated due to viscous dissipation, which results in a lower
energy transfer capability, leading to an increased temperature profile. It is also noted that when Pr
= 7, the temperature rises until it reaches a maximum at y = 0.2 and then decreases in the remaining
region.
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Figure 3: Effect of magnetic parameter M on the velocity

Figure 4: Effect of Prandtl number Pr on the velocity

Figure 5: Effect of Prandtl number Pr on the temperature

Figs. 6 and 7 show how the velocity and temperature profiles are affected by the Eckert number
(Ec), respectively. An increase in Ec due to increased viscous dissipation raises both the velocity and
temperature of the system. This occurs because of shear stress within the fluid, which leads to an
increase in the thermal energy stored in the fluid with an increase in viscosity dissipation. Fig. 8
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depicts the temperature profile for different values of the heat generating parameter (S), indicating
that increasing S leads to higher temperature values due to increased heat generation. Increased heat
generation strengthens the convection current and thus reduces the density of the fluid, leading to a
rise in temperature.

Figure 6: Effect of Eckert number Ec on the velocity

Figure 7: Effect of Eckert number Ec on the temperature

Figure 8: Effect of heat generating parameter S on the temperature
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Furthermore, Fig. 9 investigates the effect of the time-periodic heat flux on transient temperature.
It is seen that the temperature profile has a periodic behavior, and the amplitude decreases as the heat
flux frequency rises. In Figs. 10 and 11, the transient flow and temperature behaviors at different
locations are shown. A rise in the time-periodic velocity and temperature profiles was observed as we
approached the right channel wall. The effect of wall temperature and heat flux phase angles on the
temperature profile is represented in Figs. 12 and 13, it is observed that the temperature increases with
an increase in heat flux phase angle, while it decreases with an increase of wall temperature phase
angle.

Figure 9: Effect of heat flux frequency on transient temperature

Figure 10: Transient velocity at different locations

A comparison between the accuracy of the numerical results and the results using analytical
procedure for special cases is presented in Table 1 and excellent agreement is found.
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Figure 11: Transient temperature at different locations

Figure 12: Effect of phase angle ωTt on the temperature

Figure 13: Effect of phase angle ωht on the temperature
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Table 1: Velocity and temperature results using numerical and analytical techniques for Pr = 7, M =
10, ωh,T = 0, Ec = 0 , S = 0 and Gr = 0

Dimensionless time Dimensionless velocity Dimensionless temperature

Numerical result Analytical result Numerical result Analytical result

0.1 0.1358 0.1412 0.0015 0.0020
0.2 0.1860 0.1867 0.0289 0.0311
0.3 0.1929 0.1930 0.0737 0.0763
0.4 0.1938 0.1938 0.1165 0.1192
0.5 0.1940 0.1940 0.1528 0.1553

6 Conclusions

This work examines the temperature distribution and fluid velocity via a vertical channel affected
by viscous dissipation and periodic heat flow. A completely implicit numerical approach was used
to solve the dimensionless governing partial differential equations computationally. The numerical
solution was proved and validated by solving a particular case analytically using eigenfunction
expansion method. The influence of several physical variables are presented graphically. Thus, it is
determined that:

1. The fluid’s Grashof number, Prandtl number, Eckert number, or heat source must all be raised
in order for the fluid’s velocity and temperature to increase.

2. As the magnetic field’s intensity increases, the fluid’s velocity falls.

3. The transient velocity and temperature profiles show periodic patterns of behaviour when a
periodic heat flux is applied.

4. A rise in the wall temperature angle phase difference is correlated with a decrease in temperature,
but a rise in the heat flux phase shift values results in an increase in temperature.
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