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ABSTRACT

This paper proposes a mathematical modeling approach to examine the two-dimensional flow stagnates at x = 0
over a heated stretchable sheet in a porous medium influenced by nonlinear thermal radiation, variable viscosity,
and MHD. This study’s main purpose is to examine how thermal radiation and varying viscosity affect fluid flow
motion. Additionally, we consider the convective boundary conditions and incorporate the gyrotactic microor-
ganisms equation, which describes microorganism behavior in response to fluid flow. The partial differential
equations (PDEs) that represent the conservation equations for mass, momentum, energy, and microorganisms
are then converted into a system of coupled ordinary differential equations (ODEs) through the inclusion of
nonsimilarity variables. Using MATLAB’s built-in solver bvp4c, the resulting ODEs are numerically solved. The
model’s complexity is assessed by plotting two-dimensional graphics of the solution profiles at various physical
parameter values. The physical parameters considered in this study include skin friction coefficient, local Nusselt
number, local Sherwood number, and density of motile microorganisms. These parameters measure, respectively,
the roughness of the sheet, the transformation rate of heat, the rate at which mass is transferred to it, and the rate
at which microorganisms are transferred to it. Our study shows that, depending on the magnetic parameter M,
the presence of a porous medium causes a significant increase in fluid velocity, ranging from about 25% to 45%.
Furthermore, with an increase in the Prandtl number Pr, we have seen a notable improvement of about 6% in fluid
thermal conductivity. Additionally, our latest findings are in good agreement with published research for particular
values. This study provides valuable insights into the behavior of fluid flow under various physical conditions and
can be useful in designing and optimizing industrial processes.
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Nomenclature

u, v(m/s) Velocity component along (x, y)

B0(A/M) Constant magnetic field
ρf (Kg/m3) Density of fluid
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νf (m2/s) Kinematic viscosity
u∞(m/s) Free stream velocity
σe(S/m) Electrical conductivity
k0 Viscoelastic parameter
Tf (K) Temperature of FLuid
Q0 Heat source parameter
DB(m2/s) Browninan diffusion
T , C(K) Temperature and concentration
T∞(K) Free stream temperature
γ2 Concentration biot number
Le Lewis number
Dn Microorganisms diffususion
h3 Microorganisms transfer coefficients
N∞ Ambient microorganism concentration
Pe Peclet number
k(W/mK) Thermal conductivity
DT(m2/s) Thermophoretic diffusion coefficients
C∞(mol/m3) The ambient fluid concentration
Pr The ambient Prandtl number
Nt Thermophoresis number
Nb Brownian motion parameter
Nux Nusselt parameter
Shx Sherwood parameter
Dnx Density parameter
Wc(m/s) Maximum cell swimming speed
Dm(m2/s) Diffusivity of microorganism
N∞ Ambient microorganism concentration
� Concentration difference parameter
h3 Microorganisms transfer coefficients
Lb Lewis number
Pe Peclet number

1 Introduction

Due to its potential applications in a number of sectors, including nanofluidic devices, drug
delivery, and biomedical engineering, the stagnation point flow of nanomaterials with natural convec-
tion and variable fluid properties is a developing field that has drawn more attention nowadays. The
thermal and physical characteristics of the fluid, such as viscosity, density, and thermal conductivity,
have a significant impact on how nanomaterials behave at stagnation points. This study intends to
examine the hydrodynamic flow of nanomaterials at stagnation point x = 0 with natural convection
and variable fluid characteristics. The results of this study could have important implications for the
design of nanofluidic devices and other applications where the behavior of nanomaterials at stagnation
points is critical. Choi et al. [1] investigated the results of incorporating nanoparticles into fluids to
increase their thermal conductivity. A theoretical analysis of the behavior of a nanofluid flow over a
vertical plate under the effect of natural convection was reported by Kuznetsov et al. [2]. In a non-
Darcy porous medium saturated with a nanofluid, Shaw et al. [3] investigated dual solutions for
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homogeneous-heterogeneous reactions over an elastic sheet. Their research sheds light on the effects of
various parameters, including chemical reaction and non-Darcy effects on the flow of the nanofluid.

Magnetohydrodynamics (MHD) is a field of physics and engineering that studies the dynamics
of electrically conducting fluids in the presence of magnetic fields. In MHD fluid flow, the fluid is
influenced by electromagnetic fields, which can lead to interesting and complex phenomena such as
the generation of electric fields and currents, the formation of magnetic structures, and the suppression
of turbulence. MHD fluid flow has many practical applications in engineering, such as in plasma
confinement for nuclear fusion, in the design of electric generators, and in the study of space weather.
Roberts [4] and Davidson [5] served as introductory texts on Magnetohydrodynamics (MHD), provid-
ing basic concepts, principles, and applications of MHD in various fields of science and engineering.
Qamar et al. [6] investigated the influence of variable electromagnetohydrodynamic (EMHD) on the
motion of fluid over a porous elastic sheet. A hybrid nanofluid’s magnetohydrodynamic stagnation
point flow was studied by Anuar et al. in [7], along with the associated ODEs that were numerically
solved using dual solutions. Zainal et al. [8] provided numerical solution of non-axisymmetric Homann
impinging flow of hybrid nanofluid. Nadeem et al. [9] numerically analyzed the impact of different
parameters on heat transfer and skin friction coefficient in the two-dimensional stagnation point flow
of nanofluid over a curved surface. For the Newtonian magnetohydrodynamic fluid flow across an
unsteady stretched sheet with thermal radiation, variable heat flux, and variable viscosity/conductivity,
Megahed et al. [10] employed a shooting approach to solve the ordinary differential equations.
Ali et al. [11] developed a mathematical model of 2D stagnation point flow over incorporated
Newtonian heating.

Modeling nonlinear thermal radiation in fluid flow involves the use of complex mathematical
models and numerical methods to obtain accurate predictions of the temperature field. The nonlin-
earity can significantly affect the temperature distribution in the fluid and has important implications
for heat transfer in various engineering applications. In their study, Bouslimi et al. [12] studied the
Williamson fluid under the influence of thermal radiation and electromagnetic force flowing in a
porous material. According to Bilal et al. [13] the effects of nonlinear thermal radiation on the Darcy-
Forchheimer flow of a magnetohydrodynamic Williamson nanofluid with entropy optimization are
examined. Mixed convection micropolar fluid flow in a porous material with a magnetic field and
boundary condition of convective type by Patel et al. [14], used similarity transformations and the
Homotopy analysis approach to solve the governing equations with non-linear thermal radiation.
To investigate the combined impact of various parameters on the Eyring-Powell nanofluid under the
influence of MHD flow of through an elastic sheet, Reddy et al. [15] did an analysis. The findings
were shown graphically and statistically. Kumar et al. [16] provided a detailed analysis of the Casson
nanofluid in a vertical channel containing pores with the effect of MHD and thermal radiation.

The concept of the porous medium has gained significant attention in nowadays due to its
numerous applications in scientific fields. A porous medium refers to a material with interconnected
voids or spaces that allow fluid to pass through it. The presence of porous media in fluid flow systems
often results in changes to the fluid’s physical properties, including its viscosity. Understanding the
impact of porous media on viscosity is crucial in designing and optimizing fluid flow systems for
various applications. In this research paper, we aim to investigate the effects of porous media on
fluid viscosity and explore its implications in practical applications. McWhirter et al. [17] presented
experimental findings on magnetohydrodynamic flows in porous media, and shed light on the interac-
tion between fluid flow, magnetic fields, and porous media. A mathematical model was developed by
Bhatti et al. [18] for electromagnetic blood flow with coagulation, magnetohydrodynamics, and Hall
current in an annular vessel with a porous medium, solved analytically for fluid and particle phase
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with the homotopy perturbation method. Reddy et al. [19] investigated the effect of MHD flow over
a porous medium, obtained numerical solutions using the Keller-box method, and identified the flow
features and their behavior under different parameters.

Bioconvection is a process where microorganisms are introduced into a fluid, causing the upper
surface to become thicker and unstable, leading to the tumbling of microorganisms toward the
ground. This process has numerous applications in various fields, such as pharmaceuticals, culture
purification, microfluidics, mass transfer enhancement, oil recovery, and enzyme biosensors, and is
currently a subject of ongoing research [20]. The flow of nanofluids comprising nanomaterials and
motile microorganisms through a porous elastic wedge with Nield boundary through a porous matrix
was the subject of research by Hussain et al. [21]. Muhammad et al. [22] examined the effects of
activation energy, magnetic field, and other physical variables, as well as motile microorganisms, on
the characteristics of Jeffrey nanofluid flow on a three-dimensional surface. Numerical analysis of a
nanofluid flow via an elastic surface containing gyrotactic microorganisms was performed by [23–25].
The study by Dawar et al. [26] compared the results of magnetized and non-magnetized Casson fluids
through a stretching cylinder.

The research questions and innovatives explored in this research are as follows:

• How does the viscoelastic parameter K influence the flow characteristics and boundary layer
behavior of the fluid near the heated sheet?

• How does the magnetic parameter M influence fluid velocity and transfer rate of heat?

• What is the relationship between the bioconvection Lewis number Lb and the density number
in the context of bioconvection phenomena?

In the literature, the effects of gyrotactic microorganisms in two dimensional (2D) flow stagnates
at x = 0 over an extended stretchable surface are limited. In this study, these effects for two-
dimensional stagnation point flow [11] at x = 0 over an extended heated stretchable sheet are being
investigated by considering factors such as nonlinear thermal radiation, MHD, porous medium,
and variable viscosity. The governing PDEs will be transformed into ODEs using a similarity
transformation and then numerically tackled using the bvp4c method in MATLAB [27–31]. The
resulting solutions will be plotted in two-dimensional graphics to illustrate the models’ complexity
at various fluid parameter values.

The paper is structured into several sections, starting with the mathematical model of the problem
in the Section 2, followed by a discussion of the numerical approach in the Section 3. The Section 4
presents the findings and a conclusion is drawn in the Section 5.

2 Mathematical Modeling

Consider a two-dimensional viscoelastic nano-fluid flow stagnates at x = 0 containing gyrotactic
microorganisms across an heated elastic sheet, taking into account that magnetic field applied vertical
in direction to the surface, as well as Joule heating and viscous dissipation. At the stagnation point
(0, 0), two equal and opposing forces stretching the surface with velocities uw = ax and u∞ = bx. To
ignore the impact of the induced magnetic field, the magnetic Reynolds number must be very low. The
momentum equation has the following form after the boundary layer approximation [11].

∂u
∂x

+ ∂v
∂y

= 0, (1)
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uux + vvy = u∞(u∞)x − σeB2
0(u − u∞)

ρf

+ 1
ρf

(
μuy

)
y
− μ

ρf k
(u − u∞)

+ k0

(
uuxyy + uxuyy + νuxxx − uyuxy

)
, (2)

and the corresponding boundary conditions are

u = uw(x) = ax, v = 0, when y = 0,

u → u∞(x) = bx, when y → ∞, (3)

where (u, v), u∞, uw(x), νf , σe, k0, and ρf represent the fluid velocities, free stream velocity, velocity
of the sheet, kinematic viscosity, electrical conductivity, viscoelastic parameter, and fluid density,
respectively.

In (2), the fluid viscosity μ is assumed to vary with temperature as follows:

μ = μ∞e−αθ , (4)

A similarity transformation is employed as follows [11]:

η = −
√

a
νf

u = axf ′(η), v = −√
aνf f (η), (5)

We get the following ODE with boundary conditions as

ff ′′ − f ′2 + K
(
2f ′f ′′ − ff ′′ − f ′′2) + (

M + e−αθδ
)
(λ − f ′) + λ2

+ e−αθ (f ′′′ − αθ ′f ′′) = 0, (6)

f (0) = 0, f ′(0) = 1, f ′(∞) = λ. (7)

Here, the viscoelastic parameter is defined as K = ak0

νf

, while the external magnetic source is

represented by M = σeB2
0

aρf

. Additionally, the local Darcy number is given by δ = μ∞
ρf ka

, the viscosity

parameter is defined as α, the ratio parameter is denoted by λ = b
a

denotes the ratio parameter and α

represents the dimensionless viscosity parameter.

2.1 Energy Equation
The energy equation in fluids describes the conservation of energy in fluid flow, accounting for

thermal energy transfer due to conduction, convection, and radiation. It is an important equation in
fluid dynamics and is commonly used in the analysis of heat transfer problems. After boundary layer
approximation, the energy equation [11] takes the following form:

uTx + vTy = μf

ρf cp

(
uy

)2 − σeB2
0(u − u∞)

(ρc)f

+ τ

(
DBTyCy + DT

T∞

(
Ty

)2
)

− Q0

(
T − Tf

)
(
ρcp

)
f

+ 1
(ρc)f

(K(T)Ty)y = 0, (8)



268 FHMT, 2024, vol.22, no.1

and the corresponding boundary conditions are

−K
∂T
∂y

= [T − Tf ]h1, when y = 0,

T = T∞, when y → ∞, (9)

where Tf refers to the fluid’s temperature, kinematic viscosity is represented by νf , σe represents the
electrical conductivity, ρf is the fluid’s density, Q0 is the heat source parameter, DB denotes brownian
diffusion, u∞ is the velocity of the free stream, k0 refers to the viscoelastic parameter, and B0 represents
the magnetic parameter. In (8), the thermal conductivity K(T) is written as follows:

K(T) = K∞ (1 + εθ) , (10)

Using the following similarity transformation [11] in Eq. (8):

η = −
√

a
νf

, θ(η) = T − T∞
Tf − T∞

,

u = axf ′, v = −√
aνf f , (11)

We get

(1 + ε)θ + εθ ′2 + Pr
(
f θ ′ + Ecf ′′2 + MEc (λ − f ′)

2 + Nbθ ′φ ′ + Ntθ ′2 + γ θ
) = 0, (12)

θ ′(0) = −γ1[1 − θ(0)], θ(∞) = 0. (13)

The ratio parameter is denoted by λ = b
a

, which is equal to the ratio of b to a. The Eckert number,

denoted by Ec, is defined as
u2

w

cpf

(
Tf − T∞) , where u is the velocity, w is the enthalpy, specific heat

is represented by cp the temperature of fluid is assigned as Tf and the free stream temperature is T∞.

The Brownian motion parameter, Nb = τDB (Cw − C∞)

νf

, and the thermophoresis parameter, Nt =
τDT

(
Tf − T∞

)
νf T∞

. The local heat source/sink parameter is given by γ = Q0B2
0

a(ρcp)f

. The Prandt number is

denoted by Pr = μ0cp

K∞
, while γ1 is the thermal number and is defined as

√
νf

a

(
h
k

)
.

2.2 Mass Transfer Equation
The mass transfer equation in fluid mechanics describes the transport of a chemical species, such

as mass or concentration, in a fluid. It is a fundamental equation that governs a variety of processes,
including heat transfer, chemical reactions, and diffusion. After boundary layer approximation, the
mass transfer equation [11] takes the following form:

uCx + vCy = DBCyy +
(

DT

T∞

)
Tyy (14)
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and the corresponding boundary conditions are

− DBCy = [C − Cf ]h2, when y = 0,

C = C∞(x), when y → ∞, (15)

where C the concentration, DB is the diffusion coefficient, T is the temperature, the thermal diffusivity
DT , the Brownian diffusion DB, and T∞ is the free-stream temperature.

The following similarity transformation [11] in Eq. (14):

η = −
√

a
νf

, φ(η) = C − C∞
Cf − C∞

,

u = axf ′, v = −√
aνf f , (16)

We get the following ODE with boundary conditions as

φ ′′ +
(

Nt

Nb

)
φ ′′ + Pr Lef φ ′ = 0, (17)

φ ′ (0) = −γ2 (1 − φ (0)) , φ(∞) = 0. (18)

where Nt and Nb are the Brownian motion and thermophoresis parameters, respectively, the Prandtl
number Pr, the concentration Biot number γ2, and the Lewis number Le based on the thermal diffusion
coefficient.

2.3 Gyrotactic Microorganisms
The gyrotactic microorganisms equation in fluids describes the movement and behavior of

microorganisms in response to fluid flows and gravitational forces. This equation is important in
understanding the dynamics of aquatic ecosystems and the biogeochemical cycling of nutrients. The
gyrotactic microorganism concentration equation [23] is expressed below:

uNx + vNy + bWc

(Cf − C∞)

(
NCy

)
y
= DmNyy, (19)

and the corresponding boundary conditions are

− DmNy = [N − Nf ]h3, when y = 0,

N = N∞, when y → ∞, (20)

where Dm is the diffusivity of microorganism, h3 is the microorganisms transfer coefficients and N∞
is the ambient microorganism concentration. Using the following similarity transformation [23] in
Eq. (19):

η = −
√

a
νf

, χ(η) = N − N∞
Nf − N∞

,

u = axf ′(η), v = −√
aνf f (η), (21)

we get

χ ′′ + Lb(f χ ′) − Pe[φ ′′(χ + �) + χ ′φ ′] = 0, (22)

χ ′ (0) = γ3 (1 − χ (0)) , χ(∞) = 0. (23)
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where Lb = k
ρcpDm

represents the bioconvection Lewis number, Pe = bWc

Dm

the bioconvection Peclet

number, and � = N∞
N∞ − N0

the concentration difference parameter.

2.4 Physical Quantities
Skin friction coefficient, Nusselt number, Sherwood number and Density number are defined

below:

Cf = τw

ρu2
w

, Nux = xqw

K
(
Tf − T0

) ,

Shx = xjw

DB

(
Cf − C0

) , Dnx = xqn

Dm

(
Nf − N0

) , (24)

where

τw = [
μf uy + k0ρf

(
uuxy + vuyy + 2uxuy

)]
y=0

, qw = −k
(
Ty

)
y=0

,

jw = −DB

(
Cy

)
y=0

, qn = −Dm

(
Ny

)
y=0

, (25)

Now, the dimensionless forms are defined below:

Cfx

√
Rex = f ′′(0) + K (3f ′(0)f ′′(0) − f (0)f ′′′(0)) ,

NuxRe
−1
2

x = −θ ′(0), ShxRe
−1
2

x = −φ ′(0), DnxRe
−1
2

x = −χ ′(0). (26)

where Rex = uwx
ν

represents the Reynolds number.

3 Solution Methodology

The governing equations given by Eqs. (6), (12), (17), (22) with boundary conditions specified in
Eqs. (7), (13), (18), (23), respectively, were solved numerically using the built-in MATLAB function
bvp4c. The bvp4c finite difference solver relies on the three-stage Lobatto IIIa collocation formula,
ensuring a C1-continuous solution that uniformly maintains fourth-order accuracy throughout the
integration interval. To manage errors and select an appropriate mesh, the solver employs the residual
of the continuous solution. The integration interval is subdivided into smaller subintervals using a
mesh of data points. The solver then tackles a comprehensive system of algebraic equations formed
by combining boundary conditions and collocation requirements across these subintervals. Error
assessment is carried out for each subinterval, and if the computed solution does not meet the
predefined tolerance criteria, the solver iteratively adjusts the mesh. To initiate this iterative process,
initial approximations of the solution at the mesh points are required. Achieving asymptotic behavior
entails configuring the solution tolerance rate to be as stringent as 10−6. Consequently, the solver
continues its iterations until the solution reaches a level of accuracy where the relative error falls within
10−6. The aforementioned equations converted into a first-order system of ODEs before applying this
method as

y1 = f , y2 = f ′, y3 = f ′′, y4 = θ , y5 = θ ′, y6 = φ, y7 = φ ′, y8 = χ , y9 = χ ′, (27)
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To get the numerical answer, a new set of variables is defined in MATLAB as the following:

y′
1 = f ′, y′

2 = f ′′,

y′
3 = f ′′′ = eαy4

[−y1y3 + y2
2 − K

(
2y2y3 − y1y3 − y2

3

) − (
M + e−αy4δ

)
(λ − y2)

−λ2 + e−αy4αy5y3

]
, (28)

y′
4 = θ ′, y′

5 = θ ′′ = 1
1 + εy4

[−εy2
5 − Pr

(
y1y5 + Ecy2

3 + MEc(λ − y2)
2 + Nby5y7

+Nty2
5 + γ y4

)]
, (29)

y′
6 = φ ′, y′

7 = φ ′′ = −LePry1y7 − Nt

Nb

y′
5, (30)

y′
8 = χ ′, y′

9 = χ ′′ = −Lby1y9 + Pe
[
y′

7 (y8 + �) + y9y7

]
, (31)

The boundary conditions are written in boundary value residual form, as required by bvp4c, as
shown below:

y0(1) = 0, y0(2) − 1 = 0, y0(5) + γ1(1 − y0(4)) = 0,

y0(7) + γ2(1 − y0(6) = 0, y0(9) + γ3(1 − y0(8) = 0, y∞(2) − λ = 0,

y∞(4) = 0, y∞(6) = 0, y∞(8) = 0. (32)

The physical quantities converted as below:

Cfx

√
Rex = y3(0) + K

(
3y2(0)y3(0) − y′

3(0)y1(0)
)

,

NuxRe
−1
2

x = −y5(0), ShxRe
−1
2

x = −y7(0), DnxRe
−1
2

x = −y9(0). (33)

4 Numerical Results and Discussion

The numerical results from our work and research questions are thoroughly discussed in this
section, along with their physical importance and applicability to a wider range of fluid dynamics and
heat transport problems. Our findings cover a wide range of flow and transport processes in a porous
viscoelastic fluid-saturated medium affected by magnetic fields, heat effects, and microorganism
dynamics.

For different values of the ratio parameter λ, the value of the skin friction coefficient is calculated
as mentioned in Table 1. To validate our findings, results are compared with the previous research.

Table 1: Comparison of f "(η) with previously published data [11] by considering δ = 0, α = 0, M =
0.1, K = 0.1

λ Ali et al. [11] Present work

0.1 −1.41633 −1.4160
0.2 −1.33319 −1.3331
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Multiple tables show the outcomes of our numerical calculations. Tables 2–5 present the skin
friction coefficient, local Nusselt number, local Sherwood number, and local density number of motile
microorganisms, in that order. Skin friction coefficient parameter is vital for describing the drag force
applied by the fluid to a solid surface and is used in many different engineering applications. Skin
friction is observed to increase with increases in the ratio parameter λ, whereas declines are observed
with increases in the viscosity parameter α, the local Darcy number δ, and the magnetic number M.
The viscoelastic parameter K influences the flow characteristics near the heated sheet by affecting
the boundary layer behavior. An increase in K leads to a reduction in the thickness of the velocity
boundary layer region. This results in a decrease in fluid velocity near the solid surface. Additionally,
the presence of the magnetic field in the presence of a porous surface significantly increases fluid
velocity. It is observed that, on the specific value of M, fluid velocity can increase by approximately
25% to 45%. This suggests that magnetic effects play a crucial role in enhancing fluid motion under
these conditions.

Table 2: Analyzing the effects of several factors on the skin friction coefficient while taking into
account ε = Ec = Nb = Nt = � = 0.2, γ = Le = Pe = γ1 = γ2 = γ3 = 0.1, Lb = 1, Pr = 6

α K M δ λ Cf

√
Rex

0.0 0.1 0.1 0.2 0.1 −1.5209
0.5 −1.7420
1.0 −2.1234
0.5 0.1 0.1 0.2 0.1 −1.7420

0.5 −3.1154
0.9 −5.1556

0.5 0.1 0.1 0.2 −1.7420
0.3 −2.0553
0.5 −2.3676

0.5 0.1 0.1 0.0 0.1 −1.6174
0.4 −1.8586
0.8 −2.0732

0.5 0.1 0.1 0.2 0.0 −1.8694
0.1 −1.7420
0.2 −1.5913

Table 3: Analyzing the effects of several factors on Nusselt number by considering K = Le = Pe =
γ2 = γ3 = 0.1, α = δ = � = 0.2, α = 0.5, Lb = 1

M λ ε Pr Ec Nb Nt γ γ1 NuxRex
−1/2

0.1 0.1 0.2 6 0.2 0.2 0.2 0.1 0.1 0.0571
0.5 0.0413

(Continued)
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Table 3 (continued)

M λ ε Pr Ec Nb Nt γ γ1 NuxRex
−1/2

0.9 0.0255
0.1 0.1 0.2 6 0.2 0.2 0.2 0.1 0.1 0.0555

0.3 0.0703
0.5 0.0820

0.1 0.1 0.2 6 0.2 0.2 0.2 0.1 0.1 0.0571
0.5 0.0589
0.8 0.0597

0.1 0.1 0.2 6 0.2 0.2 0.2 0.1 0.1 0.0571
7 0.0555
8 0.0538

0.1 0.1 0.2 6 0.2 0.2 0.2 0.1 0.1 0.0571
0.3 0.0345
0.4 0.0065

0.1 0.1 0.2 6 0.2 0.2 0.2 0.1 0.1 0.0571
0.5 0.0543
0.8 0.0511

0.1 0.1 0.2 6 0.2 0.2 0.2 0.1 0.1 0.0571
0.5 0.0536
0.8 0.0493

0.1 0.1 0.2 6 0.2 0.2 0.2 0.0 0.1 0.0641
0.1 0.0571
0.15 0.0457

0.1 0.1 0.2 6 0.2 0.2 0.2 0.1 0.1 0.0571
0.5 0.1979
0.9 0.2650

Table 4: Analyzing the effects of several factors on the Sherwood number by considering K = M =
λγ = Pe = γ3 = 0.1, δ = ε = Ec = � = 0.2, α = 0.5, Lb = 1

Pr Nb Nt Le γ1 γ2 ShxRex
−1/2

6 0.2 0.2 0.1 0.1 0.1 0.0864
7 0.0903
8 0.0935
6 0.2 0.2 0.1 0.1 0.1 0.0864

0.5 0.0832
0.8 0.0824

6 0.2 0.2 0.1 0.1 0.1 0.0864
0.5 0.0904
0.8 0.0950

6 0.2 0.2 0.1 0.1 0.1 0.0864

(Continued)
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Table 4 (continued)

Pr Nb Nt Le γ1 γ2 ShxRex
−1/2

0.2 0.0953
0.3 0.0986

6 0.2 0.2 0.1 0.1 0.1 0.0864
0.5 0.0655
0.9 0.0558

6 0.2 0.2 0.1 0.1 0.1 0.0864
0.5 0.2455
0.9 0.3087

Table 5: Analyzing the effects of several factors on the density number by considering
K = γ = Le = γ1 = γ2 = 0.1, δ = ε = Ec = Nb = Nt = 0.2, α = 0.5, Pr = 6, Lb = 1

M λ Lb Pe � γ3 DnxRex
−1/2

0.1 0.1 1 0.1 0.2 0.1 0.0856
0.5 0.0851
0.9 0.0847
0.1 0.0 1 0.1 0.2 0.1 0.0848

0.1 0.0856
0.2 0.0862

0.1 0.1 1 0.1 0.2 0.1 0.0856
2 0.0902
3 0.0922

0.1 0.1 1 0.1 0.2 0.1 0.0856
0.3 0.0868
0.5 0.0880

0.1 0.1 1 0.1 0.1 0.1 0.0854
0.3 0.0857
0.5 0.0861

0.1 0.1 1 0.1 0.2 0.1 0.0856
0.3 0.1981
0.5 0.2687

The convective heat transfer at a solid-fluid interface is represented by the local Nusselt number.
It exhibits a decreasing trend with M the magnetic parameter, Ec the Eckert number, Nb the Brownian
motion parameter, Nt the thermophoresis parameter, and the local heat source/sink parameter γ

but rises with the ratio parameter λ, thermal conductivity parameter ε and thermal number γ1.
Furthermore, with an increase in the Prandtl number Pr, we have seen a notable improvement of
about 6% in fluid thermal conductivity.
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The convective mass transfer is represented by the local Sherwood number. For local Sherwood
number, it is observed that it rises with Pr the Prandtl number, Le the Lewis number, Nt the
thermophoresis parameter, and the concentration Biot number, but drops with Nb and γ1.

Finally, the local density number describes how the density of mobile microorganisms varies in
the fluid. The behavior of this parameter has ramifications for environmental and biotechnological
applications and is essential to understanding biological convection processes. It grows with λ, Lb, Pe,
γ3, and ω, but decreases with the magnetic number M. So, the diffusibility of microorganisms tends to
increase for all the parameters considered in the study, except for the magnetic parameter M.

Fig. 1 presents the diagrammatic depiction of the flow model. Figs. 2–5 present the velocity profile
under varying conditions of the viscosity parameter α, magnetic number M, local Darcy number δ,
and ratio parameter λ. Except for λ, it is shown that the fluid velocity drops as α, M, and δ rise. On
the other hand, a rise in the value of lambda causes an increase in fluid velocity.

Figure 1: A diagrammatic depiction of the flow model

Figure 2: f ′(η) against α
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Figure 3: f ′(η) against M

Figure 4: f ′(η) against δ

Figure 5: f ′(η) against λ

The temperature profile is shown in Figs. 6–13 by considering a range of values for the Prandtl
number Pr, the ratio parameter λ, the thermal conductivity parameter ε, and the Eckert number Ec,
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the Brownian motion parameter Nb, the thermophoresis parameter Nt, the thermal number γ1, and
the magnetic number M. The temperature profile is affected by changes in the thermal conductivity
parameter ε, as seen in Fig. 8. It was discovered that increasing the thermal conductivity parameter
gave greater heat to neighboring liquid particles. Figs. 9–13 depict the effect of the Eckert number
Ec, Brownian motion parameter Nb, thermophoresis parameter Nt, thermal number γ1, and magnetic
number M on the temperature profile. The temperature profile grow as Ec, Nb, Nt, γ1, and M increased.

Figure 6: Temperature profile against Pr

Figure 7: Temperature profile against λ

Figs. 14 to 19 explore the concentration profile for various values of the Prandtl number Pr, the
thermophoresis parameters Nb, the Brownian motion parameter Nt, the Lewis number Le, the thermal
number γ1, and the concentration Biot number γ2. In Fig. 14, a decrease in the concentration field is
observed when Pr goes from 6 to 8. Fig. 15 depicts the effect of the thermophoresis parameter Nb
on the concentration profile, demonstrating that the concentration profile decreases as Nb increases.
Fig. 16, on the other hand, demonstrates that the concentration field grows in response to Nt. Changes
in the Lewis number Le are shown to have an impact on the concentration profile in Fig. 17. A drop in
the concentration profile is shown to be accompanied by an increase in Le. Additionally, the thermal
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number γ1 and the concentration Biot number γ2 vary for various parameter values, as shown in
Figs. 18 and 19. The concentration boundary layer expands in both cases.

Figure 8: Temperature profile against ε

Figure 9: Temperature profile against Ec

Figs. 20 to 23 show the microorganism profile for various values of the bio-convection Lewis
number Lb, concentration difference parameter �, magnetic number M, and density number γ3. It
is seen that the motile density profile falls for Lb and � but grows for all other parameters, showing
that the diffusivity of microorganisms increases for M and γ3.
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Figure 10: Temperature profile against Nb

Figure 11: Temperature profile against Nt

Figure 12: Temperature profile against γ1
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Figure 13: Temperature profile against M

Figure 14: Concentration profile against Pr

Figure 15: Concentration profile against Nb
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Figure 16: Concentration profile against Nt

Figure 17: Concentration profile against Le

Figure 18: Concentration profile against γ1



282 FHMT, 2024, vol.22, no.1

Figure 19: Concentration profile against γ2

Figure 20: Microorganisms profile against Lb

Figure 21: Microorganisms profile against M
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Figure 22: Microorganisms profile against �

Figure 23: Microorganisms profile against γ3

In summary, our numerical findings illuminate the intricate interactions between different factors
in fluid dynamics, heat transfer, mass transfer, and microorganism dynamics. Engineering, environ-
mental science, and biotechnology can all benefit from these discoveries. For better performance and
efficiency, fluid systems can be designed and optimized using the observed trends and dependencies.

Our findings serve as the foundation for more advanced research in this subject. These fundamen-
tal ideas, we feel, are critical for building a comprehensive understanding of the phenomena under
investigation. Future research can build on these foundations to investigate more complex scenarios
and solve specific engineering problems.

5 Conclusion

This paper gives the following conclusions based on the analysis and discussion of the results
after conducting study on the two-dimensional flow stagnates at x = 0 over an extended heated elastic
sheet under radiative heat transfer with nonlinear characteristics, variable viscosity, and MHD in a
porous medium. Moreover, we extend our analysis by considering convective boundary conditions and
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introducing the gyrotactic microorganisms equation to capture microorganism behavior influenced by
fluid flow.

1. Various parameters such as λ, α, K, M, and δ influence the skin friction coefficient. An
increase in λ causes the fluid speed to decrease, whereas an increase in α, K , M, or δ causes
it to increase. Our investigations reveal that, contingent upon the magnetic parameter M, the
presence of a porous medium leads to a substantial enhancement in fluid velocity, ranging
between approximately 25% and 45%.

2. Fluid temperature is affected by parameters such as M, Ec, Nb, Nt, γ , λ, Pr, ε, and γ1. An
increase in M, Ec, Nb, Nt, or γ causes a reduction in fluid temperature, whereas a rise in
λ, ε, or γ1 causes an increase. An increase in the Prandtl number (Pr) results in a noticeable
improvement of around 6% in fluid thermal conductivity.

3. The concentration boundary layer thickness is determined by parameters such as Pr, Nb, Le, γ2,
Nt, and γ1. An increase in Pr, Nt, Le, or γ2 causes the concentration boundary layer thickness
to grow, whereas an increase in Nb or γ1 causes it to drop.

4. The local density number is influenced by parameters such as λ, Lb, Pe, γ3, �, and M. An
increase in λ, Lb, Pe, γ3, or � leads to an increase in the local density number, while an increase
in M results in a decrease.

These findings provide insight into the behavior of fluid flow under various physical conditions
and can be used to optimize industrial processes. The mathematical modeling approach used in this
study can be applied to other related problems to gain a better understanding of fluid dynamics in
various industrial applications.
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